同济大学版高等数学期末考试试卷

合集下载

高等数学(同济)下册期末专业考试题及内容标准答案(5套)

高等数学(同济)下册期末专业考试题及内容标准答案(5套)

高等数学(下册) 考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ; (C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

同济大学《高等数学》(上)期末试卷A及答案

同济大学《高等数学》(上)期末试卷A及答案

高等数学(上)期末考试试卷试 题一、填空、选择题1.函数)(x f 在],[b a 上可积是)(x f 在],[b a 上连续的 条件,函数)(x f 在],[b a 上可导是)(x f 在],[b a 上连续的 条件.2.曲线(ln y x =在点(),ln(1处的切线方程是 .3.函数()(1)cos sin f x x x x =−−在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是 .4.曲线()x x y x −=2e 上有 个拐点.5.设可导函数()g x 满足(0)0g =,()00≠′g ,设())(sin 2x g x G =,则当0x →时, .(A )()G x 与()g x 是等价无穷小. (B )()G x 与()g x 是同阶的无穷小. (C )()G x 是比()g x 高阶的无穷小.(D )()G x 是比()g x 低阶的无穷小.6.极限nnn nnn 333lim 21+++∞→"= .7.如果一物体沿直线运动,物体的运动速度的变化曲线如图3所示(单位省略),则物体在这段位移过程中的平均速度为 .8.微分方程x x y x y sind d =+的通解为 . 二、1.设函数ln sec y x =,,22x ππ⎛⎞∈−⎜⎟⎝⎠.(1)讨论函数的单调区间与该函数的图形的凹凸性; (2)该曲线在哪点处的曲率半径为2?2.设()⎪⎩⎪⎨⎧=≠=∫,0,,0,d e 22x a x x t x x xt ϕ 求a 的值,使得()x ϕ在0=x 处连续,并用导数定义求(0)ϕ′.三、1.求定积分I =∫−π22d sin 1x x x .2.若()()⎪⎪⎩⎪⎪⎨⎧>+≤+=,0,11,0,112x x x x xx f 对于(,)x ∈−∞+∞,求()()∫∞−=xt t f x F d .四、1.设曲边梯形由曲线1y x x=+(0x >)与直线0y =,x a =,1x a =+所围成(其中0a >),问:当a 为何值时,曲边梯形的面积为最小,最小面积是多少?2.设一平板浸没在水中且垂直于水面(水的密度为1000kg/m 3),平板的形状为双曲四边形,即图形由双曲线2244x y −=,直线1y =与1y =−所围成(如图4所示,单位:m).(1)如果平板的上边缘与水面相齐,那么平板一侧所受到的水的总压力是多少?(2)如果水位下降,在时刻t ,水面位于y =()h t 处,且水面匀速下降,速率为0.01(m/s ),问:当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率是多少?五、设函数()f x 满足方程x x f u u f x u x 2cos )(d )()(0+=−∫,求()f x .参考答案一、1.必要,充分.2.|1x y ′,因此所求切线是ln(1y x =.3.()(1)sin f x x x ′=−−,在区间(0,)2π内有唯一驻点1x =且为极大值点,因此所求最大值是(1)sin1f =−.4.()x x y x 3e 2+=′′有2个零点3x =−与0x =,且y ′′在这2个零点的左、右两侧邻近异号,因此该曲线上有2个拐点.5.2222000(sin )(0)()(sin )sin (0)sin lim lim lim 00()(0)()()(0)x x x g x g G x g x x g x g x g g x g x x g x→→→−′==⋅=⋅=−′,因此当0x →时,()G x 是比()g x 高阶的无穷小,故选(C ).6.利用定积分的定义,得3ln 2d 3333lim1021==+++∫∞→x n x nn n n n ". 7.1011()d 101v v t t =−∫,根据定积分的几何意义,其中的定积分101()d v t t ∫是图中的图形面积,即10111118()d [4(61)4(86)(24)(108)]1019223v v t t ==⋅⋅−+⋅−++⋅−=−∫. 8.通解为()11d d sin 1cose e d sin d x x x x x x Cy x C x x C x xx−⎛⎞−+∫∫=+=+=⎜⎟⎝⎠∫∫. 二、1.(1)tan y x ′=,在,02π⎛⎞−⎜⎟⎝⎠内,0y ′<;在0,2π⎛⎞⎜⎟⎝⎠内,0y ′>.故,02π⎛⎤−⎜⎥⎝⎦是单调减少区间,0,2π⎡⎞⎟⎢⎣⎠是单调增加区间;而由2sec 0(,)22y x x ππ⎛⎞′′=>∈−⎜⎟⎝⎠得,该函数的图形是凹的. (2)322|||cos |(1)y K x y ′′==′+.由12K =,得3x π=±,故曲率半径为2的点是(,ln 2)3π±.2.11e e 2lim d e lim2224020=−=→→∫xx x xxt x xt ,因此1=a 时,()x ϕ在0=x 处连续. 22020d e lim1d e lim)0()(lim)0(22x x t xx t xx x xt x x xt x x −=−=−=′∫∫→→→ϕϕϕ02e 2e 16lim 21e e 2lim 22224040=−=−−=→→xx x x x x x x x .三、 1.I =∫∫∫−=ππππ222022d cos d cos d |cos |x x x x x x x x x[][]πππ22202sin 2cos 2sin sin 2cos 2sin xx x x xxx x x x −+−−+=4222−+=ππ.2.当0x <时,()2arctan d 112π+=+=∫∞−x t t x F x ; 当0x ≥时,()2arctan 2]arctan 2[2d )1(1d 11002ππ+=+=+++=∫∫∞−x t t t t t t x F xx . 因此()⎪⎪⎩⎪⎪⎨⎧≥+<+=.0,2arctan 2,0,2arctan x x x x x F ππ 四、1.曲边梯形的面积1111()()d ln2a a a A a x x a x a ++=+=++∫, 11()11A a a a ′=+−+.令()0A a ′=,解得在0a >范围内的唯一驻点12a −=,易知该点为极小值点,因此必为最小值点.而其最小面积min 1)ln 22A A −==+ 2.(1)水压力111000(1)2000F g y y g y −=−=∫∫10120002ln(10004ln 2g y g +⎤=++=+⎥⎦.(2)在时刻t ,水面位于()y h t =,平板一侧所受到的水压力为()(()1111000[()]1000()1000h t h t h t F g h t y y gh t y g y −−−=−=−∫∫∫,上式两边对t 求导,得(1d d 1000d d h t F hg y t t−=∫, 由于d 0.01d ht=−,因此,当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率为01d 10102ln(d F g y g y t −−⎤=−=−++⎥⎦∫154ln 2g =−+. 五、原方程为x x f u u f x u u f u xx 2cos )(d )(d )(0+=−∫∫,代入0x =,得(0)1f =−.上式两端对x 求导,得x x f u u f x2sin 2)(d )(0−′=−∫,代入0x =,得(0)0f ′=.上式两端再对x 求导,得x x f x f 2cos 4)()(−′′=−.故()y f x =满足初值问题⎩⎨⎧=′−==+′′==.0|,1|,2cos 400x x y y x y y 解得124cos sin cos 23y C x C x x =+−,代入初始条件解得113C =,20C =.故14()cos cos 233f x x x =−.。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案

高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程x yx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰212sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

同济大学2020年第1学期高等数学期末考试试卷

同济大学2020年第1学期高等数学期末考试试卷

2020-2021学年第一学期 高等数学期末考试同济大学2020年第1学期高等数学期末考试试卷2020-2021学年第1 学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.0sin 5lim 2x xx →= 。

2.曲线2x xe e y -+=在点(0,1)处的曲率是 。

3.设()f x 可导,[]ln ()y f x =,则dy = 。

4.不定积分⎰=。

5.反常积分60x e dx +∞-⎰= 。

二、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数,则A.B.C.D.2.设曲线如图示,则函数在区间内( ).A.有一个极大值点和一个极小值点B.没有极大值点,也没有极小值点C.有两个极小值点D.有两个极大值点3.极限().A.B.C.D.4.函数的图形如图示,则().A.是该函数的一个极小值点,且为最小值点B.是该函数的一个极小值点,但不是为最小值点C.是该函数的一个极大值点2020-2021学年第一学期 高等数学期末考试D.不是该函数的一个极值点5.若定积分( ). A. B.C. D. 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求极限 ()011lim x x x e x x e →---。

2. 设函数1sin 2 ,0(), ,0 x x f x a bx x +≤⎧=⎨+>⎩在点 0x =处可导,求,a b 的值。

3. 设参数方程()1sin cos x t t y t t =-⎧⎪⎨=⎪⎩确定y 是x 的函数,求dydx 。

4.设方程2290y xy -+=确定隐函数()y y x =,求d d yx 。

5.求函数321x y x =-的单调区间,极值和拐点。

6.计算定积分1ln ex xdx ⎰。

7.求不定积分3。

四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)1.设函数f (x )在[0, 1]上连续,在(0, 1)内可导,且,证明:方程在(0, 1)内至少有一个实根。

同济大学版高等数学期末考试试卷

同济大学版高等数学期末考试试卷

《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。

2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。

3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。

4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。

5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。

6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。

7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。

8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。

(完整版)高等数学(同济)下册期末考试题及答案(5套).doc

(完整版)高等数学(同济)下册期末考试题及答案(5套).doc

高等数学(下册)考试试卷(一)一、填空题(每小题3 分,共计 24 分)1 、 log a ( x2 y 2 ) (a 0) 的定义域为 D= 。

z =2、二重积分ln( x 2y 2 ) dxdy 的符号为 。

|x| |y| 13、由曲线 y ln x 及直线 x y e 1, y 1 所围图形的面积用二重积分表示为,其值为。

4 、设曲线 L 的参数方程表示为 x (t ) x),则弧长元素 ds。

y ((t )5 、 设 曲 面 ∑ 为 x 2y 29 介 于 z 0 及 z3间的部分的外侧,则(x 2 y 2 1)ds。

6、微分方程dyytan y的通解为 。

dxxx7、方程 y (4 ) 4 y 0 的通解为 。

8、级数1的和为。

n 1 n(n 1)二、选择题(每小题2 分,共计 16 分)1、二元函数 z f (x, y) 在 ( x 0 , y 0 ) 处可微的充分条件是()(A ) f (x, y) 在 ( x 0 , y 0 ) 处连续;( B ) f x ( x, y) , f y ( x, y) 在 (x 0 , y 0 ) 的某邻域内存在;( C ) z f x ( x 0 , y 0 ) xf y ( x 0 , y 0 ) y 当 () 2 ( y ) 2 0 时,是无穷小;x( D ) limz f x ( x 0 , y 0 ) x f y ( x 0 , y 0 ) y0 。

x ( x)2( y)2y 02、设 u yf ( x ) xf ( y), 其中 f 具有二阶连续导数,则 x2uy2u 等于()yxx 2 y 2( A ) x y ; ( B ) x ;(C) y ;(D)0 。

3、设 : x 2 y 2 z 2 1, z 0, 则三重积分 IzdV 等于()(A )4221 3;( )21 2;ddr sin cos drddr sin dr0 0 0 B( C ) 22 d13sin cos dr ;(D )2d d13 sin cos dr 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济大学版高等数学期
末考试试卷
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
《高数》试卷1(上)
一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ).
(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 (
)g x =(C )()f x x = 和 (
)2
g x =
(D )()||
x f x x
=
和 ()g x =1 2.函数()
00x f x a x ≠=⎨⎪
=⎩
在0x =处连续,则a =( ).
(A )0 (B )1
4 (C )1 (D )2
3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).
(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ).
(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1
||
y x =
的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线
(D )既无水平渐近线又无垂直渐近线
7.211
f dx x x ⎛⎫' ⎪⎝⎭⎰的结果是( ).
(A )1f C x ⎛⎫
-+ ⎪⎝⎭
(B )1f
C x ⎛⎫
--+ ⎪⎝⎭
(C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫
-+ ⎪⎝⎭
8.x x
dx
e e -+⎰
的结果是( ).
(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )
ln()x x e e C -++
9.下列定积分为零的是( ).
(A )424arctan 1x
dx x π
π-+⎰ (B )44
arcsin x x dx ππ-⎰ (C )112x x
e e dx --+⎰ (D )()1
2
1
sin x
x x dx -+⎰
10.设()f x 为连续函数,则()10
2f x dx '⎰等于( ).
(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1
202
f f -⎡⎤⎣⎦(D )()()10f f -
二.填空题(每题4分,共20分)
1.设函数()21
00x e x f x x a x -⎧-≠⎪
=⎨⎪=⎩
在0x =处连续,则a =
.
2.已知曲线()y f x =在2x =处的切线的倾斜角为5
6
π,则()2f '=
.
3.21x
y x =-的垂直渐近线有条.
4.()
2
1ln dx
x x =+⎰
.
5.()422
sin cos x x x dx π
π-+=
⎰.
三.计算(每小题5分,共30分) 1.求极限
①21lim x
x x x →∞+⎛⎫
⎪⎝⎭ ②()
20sin 1
lim x
x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分

()()13dx x x ++⎰
②()0a >⎰
③x xe dx -⎰
四.应用题(每题10分,共20分) 1.作出函数323y x x =-的图像.
2.求曲线22y x =和直线4y x =-所围图形的面积.
《高数》试卷1参考答案
一. 选择题
1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题
1.2- 2.3
- 3. 2 4.arctanln x c + 5.2 三.计算题
1①2e ②1
6
2.11x
y x y '=+-
3. ①11ln ||23
x C x +++ ②ln ||x C +
③()1x e x C --++
四.应用题
1.略 2.18S =。

相关文档
最新文档