《高等数学B》本科期末考试试卷A卷

合集下载

高等数学B2期末考试试卷A卷

高等数学B2期末考试试卷A卷

高等数学B2期末考试试卷A卷(2010—2011第二学期)一、填空题(共5 小题,每题 3 分,共计15 分)1、设,则的定义域为。

2、设当与满足时,能使得与轴垂直.3、设则。

4、设幂级数的收敛半径为2,则幂级数的收敛区间为.5、已知是某二阶非齐次线性微分方程的三个解,则该方程的通解为.二、选择题(共 5 小题,每题 3 分,共计15 分)1、下列不等式正确的是()(A)(B)(C)(D)2、将坐标面上的双曲线绕轴旋转一周所生成的旋转曲面方程为()(A)(B)(C)(D)3、下列级数绝对收敛的是( )(A) (B)(C)(D)4、极坐标系下的累次积分在直角坐标系下可化为()(A);(B) ;(C);(D)。

5、方程的特解可设为( )(A),若;(B),若;(C),若;(D),若。

三、求与两平面和的交线平行且过点的直线方程. (本题 6 分)四、计算下列各题(共5小题,每题 5 分,共计25 分)1、。

2、设,而,,求。

3、设,其中具有一阶连续偏导数,求。

4、求微分方程的通解。

5、设求。

五、求解下列关于幂级数的问题.(共 2 小题,每题 6 分,共计12 分)1、用比值审敛法判定级数的敛散性。

2、将函数展开成的幂级数.六、将周长为的矩形绕它的一边旋转而构成一个圆柱体,问矩形的边长各为多少时,才可使圆柱体的体积为最大?(本题7 分)七、求解下列关于积分的问题.(共 2 小题,每题7 分,共计14分)1、求二重积分,其中是由圆周及坐标轴所围成的在第一象限内的闭区域。

2、计算由四个平面,,,所围成的柱体被平面及截得的立体的体积.八、设为连续函数,,证明:.(本题 6 分)。

高等数学b1期末考试试题及答案

高等数学b1期末考试试题及答案

高等数学b1期末考试试题及答案一、选择题(每题5分,共30分)1. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 0 \) 处的极限是:A. 0B. 1C. 无穷大D. 不存在答案:D2. 设 \( f(x) \) 在 \( x=a \) 处可导,则下列说法正确的是:A. \( f(x) \) 在 \( x=a \) 处连续B. \( f(x) \) 在 \( x=a \) 处不可导C. \( f(x) \) 在 \( x=a \) 处不连续D. \( f'(a) \) 不存在答案:A3. 计算定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:A4. 函数 \( y = x^3 + 3x^2 - 9x + 1 \) 的导数是:A. \( 3x^2 + 6x - 9 \)B. \( 3x^2 + 6x + 9 \)C. \( x^2 + 6x - 9 \)D. \( 3x^2 + 6x - 9 \)答案:A5. 曲线 \( y = x^2 \) 在 \( x = 2 \) 处的切线方程是:A. \( y = 4x - 4 \)B. \( y = 4x + 4 \)C. \( y = 4x - 8 \)D. \( y = 4x + 8 \)答案:C6. 级数 \( \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \) 的和是:A. 1B. \( \frac{1}{2} \)C. 0D. 无穷大答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^3 - 3x \) 的极值点是 \( \boxed{0} \)。

2. 函数 \( y = \ln(x) \) 的导数是 \( \boxed{\frac{1}{x}} \)。

09-10-3高等数学B期末考试试卷(A)

09-10-3高等数学B期末考试试卷(A)

共 7 页 第 1 页东 南 大 学 考 试 卷(A 卷)课程名称高等数学B 期末考试学期 09-10-3得分适用专业 选修高数B 的各专业 考试形式 闭卷考试时间长度 150分钟一.填空题(本题共9小题,每小题4分,满分36分)1. 幂级数1(1)2n nn x n ∞=-⋅∑的收敛域为; 2. 球面22230x y z x ++-=在点(1,1,1)处的切平面方程为 ; 3. 已知两条直线12112x y z m-+-==与3x y z==相交,m =; 4. 交换积分次序11d (,)d x x f x y y -=⎰⎰; 5. 将22222d ()d x y f x y z z -++⎰⎰(其中()f t 为连续函数)写成球面坐标系下的三次积分;6设L 为由点(2,1,2)A 到原点(0,0,0)O 的直线段,则曲线积分2()d Lx y z s ++⎰之值为7. 已知3222(cos )d (1sin 3)d axy y xx by x x y y -+++为某个二元函数(,)f x y 的全微分,则____,____a b ==; 8. 设{,,},x y z r ===r r div(e )r =r ;9.设∑是锥面1)z z =≤≤下侧,则3d d 2d d (1)d d x y z y z x z x y ∑∧+∧+-∧=⎰⎰ .二. 计算下列各题(本题共4小题,每小题7分,满分28分)共 7 页 第 2 页10.设 (,)z z x y =是由方程e e e zyxz x y =+所确定的隐函数,求,z z x y∂∂∂∂.11.计算二重积分d d Dy x y ⎰⎰,其中{}2222(,)2,2D x y xy x y y =+≥+≤.12.计算22222d ed d d yy x y x y x y x ----+⎰.共 7 页 第 3 页13. 计算三重积分e d d d yx y z Ω⎰⎰⎰,其中Ω由曲面2221,0,2x y z y y -+===所围成.共 7 页 第 4 页三(14).(本题满分7分)求由抛物面222x y z +=与平面1,2z z ==所围成的密度均匀(密度1μ=)的立体对z 轴的转动惯量.四(15)。

武汉大学数学与统计学院《高等数学B》期末考试试题及答案(A卷)

武汉大学数学与统计学院《高等数学B》期末考试试题及答案(A卷)

武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算n →∞2、计算0ln(1)limcos 1x x xx →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算0d x xe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。

7、已知2200d cos d y x te t t t =⎰⎰,求x y d d8、设11xy x-=+,求()n y二、(15分)已知函数32(1)x y x =-求:1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。

三、(10分)设()g x 是[1,2]上的连续函数,0()()d xf xg t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续; 四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x 轴旋转一周所形成的立体体积;2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。

五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0f b f f b bξξ'-=∈ 对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题参考答案一、 试解下列各题:(87'⨯) 1、解:n →∞n =l i 2n == 2、解:00011ln(1)1lim lim lim 1cos 1sin (1)sin x x x x x x x x x x x →→→-+--+===---+ 3、解:原式222211111arctan d arctan arctan 222221x x x x x x x x c x =-=-+++⎰ 4222220002111dt 2dt 2(1)dt 2dt111t t t t t t -+==-++++⎰⎰⎰22200(1)|2ln(1)|2ln3t t =-++=5、解:000||1x x x x xe dx xe e dx e +∞+∞--+∞--+∞=-+=-=⎰⎰6、解:因为4t π=时,x =,0y =,442sin 2cos t t dy t dx t ππ==-==-故曲线在点处的切线方程为:y x =--, 7、解:两边微分得: 222cos y e dy x x dx = 222c o s y dyx x e dx-= 8、解:由12212(1)1,2(1)(1)1y x y x x--'=-+=+-=⋅-⋅++ 3()(12(1)(2)(1),,(1)2!(1)n n ny x y n x --+''=⋅-⋅-⋅+=-⋅⋅⋅+ 二、(15分)解:定义域为:(,1)(1,)-∞+∞ 23(3)(1)x x y x -'=- 令⇒='0y 驻点0,3x =46(1)xy x ''=- 令⇒=''0y 0x =极小值为:27(3)4f =,无极大值。

(2)高等数学B2试卷参考答案

(2)高等数学B2试卷参考答案

华南农业大学期末考试试卷(A 卷)2009学年第2学期 考试科目: 高等数学B Ⅱ 考试类型:(闭卷)考试 考试时间:120分钟学号 姓名 年级专业一、 填空题(本大题共5小题,每小题3分,共15分)1. 试定义函数在点的值的 ,使得函数在该点连续。

2.函数在点处可微分的必要条件是函数在该点处连续或可偏导;充分条件是函数的偏导数在该点处连续。

3.设函数在闭区域上连续,且,则。

4. 判断敛散性:已知且,则是收敛的。

5. 已知某二阶常系数非齐次线性微分方程的通解为,则该微分方程为。

二、选择题(本大题共5小题,每小题3分,共15分) 1. 直线与平面的交点是(B )。

(A )(9,2,-3)。

(B )(2,9,11)。

(C )(2,11,13)。

(D )(11,9,2)。

2. 若级数在处收敛,则此级数在处(A )。

(A )绝对收敛。

(B )条件收敛。

(C )发散。

(D )收敛性不能确定。

3.二元函数 在点处 (C )(A )连续,偏导数存在。

(B )连续,偏导数不存在。

(C )不连续,偏导数存在。

(D )不连续,偏导数不存在。

4. 设是连续的奇函数,是连续的偶函数, ,则以下结论正确的是( A )。

(A ) 。

(B ) 。

(C ) 。

(A ) 。

5. 微分方程的一个特解应具有形式(A,B,C 是待定常数)( B )。

(A )。

(B )。

(C )。

(D )。

三、计算题(本大题共5小题,每小题6分,共30分) (1)设,其中和具有连续导数,求。

【解】(2)求由方程所确定的函数的全微分。

【解】方程两边求微分得 整理得(3)交换积分次序。

【解】(4)求差分方程在给定初始条件下的特解。

【解】特征方程为,所以对应的齐次方程的通解为。

又不是特征根,故可令特解为,代入原方程,得比较系数可得,,故非齐次方程的一个特解为,于是非齐次方程的通解为,由所给初始条件,可得,所以方程满足给定初始条件下的特解为。

09-10-2高数(AB)期末试卷和答案(最新整理)

09-10-2高数(AB)期末试卷和答案(最新整理)

f (0) ,于是
x
x
2 f (0) lim lim 0 f (t)dt 0 f (t)dt lim f (x) f (x)
x0
x0
x2
x0
2x
1 2
lim
x0
f (x) x
f (0)
f (x) x
f
(0)
f (0) ,由于
f (0) 0 ,所以 lim x0
1

2
0
6
五(17).(本题满分 6 分) 已知方程 x2 ln(1 x2 ) a 在区间 (1,1) 内存在两个互异的实 2
根,试确定常数 a 的取值范围.


f (x)
x2 2
ln(1 x2 ) a ,令
f (x)
x
1
2
x x2
x
x2 x2
1 0 ,得唯一驻点 x 0 , 1
当 1 x 0 时, f (x) 0 ,当 0 x 1时, f (x) 0 ,因此 fmax f (0) a 0 ,
,于是特解为
y
1 2
1 4
(x2
x)
1 2
(1
x)e2x
四(16).(本题满分 8 分)设函数 y f (x) 在区间[0,1] 上可导,在 (0,1) 内恒取正值,且
满足 xf (x) f (x) 3x2 ,又由曲线 y f (x) 与直线 x 1, y 0 所围成的图形 S 的面积为
x
lim
x0
4 x4
sin
sin
x 2
x
sin
sin
x 2
x
lim
x0
x
sin x3

《高等数学》期末考试A卷(附答案)

《高等数学》期末考试A卷(附答案)

《高等数学》期末考试A卷(附答案)【编号】ZSWD2023B0089一、填空题(每小题2分,共20分)1.设 是正整数, 为非零实数,若20001lim ()x x x x,则 _________________,______________________。

【答案】120012001,2.设)(x f 的定义域是]1,0[,且102a ,则()()f x a f x a 的定义域是____________________________ .【答案】1[,]a a3.2211sin()lim x x x x ______________________。

【答案】04.设1111010,(),x x x x e e x f x e e x,0 x 是)(x f 的___________间断点. 【答案】跳跃5.设24cos y x ,则dy ________________________. 【答案】3448sin cos x x x dx6.203sin limxx t dt x _________________________________.【答案】137. 函数2412()()x f x x的渐近线有______________________________.【答案】20,x y8.函数()x f x x e 的单调递增区间为____________________________.【答案】(,0)9.若 C x dx xx f sin )(ln ',则 )(x f .【答案】C e x )sin( 10.[()()]aaf x f x dx ______________________________________.【答案】0二、单项选择题(每小题2分,共10分) 1.若下列极限存在,则成立的是( ) .A. 0()()lim '()x f a x f a f a x B. 0000()()lim '() x f x f x x f x xC. 0(12)(1)lim '(1)t f t f f tD. 4(8)(4)lim '(4)4x f x f f x【答案】B2.当0 x 时,与x 等价的无穷小量是( )A. x x 1sinsin B. xx sin C. x x 22 D. )1ln(x【答案】D3. 当0x x 时,0'()f x ,当0x x 时,0'()f x ,则0x 必定是函数()f x 的( )A. 驻点B. 最大值点C.极小值点D. 以上都不对 【答案】D4.设'()f x 存在且连续,则()'df x ( )A. ()f xB. '()f xC. '()f x cD. ()f x c 【答案】B 5.设4()2xx f t dt,则40 f dx ( )A. 16B. 8C. 4D. 2【答案】A三、计算下列各题(每小题5分,共35分)1. 求极限)sin 11(cot lim 0xx x x解: )sin 11(cot lim 0x x x x xx x xx x tan sin sin lim 030sin lim x xx x (0 x 时x sin ~x ,x tan ~x )2031cos lim x x x 616sin lim 0 x x x2. 设3sin 2,0()9arctan 2(1),0xx ae x f x x b x x ,确定,a b 的值,使函数在0 x 处可导。

高等数学b1期末试题及答案

高等数学b1期末试题及答案

高等数学b1期末试题及答案一、选择题(每题5分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B2. 计算定积分∫(0,1) x^2 dx 的值。

A. 1/3B. 1/2C. 1D. 2答案:A3. 以下哪个选项是洛必达法则的应用?A. 计算极限lim(x→0) (sin x)/xB. 计算定积分∫(0,π) sin x dxC. 计算导数 d/dx (x^3)D. 计算不定积分∫e^x dx答案:A4. 以下哪个选项是二阶导数?A. d^2y/dx^2B. dy/dxC. d^2y/dy^2D. d^2y/dxdy答案:A5. 以下哪个选项是泰勒公式的展开式?A. f(x) = f(a) + f'(a)(x-a)B. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2!C. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2D. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^3/3!答案:B6. 以下哪个选项是傅里叶级数的组成部分?A. 正弦函数B. 余弦函数C. 指数函数D. 所有选项答案:D二、填空题(每题5分,共20分)1. 函数 f(x) = x^3 - 6x 在 x = 2 处的导数是 _______。

答案:-62. 微分方程 y'' - 2y' + y = 0 的通解是 _______。

答案:y = C1 * e^x + C2 * e^(-x)3. 计算极限lim(x→0) (e^x - 1)/x 的值是 _______。

答案:14. 函数 y = sin x 的不定积分是 _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南科技大学2013-2014-2学期《高等数学B2》本科期末考试试卷(A卷)
2、设y
z x
=,求dz=__________。

3、求曲线23,,x t y t z t ===在点(1,1,1)处的切线方程________。

4、求函数3u xy z =在点(1,1,2)-处的梯度__________。

5、设,αβ为有向曲线弧L 在点(,)x y 处的切向量的方向角,则平面曲线L 上的两类曲线积分的关系(________________)L L Pdx Qdy ds +=⎰⎰。

三、解答题(1-2小题每题8分,3-8小题每题9分,共70分) 1、 求曲面22214x y z ++=上平行于平面2320x y z ++=的切平面方程。

2、 设2
2
(,),z f x y xy =
-,其中
f 具有连续的二阶偏导数,求2z
x y
∂∂∂。

3、 求函数4242z x xy y =-+的极值。

4、 计算|1|D
I x y dxdy =+-⎰⎰,其中[0,1][0,1]D =⨯。

5、
把二次积分4
2200
)dx x y dy +⎰化为极坐标形式,并计算积分值。

1、解:令222(,,)14F x y z x y z =++-, 在点000(,,)P x y z 处的法向量为000(,,)n x y z =r
000
123
x y z k ===令
,代入方程22214x y z ++=中可得1k =±---————--4分,
在点(1,2,3)处的切平面为2314x y z ++=-————----2分, 在点(-1,-2,-3)处的切平面为23140x y z +++=----————-2分。

2、解:122(3)z
xf yf x
∂''
=+∂分。

3、解:3440,440x y z x y z x y =-==-+=求得驻点为(0,0),(1,1),(-1,-1)。

(3分)
212,4,4xx xy yy A z x B z C z ====-==,在点(0,0)处2160AC B -=-<没有极值,(3分) 在点(1,1)和(-1,-1)处2320,0AC B A -=>>,所以有极小值(1,1) 1.z ±±=-(3分)
4、解: 5
、解3334
4cos 22
3
4
2
200
)64cos 12dx x y dy d r dr d π
π
θ
θθθπ+===⎰⎰⎰
⎰分

分。

6、解:131
lim 3
31n n n n n ρ+→∞==+,所以收敛半径为3,收敛区间为323x -<-<,即15
x -<<(3分)
当5x =时1131
3n n n n n n ∞

===∑∑g
发散(2
分),当1x =-时11(3)(1)3n n
n n n n n ∞

==--=∑∑
g
收敛,(2分)
因此原级数的收敛域为[1,5)-。

(2分) 7、解:42332,4,24Q P
P xy y Q x xy x y x y
∂∂=-=-==-∂∂,所以该曲线积分和积分路径无关。

(4分)
11
4
2
3
30
(23)(4)314)=3L
xy y
dx x xy dy dx y dy -++-=+-⎰⎰⎰((5
分)
8、解:由高斯公式得22322
()2=()xy dydz x y z dzdx xydxdy x y dxdy ∑
Ω
+-++⎰⎰⎰⎰⎰
Ò(4分)
由柱面坐标224
22300
28()3
r
x y dxdydz d r dz π
π
θΩ
+==
⎰⎰⎰⎰⎰(5分)。

相关文档
最新文档