高等数学(上)期末测试卷A答案
大一高等数学期末考试试卷及答案详解

⼤⼀⾼等数学期末考试试卷及答案详解⼤⼀⾼等数学期末考试试卷(⼀)⼀、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为(). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-?的值为().(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)⼀定可导(C)可能可导 (D)必⽆极限⼆、填空题(共12分)1.(3分)平⾯上过点(0,1),且在任意⼀点(,)x y 处的切线斜率为23x 的曲线⽅程为 .2. (3分) 1241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极⼤值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +?(1),f x dx -?其中,1,()1cos 1, 1.x xx f x xe x ?≤?=+??+>?5. (6分)设函数()y f x =由⽅程0cos 0yxte dt tdt +=??所确定,求.dy6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +?7. (6分)求极限3lim 1.2nn n →∞+四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ??=-≤≤与x 轴所围成图形绕着x 轴旋转⼀周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线⽅程.4. (7分)求函数y x =+[5,1]-上的最⼩值和最⼤值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbab a f x dx f a f b x a x b f x dx -''=++--?(⼆)⼀、填空题(每⼩题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第类间断点.2.函数()21ln x y +=,则='y.3. =?+∞→xx x x 21lim.4.曲线xy 1=在点2,21处的切线⽅程为 . 5.函数2332x x y -=在[]4,1-上的最⼤值,最⼩值 . 6.=+?dx xx21arctan . ⼆、单项选择题(每⼩题4分,共20分) 1.数列{}n x 有界是它收敛的() . () A 必要但⾮充分条件; () B 充分但⾮必要条件; () C 充分必要条件; () D ⽆关条件. 2.下列各式正确的是() .() A C e dx e x x +=--?; () B C xxdx +=?1ln ; () C ()C x dx x +-=-?21ln 2211; () D C x dx xx +=?ln ln ln 1. 3.设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数().() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是().() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去⼼邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每⼩题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ?+dx xx 221. 5. ?xdx x cos .6.⽅程yxx y 11=确定函数()x f y =,求y '.四、(10分)已知2x e 为()x f 的⼀个原函数,求()?dx x f x 2.五、(6分)求曲线x xe y -=的拐点及凹凸区间. 六、(10分)设()()C e x dx x f x++='?1,求()x f .(三)⼀、填空题(本题共5⼩题,每⼩题4分,共20分).(1) 21(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平⾏的切线⽅程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线⽅程为 .9131-=x y(5)微分⽅程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y⼆、选择题 (本题共5⼩题,每⼩题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=?-dx x (B) 21112-=?-dx x(C) +∞=?∞+141dx x (D) +∞=?∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所⽰,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy y y x '''--=(B )23e .xy y y '''--= (C )23e .x y y y x '''+-= (D )23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是( A ).(A) (())().f x dx f x '=? (B) ()().=?df x f x (C) [()]().d f x dx f x =(D) ()().fx dx f x '=?三、计算题(本题共4⼩题,每⼩题6分,共24分). 1.求极限) ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x xx ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分分2.⽅程??+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与2 2dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------??分分(分4.计算定积分?++3011dx xx.解 ??-+-=++3030)11(11dx x x x dx x x ?+--=30)11(dx x (3分)35)1(3(或令t x =+1)四、解答题(本题共4⼩题,共29分).1.(本题6分)解微分⽅程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征⽅程分特征解.分次⽅程的通解Y =C 分令分代⼊解得,所以分所以所求通解C 分2.(本题7分)⼀个横放着的圆柱形⽔桶(如图4-1),桶内盛有半桶⽔,设桶的底半径为R ,⽔的⽐重为γ,计算桶的⼀端⾯上所受的压⼒.解:建⽴坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------??分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =?,试求()()b a222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平⾯图形D. (1) (3) 求D 的⾯积A;(2) (4) 求D 绕直线e x =旋转⼀周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线⽅程是).(1ln 000x x x x y -+=1分yxyO1e 1D由该切线过原点知 01ln 0=-x ,从⽽.0e x =所以该切线的⽅程为.1x e y =平⾯图形D 的⾯积 ?-=-=10.121)(e dy ey e A y 2分(2)切线xe y 1=与x 轴及直线e x =所围成的三⾓形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(?-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=?e e dy e e e V V V y πππ 1分五、证明题(本题共1⼩题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法⼀:2112xe e x x xξ=++≥+解法⼆:设() 1.x f x e x =--则(0)0.f = 1分因为() 1.xf x e '=- 1分当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。
高等数学a上期末考试试题和答案

高等数学a上期末考试试题和答案高等数学A上期末考试试题一、选择题(每题3分,共30分)1. 极限的定义是()。
A. 函数在某点的值B. 函数在某点的增量C. 函数在某点的导数D. 函数在某点的无穷小答案:D2. 函数f(x)=x^2在x=0处的导数是()。
A. 0B. 1C. 2D. 3答案:C3. 定积分∫₀¹x²dx的值是()。
A. 1/3B. 1/2C. 1D. 2答案:C4. 函数f(x)=sinx在x=π/2处的值是()。
A. 0B. 1C. -1D. π/2答案:B5. 函数f(x)=e^x的原函数是()。
A. e^xB. e^(-x)C. ln(x)D. x答案:A6. 函数f(x)=x^3-3x^2+2的极值点是()。
A. 0B. 1C. 2D. 3答案:B7. 函数f(x)=x^2+2x+1的最小值是()。
A. 0B. 1C. 2D. 3答案:B8. 函数f(x)=ln(x)的定义域是()。
A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B9. 函数f(x)=x^3-6x^2+11x-6的拐点是()。
A. 1B. 2C. 3D. 4答案:B10. 函数f(x)=x^4-4x^3+6x^2-4x+1的零点是()。
A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共30分)11. 函数f(x)=x^3-3x^2+2的导数是______。
答案:3x^2-6x12. 函数f(x)=e^x的二阶导数是______。
答案:e^x13. 函数f(x)=ln(x)的不定积分是______。
答案:xln(x)-x+C14. 函数f(x)=x^2-4x+4的顶点坐标是______。
答案:(2, 0)15. 函数f(x)=sinx+cosx的周期是______。
答案:2π16. 函数f(x)=x^3-3x^2+2的单调增区间是______。
工程大学2023-2023学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案

工程大学2023-2024学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案试卷题目:高等数学(上)期末考试试卷(A卷)科目:高等数学(上)时间:2024年1月一、选择题(共30题,每题2分,共60分)1.在直角坐标系中,抛物线y = x^2 - 2x 的顶点坐标是()A. (1, -1)B. (1, 2)C. (2, 1)D. (-1, 1)2.设函数f(x) = sin(2x + π/3),则函数 f(x) 的一个周期是()A. π/3B. π/2C. πD. 2π3.函数 y = 3ln(2x + 1) 的图像在 x 轴上的截距是()A. -1/2B. 1/2C. 0D. -14.设函数 f(x) = x^3 + 4x^2 + 5x,则 f(x) 的极值点是()A. (-1, -1)B. (0, 0)C. (0, 5)D. (-5, 0)5.已知曲线 C 的参数方程为 x = t^2 - 4, y = t - 1,则曲线 C 属于()A. 抛物线B. 椭圆C. 双曲线D. 直线…二、填空题(共10题,每题3分,共30分)1.函数 f(x) = sin(2x) 的最小正周期是 _______。
2.函数 y = x^3 + 4x^2 的导函数是 _______。
…三、解答题(共4题,每题20分,共80分)1.求方程组 x^2 + y^2 = 4, x - y = 1 的解。
2.计算不定积分∫(cos^2x + 2sinx)dx。
…四、大题(共2题,每题20分,共40分)1.设 y = ax^2 + bx + c,其中 a, b, c 均为常数,且a ≠ 0。
若曲线 y = ax^2 + bx + c 的顶点坐标为 (1, -1),且该曲线与直线 y = x + 1 相切于点 (2, 3),求曲线方程。
2.设函数 f(x) = e^x / (1 + e^x),求f’(x) 和f’’(x)。
同济大学《高等数学》(上)期末试卷A及答案

高等数学(上)期末考试试卷试 题一、填空、选择题1.函数)(x f 在],[b a 上可积是)(x f 在],[b a 上连续的 条件,函数)(x f 在],[b a 上可导是)(x f 在],[b a 上连续的 条件.2.曲线(ln y x =在点(),ln(1处的切线方程是 .3.函数()(1)cos sin f x x x x =−−在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是 .4.曲线()x x y x −=2e 上有 个拐点.5.设可导函数()g x 满足(0)0g =,()00≠′g ,设())(sin 2x g x G =,则当0x →时, .(A )()G x 与()g x 是等价无穷小. (B )()G x 与()g x 是同阶的无穷小. (C )()G x 是比()g x 高阶的无穷小.(D )()G x 是比()g x 低阶的无穷小.6.极限nnn nnn 333lim 21+++∞→"= .7.如果一物体沿直线运动,物体的运动速度的变化曲线如图3所示(单位省略),则物体在这段位移过程中的平均速度为 .8.微分方程x x y x y sind d =+的通解为 . 二、1.设函数ln sec y x =,,22x ππ⎛⎞∈−⎜⎟⎝⎠.(1)讨论函数的单调区间与该函数的图形的凹凸性; (2)该曲线在哪点处的曲率半径为2?2.设()⎪⎩⎪⎨⎧=≠=∫,0,,0,d e 22x a x x t x x xt ϕ 求a 的值,使得()x ϕ在0=x 处连续,并用导数定义求(0)ϕ′.三、1.求定积分I =∫−π22d sin 1x x x .2.若()()⎪⎪⎩⎪⎪⎨⎧>+≤+=,0,11,0,112x x x x xx f 对于(,)x ∈−∞+∞,求()()∫∞−=xt t f x F d .四、1.设曲边梯形由曲线1y x x=+(0x >)与直线0y =,x a =,1x a =+所围成(其中0a >),问:当a 为何值时,曲边梯形的面积为最小,最小面积是多少?2.设一平板浸没在水中且垂直于水面(水的密度为1000kg/m 3),平板的形状为双曲四边形,即图形由双曲线2244x y −=,直线1y =与1y =−所围成(如图4所示,单位:m).(1)如果平板的上边缘与水面相齐,那么平板一侧所受到的水的总压力是多少?(2)如果水位下降,在时刻t ,水面位于y =()h t 处,且水面匀速下降,速率为0.01(m/s ),问:当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率是多少?五、设函数()f x 满足方程x x f u u f x u x 2cos )(d )()(0+=−∫,求()f x .参考答案一、1.必要,充分.2.|1x y ′,因此所求切线是ln(1y x =.3.()(1)sin f x x x ′=−−,在区间(0,)2π内有唯一驻点1x =且为极大值点,因此所求最大值是(1)sin1f =−.4.()x x y x 3e 2+=′′有2个零点3x =−与0x =,且y ′′在这2个零点的左、右两侧邻近异号,因此该曲线上有2个拐点.5.2222000(sin )(0)()(sin )sin (0)sin lim lim lim 00()(0)()()(0)x x x g x g G x g x x g x g x g g x g x x g x→→→−′==⋅=⋅=−′,因此当0x →时,()G x 是比()g x 高阶的无穷小,故选(C ).6.利用定积分的定义,得3ln 2d 3333lim1021==+++∫∞→x n x nn n n n ". 7.1011()d 101v v t t =−∫,根据定积分的几何意义,其中的定积分101()d v t t ∫是图中的图形面积,即10111118()d [4(61)4(86)(24)(108)]1019223v v t t ==⋅⋅−+⋅−++⋅−=−∫. 8.通解为()11d d sin 1cose e d sin d x x x x x x Cy x C x x C x xx−⎛⎞−+∫∫=+=+=⎜⎟⎝⎠∫∫. 二、1.(1)tan y x ′=,在,02π⎛⎞−⎜⎟⎝⎠内,0y ′<;在0,2π⎛⎞⎜⎟⎝⎠内,0y ′>.故,02π⎛⎤−⎜⎥⎝⎦是单调减少区间,0,2π⎡⎞⎟⎢⎣⎠是单调增加区间;而由2sec 0(,)22y x x ππ⎛⎞′′=>∈−⎜⎟⎝⎠得,该函数的图形是凹的. (2)322|||cos |(1)y K x y ′′==′+.由12K =,得3x π=±,故曲率半径为2的点是(,ln 2)3π±.2.11e e 2lim d e lim2224020=−=→→∫xx x xxt x xt ,因此1=a 时,()x ϕ在0=x 处连续. 22020d e lim1d e lim)0()(lim)0(22x x t xx t xx x xt x x xt x x −=−=−=′∫∫→→→ϕϕϕ02e 2e 16lim 21e e 2lim 22224040=−=−−=→→xx x x x x x x x .三、 1.I =∫∫∫−=ππππ222022d cos d cos d |cos |x x x x x x x x x[][]πππ22202sin 2cos 2sin sin 2cos 2sin xx x x xxx x x x −+−−+=4222−+=ππ.2.当0x <时,()2arctan d 112π+=+=∫∞−x t t x F x ; 当0x ≥时,()2arctan 2]arctan 2[2d )1(1d 11002ππ+=+=+++=∫∫∞−x t t t t t t x F xx . 因此()⎪⎪⎩⎪⎪⎨⎧≥+<+=.0,2arctan 2,0,2arctan x x x x x F ππ 四、1.曲边梯形的面积1111()()d ln2a a a A a x x a x a ++=+=++∫, 11()11A a a a ′=+−+.令()0A a ′=,解得在0a >范围内的唯一驻点12a −=,易知该点为极小值点,因此必为最小值点.而其最小面积min 1)ln 22A A −==+ 2.(1)水压力111000(1)2000F g y y g y −=−=∫∫10120002ln(10004ln 2g y g +⎤=++=+⎥⎦.(2)在时刻t ,水面位于()y h t =,平板一侧所受到的水压力为()(()1111000[()]1000()1000h t h t h t F g h t y y gh t y g y −−−=−=−∫∫∫,上式两边对t 求导,得(1d d 1000d d h t F hg y t t−=∫, 由于d 0.01d ht=−,因此,当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率为01d 10102ln(d F g y g y t −−⎤=−=−++⎥⎦∫154ln 2g =−+. 五、原方程为x x f u u f x u u f u xx 2cos )(d )(d )(0+=−∫∫,代入0x =,得(0)1f =−.上式两端对x 求导,得x x f u u f x2sin 2)(d )(0−′=−∫,代入0x =,得(0)0f ′=.上式两端再对x 求导,得x x f x f 2cos 4)()(−′′=−.故()y f x =满足初值问题⎩⎨⎧=′−==+′′==.0|,1|,2cos 400x x y y x y y 解得124cos sin cos 23y C x C x x =+−,代入初始条件解得113C =,20C =.故14()cos cos 233f x x x =−.。
高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。
5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。
大一上学期高数期末考试试题(五套)详解答案

2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)姓名:__________ 班级:__________ 学号:__________课程名称:高等数学(上)(A卷) 考试日期:2008年1月10日注意事项:1.本试卷满分100分,要求卷面整洁、字迹工整、无错别字。
2.考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3.考生必须在签到单上签到,若出现遗漏,后果自负。
4.如有答题纸,请将答案全部写在答题纸上,否则不给分。
考完请将试卷和答题卷分别一同交回,否则不给分。
一、单选题(每题3分,共15分)1.lim(sin(x^2-1)/(x-1)),x趋近于1,等于()A)1;(B)0;(C)2;(D)不存在。
2.若f(x)的一个原函数为F(x),则∫e^(-x)f(e^x)dx等于()A)F(e^x)+c;(B)-F(e^-x)+c;(C)F(e^-x)+c;(D)F(e^-x^2/2)+c。
3.下列广义积分中()是收敛的。
A)∫sinxdx,从负无穷到正无穷;(B)∫1/|x|dx,从-1到1;(C)∫x/(1+x^2)dx,从负无穷到正无穷;(D)∫e^x dx,从负无穷到0.4.f(x)为定义在[a,b]上的函数,则下列结论错误的是()A)f(x)可导,则f(x)一定连续;(B)f(x)可微,则f(x)不一定可导;(C)f(x)可积(常义),则f(x)一定有界;(D)函数f(x)连续,则∫f(x)dx在[a,b]上一定有定义。
5.设函数f(x)=lim(n→∞)(1+x^2n)^2,则下列结论正确的是()A)不存在间断点;(B)存在间断点x=1;(C)存在间断点x=0;(D)存在间断点x=-1.二、填空题(每题3分,共18分)1.极限lim(x→∞)(x^2+1-1)/x=______。
2.曲线y=3t在t=2处的切线方程为y=______。
3.已知方程y''-5y'+6y=xe^(2x)的一个特解为-1/2(x+2x)e^(2x),则该方程的通解为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 是 2 1 2
x
奇
函数;其导函数是
是函数 f x 的一个原函数,则 f x dx
e x C
2 2 4 - 1 处相切,则 a= 4.已知曲线 y x ax b和y 2 x y 在点 1,
5.如果 f x 在[-1,1]上连续且平均值为 2,则 1 f x dx
2 2 1 2 (2) V 0 2 sin x dx 旋转体的体积 V;
, y 0 围成一平面图形。求(1)此平面图形的面积
4.证明不等式 e 1 x ( x 0 ) 。 (注:Lagrange 中值定理)
4
;
y x2 1
9.经过点(1,2),且其切线的斜率为 2x 的曲线方程为
;
3,4 10.设 f ( x) ( x 1)( x 2)( x 3)( x 4), 方程f ,( x) 0 有 3 个根,它们分别在区间 1,2, 2,3, ;
二.计算下列各题(15 分)
四、综合题(每题 10 分,共 40 分)
1.求平面曲线 sin( xy ) ln 解:
x 1 1 在 x 0 处的切线方程和法线方程。 y
y y' cosxy y 2 / cosxy x y 1 x 1
把 x=0 代入原式得: y e 切线方程: y e e 2 x e
x 1 x
x
x
3.
x ln1 t 2 y t arctan t dy t dt 2
解: (过程略...)
2xarctan x
4
x 1 ln( 1 x ) 1 x
人生,是边走边学的幸福。Nothing is impossible
1. lim x
x cos x x cos x
2. =
xf
''
x dx
3. 0
x cos x 2 dx
解: (过程略...) =1
xf ' x f x C
0
三、求下列函数的导数(15 分)
1.
y arctan t dt
2
1 x2
2.
x y 1 x
1
4
2
6.设函数 f x 在点 x0 处可导,则 lim
x0
f ( x0 2x) f ( x0 ) x
2e
f
'
x
0
;
t 7.设 f x 0 t 1e dt ,则 f(x)的极小值为 x
sin 2 x
;
8. lim x 0
0
ln 1 t dt 1 cos x
于是
ex x 1
人生,是边走边学的幸福。Nothing is impossible
高等数学(上)期末测试卷
(100 分钟,试卷满分 100 分)
一、填空题(30 分)
1.函数 f x 在 a, b 上连续是 f x 在 a, b 上可积的 2.就奇偶性而言,函数 f x 3.如果 e
x
充分
条件; (充分、充要、必要) 偶 函数; ; 8/5 ,b= 2/5 ; ;
x
证明: 设
f x e x 当 x>0 时,f(x)在闭区间[0,x]上满足 Lagrange 中值定理的条件;
且: y ' e x 因此,根据定理,应有
e x e 0 x 0 e
其中, 0 x 由于, e e
0
因此, 从上式可得: e x e 0 x 0 e 0 x
2
d f t 3t 2 dx
f t t 3 C
C=0
即: f t t 3
t 3 360 s
(2)令 t 3 360
3.曲线 y sin x ( 0 x )与直线 x (1) S 0 2 sin xdx cos x 0 1
所以 y ' e e 2 法线方程: y
1 xe e e 2
2.一物体由静止开始运动,经过 t 秒后的速度是 3t 2 。问: (1)在 3 秒后物体离开出发点的距 离是多少?(2)物体走完 360 米需要多少时间? 解:设位移方程为 y f t ,由速度和位移的关系可导: 又因为物体由静止开始运动, f 0 0 (1) f 3 33 27 m