郑大高等数学测试题
郑州大学本科英语、数学入学测试答案

答案C 61.函数的单调区间是( D ) A.(0,1)为单增区间 B.(1,2)为单减区间 C.(0,2)为单增区间 D.(0,1)为单增区间,(1,2)为单减区间
答案D 62.函数在[0,1]上的最值是( D ) A.最大值 B.最小值 C.既无最大值,又无最小值 D.最大值最小值
答案C 57.设函数,在区间上函数(A ) A.无极值 B.有一个极大值,但无极小值 C.有一个极小值,但无极大值 D.有一个极大值和极小值
答案A 58.若函数在闭区间上连续,在开区间内可导,则至少存在一点,使得, 其中的取值范围为(B ) A.
B. C. D.
答案B 59.在内,若,则函数是( A ) A.一次函数或常值函数 B.指数函数 C.二次函数 D.反比例函数
答案C
43.设,则k=(D )
A.1
B.2
C.
D.
答案D
44. 设曲线在点(0,-1)处与直线相切,则直线的斜率为( C )
A.
B. 1
C. 0
D. -1
答案C
45. 是函数的( B )间断点
A.跳跃
B. 可去
C.无穷
D. 振荡
答案B
46.已知,则( A )
A. B. C. D.
答案A 47.若则=( A ) A. B. C. D.
答案A 32.(D ) A. B. C.1 D.
答案D 33.(A ) A. B.1
C. D.
答案A 34.( C ) A.0 B.1 C. D.
答案C 35.( B ) A.不存在 B. C.1 D.2
答案B 36.要使函数 在x=0处连续,则a,b的值分别为(C ) A.0,1 B. C.任意数 D.0,任意数
郑州大学微积分(下)测验试题(2)答案

高等数学(下册)高等数学(下册)测验试题(二) 一、填空题(每小题4分,共20分)分)1设L 由o (0,0)沿y 轴到)2,0(A ,再沿2=y 到处)2,2(B ,再沿y x 22=回到)0,0(o ,则()()dy xy dx xy x xL223-+-ò.2-=2.设S 为柱面422=+yx 介于61££z 的部分,法向量指向内部,则.0222=++òòSdxdy z y x3.设L 为下半圆周(),0222£=+y R y x 则().422R ds y x L-=+ò4.设S 为平面222=++z y x 被三个坐标面相截在第一卦限的部分,则().322=++òòSdS z y x (注意:边界条件可以代入)(注意:边界条件可以代入)5.设L 为沿曲线x x y 22-=上从)0,2(A 到)0,0(o 的弧段,则.p =+-òL xdy ydx 二 计算题(每小题7分,共70分)分)1。
求,||||dy x dx y I L +=ò其中L 是以o (0,0),)1,0(A ,)1,1(-B ,为顶点的三角形边界,方向为逆时针方向。
角形边界,方向为逆时针方向。
2.计算,22ò++-L y x xdyydx L 为1||||=+y x 所围区域边界的正向。
所围区域边界的正向。
3.计算()ds x L y òúûùêëé-+51232,L 为()22332+=x y 从2-=x 到1=x 的一段。
4.计算()(),z d xd y d z d x z y d y d z z x I +-+-=òòS其中S 是由曲线()21,0,££îíì==z xy z 绕z 轴旋转一周生成的曲面的内侧。
郑州大学高等数学考试题(完整版)

高等数学模拟题第一部分 客观题一、判断题1、 函数x x x f sin )(=在),(+∞-∞上有界。
( 错 B)2、错B3、函数的极值点一定是函数的驻点。
( 错 B )4、对A5、设)(x f 是一个连续的奇函数,则0)(11=⎰-dx x f 。
( 对A ) 二、单项选择题6、 、定积分 dx x ⎰--2/2/2sin 1ππ的值是: ( D )(A )0; (B) 1; (C) 2-; (D) 2;7、在下列指定的变化过程中,( C )是无穷小量.(A) )(1sin ∞→x x x (B) )0(1sin →x x(C) )0()1ln(→+x x (D) )(e 1∞→x x8、设(ln )1f x x '=+,则()f x =( C ).(A) 22x x c ++ (B)22x xe e c ++ (C)x x e c ++ (D)ln (2ln )2x x + 9、.曲线2211x x ee y ---+=( D )(A) 无渐近线 (B) 仅有水平渐近线(C) 仅有铅直渐近线 (D)既有水平渐近线,又有铅直渐近线 10 、 C第二部分 主观题一、求解下列各题 12、设()y y x =由方程组cos sin sin cos x t t t y t t t =+⎧⎨=-⎩确定,求dydx 。
解:3、求曲线 2(1)yx x =- 的凹凸区间。
解:Y=(x-1)²x 求二阶导数,再找零点 x= - (1/2) ,以所找零点将定义域区间划分为2个区间,(-∞,-(1/2))和((-1/2),+∞),在前一个区间,f ' ' <0 ,为凹区间,后一个区间为凸区间。
在x= - (1/2) 的左右,其二阶导数变号,故拐点为(-(1/2), 7/8)4、求4e ⎰。
5、设222()()4xx f t dtF xx=-⎰,其中)(xf为连续函数,求2lim()xF x→。
郑州大学考研高等代数2004

2004年郑州大学研究生考试数学试题1.填空与选择(1),,,321ααα21,ββ是n 维向量。
设,,,321ααα线性无关,1β可由,,,321ααα线性表示,而2β不能由,,,321ααα线性表示,则对于任意常数k ,必有( )A .,,,321ααα21ββ+k 线性无关 B. ,,,321ααα21ββ+k 线性相关C. ,,,321ααα21ββk +线性无关D. ,,,321ααα21ββk +线性相关(2)A 为3阶矩阵,A 的秩r(A)=2, 321,,ααα为非奇次线性方程组AX=B(B ≠0)的解向量,已知T T )2,4,3(,)0,4,2(321-==+ααα,则AX=B 的通解是( )(3)A,B 为3阶矩阵,满足E B B A 421-=-,若B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-40001200012,则(E A 2-)1-=( )(4)23)(,562)(323--=+++=x x x g x x x x f ,则))(),((x g x f =( )(5)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=310031003,300031003B A ,A 的最小多项式为( ),B 的最小多项式为( )(6)1)(,*=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A r a b b b a b b b a A ,其中*A 是A 的伴随矩阵,则必有( ) (A )a=b 或a+2b=0 (B) a=b 或a+2b ≠0(C) a ≠b 或a+2b=0 (D) a ≠b 或a+2b ≠0(7)V 为数域P 上向量空间V=P 4,),1,0,1,2(),1,1,1,1(),0,1,2,1(321-=-==ααα )7,3,,1(4λα=,V 的子空间V 1),(),,(43221ααααL V L ==,则)(=λ时,dim(V 12V ⋂)=1. (8)实二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,其中二次型的矩阵A 的特征值之和为1,特征值之积为-12.则)(),(==b a以下六题任选且必选6题,每小题15分2,P 为数域,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1111,0111,0011,00014321αααα为向量空间 V=P 22⨯的一组基,求2,B 是n 阶实对称矩阵,已知A 与B 相似,证明B 也是正定矩阵。
2010-2011高数试卷期末

郑州大学软件技术学院《高等数学》课程 2010-2011学年第一学期期末试题(A )卷(适用专业:嵌入式系统 考试时间:120分钟)合分人: 复查人:一、选择题:(每题 4 分,共 20 分) (说明:将答案写在试卷后面的答题纸上)1、设1)1(-=x x xf ,则=)2(x f ( A )(A )x 211- (B )x -12(C )xx 2)1(2- (D )xx )1(2-2、当=-→a ax x x 则是等价的与无穷小量时,cos 1,02(B ) (A )2(B )21 (C )1 (D )21-3、设1,21210,1{)(=≤<-≤<-=x x xx x x f 则为(C )(A )连续点 (B )可去间断点(C )跳跃间断点 (D )无穷间断点 4、设),(2x f y -=则dxdy =( D )(A ))(2'x f - (B ))(22'x xf - (C ))(2'x f (D ))(22'x xf -- 5、设)4)(3)(2)(1()(----=x x x x x f ,则方程0)('=x f 有且仅有( C ) (A )一个实根 (B )二个实根 (C )三个实根 (D )无实根二、填空题 :(每题 2 分,共 10 分) (说明:将答案写在试卷后面的答题纸上)1、2163lim -∞→⎪⎭⎫ ⎝⎛++x x x x =__23-e ________。
2. dxxx1cos12⎰=___cx +-1sin_____________。
3. 已知)(x f 在0x 处可导,且2)(0='x f ,则xx x f x x f x )3()(lim000--+→=__8___.4.设)3sin(x y =,则y '=___x x 3cos 33ln ⋅⋅ ________.5. 已知⎰+=C x F dx x f )()(,则⎰=dx x f x)(ln 1 C x F +)(ln .三、计算题 :(每题 5分,共 40 分) (说明:将答案写在试卷后面的答题纸上)1、)1sin 1(cot limxxx x -→解原式=0lim→x =-xx x x x tan .sin sin 0lim→x =-3sin xxx 0lim→x 21cos 136x x-=2、x x x x 12)1(lim+++∞→解:原式=1.ln(lim x x xe→+∞+∞→x lim0111lim)1ln(22=+=+++∞→∞∞x xx x x∴ 原式=10=e3、已知)(x f y =,则22ln arctanyx xy +=表示,求22dxy d 。
郑州大学网络教育高等数学期末考试复习题及参考答案

正确 错误
回答错误!正确答案: A
收藏
正确 错误
回答错误!正确答案: B
收藏
错误 正确
回答错误!正确答案: B
收藏
正确 错误
回答错误!正确答案: B
收藏
错误 正确
回答错误!正确答案: B
函数的极值点一定是函数的驻点。 收藏
正确 错误
回答错误!正确答案: B
连续周期函数的原函数为周期函数。
收藏
B.
仅有水平渐近线
C. 仅有铅直渐近线
D. 既有水平渐近线,又有铅直渐近线
回答错误!正确答案: D
收藏
A.
B.
C.
D.
回答错误!正确答案: A
收藏
A.
2
B.
0
C.
1
D.
3
回答错误!正确答案: A
收藏
A.
B.
C.
D.
回答错误!正确答案: D
收藏
A.
B. C. D.
回答错误!正确答案: B
收藏
A. B.
C.
D.
回答错误!正确答案: B
收藏A.1来自B.0C.-2
D.
2
回答错误!正确答案: D
收藏
A. 充分必要条件
B. 必要条件
C. 既非充分也不必要条件
D. 充分条件
回答错误!正确答案: B
收藏
A. B.
C.
D.
回答错误!正确答案: A
收藏
A.
B.
C.
D.
回答错误!正确答案: A
收藏
A.
B. C. D.
错误 正确
回答错误!正确答案: A
郑州大学微积分(上)试题(A卷)及其参考答案

郑州大学2012—2013学年度第一学期微积分期末考试试卷(A 卷)考试时间:2小时30分钟 考试方式:闭卷复查总分 总复查人一、求解下列各题(每题8分,共48分)1.求极限⎪⎭⎫ ⎝⎛---→x x x 1113lim 31.解:⎪⎭⎫ ⎝⎛---→x x x 1113lim 31()()()2211113lim x x x x x x ++-++-=→()()()()211121lim x x x x x x ++-+-=→ 112lim21=+++=→x x x x .2.求x e y arctan =的导数. 解:()()'+='xxe ey 211()'+=x eexx.112⎪⎪⎭⎫ ⎝⎛+=x e e x x 21.112()xxex e212+=.3.求由y e y x x sin 22=-①的函数()x y 的导数. 解:①式两边关于x 求导得'=-'+y y xe y x xy x .cos 2222即()()y e x xe y y xx x -=-'-2222cos 2所以 ()y x ye x y x c o s 222--='.4.求()dx x x x⎰+2ln ln 1.解:()dx x x x⎰+2ln ln 1()().ln 1ln ln 12C xx x x d x x +-==⎰ 5. 求⎰+e x x dx 1ln 1 .解:⎰+exx dx 1ln 1()().122ln 12ln 1ln 11|11-=+=++=⎰eex x d x6. 求⎰+∞++0284x x dx. 解:⎰+∞++0284x x dx ()()⎪⎭⎫⎝⎛-=+=+++=∞+∞+⎰422122arctan 212221|0022ππx x d x .8π=7.求一个以x xe y =为其特解的二阶常系数线性齐次微分方程. 解:设所求方程为 0=+'+''qy y p y ①根据题意知,方程的①的特征方程的根应为 121==r r , 因此其特征方程应为 ()012=-r ,即 .0122=+-r r所以,所求方程为 .02=+'-''y y y8.设()x f 是以π2为周期的函数,它在[)ππ,-上的表达式为()⎩⎨⎧<≤+<≤-=.0,1,0,ππx x x x x f 求它的富里叶展开式.解:(一)()()1111000=⎥⎦⎤⎢⎣⎡++==⎰⎰⎰--ππππππdx x xdx dx x f a ; ()()⎥⎦⎤⎢⎣⎡++==⎰⎰⎰--00cos 1cos 1cos 1ππππππnxdx x nxdx x nxdx x f a n其中 ()⎪⎭⎫ ⎝⎛-==⎰⎰⎰----0000sin sin 1sin 1cos |ππππnxdx nx x n nx xd n nxdx x()⎰⎰---=-=002sin 1sin 1ππnx nxd n nxdx n()()[]nnnx n 111cos 1202|--=--=-π; ①()()()()⎪⎭⎫ ⎝⎛-+=+=+⎰⎰⎰ππππ0000sin sin 11sin 11cos 1|nxdx nx x n nx d x n nxdx x ()⎰⎰-=-=ππ002sin 1sin 1nx nxd n nxdx n()()[]111cos 1202|--=--=nnnx n π.②故 ,...)2,1.(0==n a n (二) ()()⎥⎦⎤⎢⎣⎡++==⎰⎰⎰--0s i n 1s i n 1s i n 1ππππππn x d x x n x d x x n x d x x f b n 其中()⎪⎭⎫ ⎝⎛--=-=⎰⎰⎰----0000cos cos 1cos 1sin |ππππnxdx nx x nnx xd n nxdx x ()⎰---=---=011]cos )1([1πππnnxdx n n n ; ①()()()()⎪⎭⎫ ⎝⎛-+-=+-=+⎰⎰⎰ππππ0000cos cos 11cos 11sin 1|nxdx nx x n nx d x n nxdx x ()()[]()()[]nn n n n n 1111111111---++-=--+-=ππ②故 ()()[]1111121---++-=n n n n n b π()⎪⎪⎩⎪⎪⎨⎧=+=-=,...5,3,1,12,...,6,4,2,2n n n n ππ所以,所求富里叶展开式为()()().,....,3sin 3122sin sin 1221N n n x x x x x f ∈≠-++-++=πππππ 二、(12分)已知函数()()231-=x x x f ,求(1)函数()x f 的单调增加、单调减少区间,极大、极小值; (2)函数图形的凸性区间、拐点、渐进线;解:(一)()()+∞∞-=,11, D ;1.因为()()32lim lim1x x x f x x →∞→∞==∞-,所以无水平渐进线;2.因为函数在1=x 处无定义,且()()3211lim lim1x x x f x x →→==+∞-,故有垂直渐进线1=x ;3.因为()()22lim lim 1,1x x f x x a x x →∞→∞===-,()()()32222lim lim lim 211x x x x x x b f x ax x x x →∞→∞→∞⎡⎤-=-=-==⎡⎤⎢⎥⎣⎦--⎢⎥⎣⎦均存在, 所以,有斜渐进线2+=x y . (三)令()()()2123300, 3.1x x f x x x x -'==⇒==-;令()()4600.1xf x x x ''==⇒=-于是可得下表:()0,∞- 0 ()1,01()3,1 3 ()+∞,3()f x ' + 0 + 不存在 — 0 + ()f x ''— 0 + 不存在 + + + ()x f 升 拐点 升 间断 降 升三、求解下列各题(每题8分,共32分)1.将()21ln arctan x x x x f +-=展开为x 的幂级数.解法一:()()21ln 21arctan x x x x f +-=()x x x x x x x f arctan 2.11.211arctan 22=⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡++=';()211x x f +=''. 由展式 ()n n nx x ∑∞=-=+0111,()1,1-∈x 得()()()()nn nnn nxx x x f 202021111∑∑∞=∞=-=-=+='' ,()1,1-∈x .①故 ()()()()dx x dx x f f x f xn n nx⎰∑⎰⎪⎭⎫ ⎝⎛-+=''+'='∞=0200100()()121112020+-=-=+∞=∞=∑⎰∑n x dx x n n nxnn n,[]1,1-∈x .② 所以 ()()()()dx n x dx x f f x f xn n n x⎰∑⎰⎪⎪⎭⎫ ⎝⎛+-+='+=+∞=012012100 ()()()()22121121220120++-=+-=+∞=+∞=∑⎰∑n n x dx xn n n nxn n n,[]1,1-∈x . 解法二:由()dx x dx x x x n n n x⎰∑⎰⎪⎭⎫⎝⎛-=+=∞=02002111arctan ()121120+-=+∞=∑n x n n n,[]1,1-∈x .① ()()()()11111ln 1201202+-=+-=++∞=+∞=∑∑n x n x xn n nn n n,[]1,1-∈x , ② 得()()21ln 21arctan x x x x f +-=()121120+-=+∞=∑n x x n n n()1121120+--+∞=∑n xn n n ()121220+-=+∞=∑n x n n n()()121120+--+∞=∑n xn n n()1202211211+∞=⎪⎭⎫ ⎝⎛+-+-=∑n n n x n n()()()22121120++-=+∞=∑n n x n n n,[]1,1-∈x . 2.在某N 个人中推广新技术.已知在0=t 时,这N 个人中已有0X 个人掌握了这项技术.设在任意时刻t 已掌握这项技术的人数为()t x ,并认为()t x 是连续函数.如果()t x 的变化率与已掌握技术和未掌握技术的人数之积成正比,比例系数为)0(>k ,求()t x .解:根据题意知()x N kx dtdx-=..① 且()00|X t x t ==.②①为可分离变量型的一阶微分方程.由 ①得到()⎰⎰=-dt k dx x N x 1其中()⎰-dx x N x 1()x N x x N x dx x N x -=--=⎥⎦⎤⎢⎣⎡-+=⎰ln ln ln 11故①的通解为C kt x N x ln ln -=-③ 由③解得 ()ktCeNt x -+=1④ 将初始条件()00|X t x t ==代入④,解得X X N C -=⑤ 所以,将⑤代入④,有()kt kt kt e X X N e NX eX X N Nt x 00000.1+-=-+=-. 3.一台摄像机放置在距火箭发射塔4000米处,为了使摄像机的镜头始终对准火箭,摄像机的仰角应随火箭的上升而不断增加.火箭发射后,它与地面垂直距离随时间的变化率()t x 是可以测出的.若已知火箭垂直上升距离为m 3000时,其速度达到s m /600.求此时摄像机仰角的变化率. 解:设在时刻t 摄像机的仰角为()t α,则由题意知4000tan x=α① ①式两边关于t 求导得dt dx dt d .40001.sec 2=αα②将222240001tan 1sec x +=+=αα代入②式,得到dtdxx dt d .1600000040002+=α③ 将 600,3000==dtdxx 代入③式,解得 )/(09.0s m dtd =α. 即当火箭垂直上升距离为m 3000时,摄像机仰角的变化率为)./(09.0s m 4.在曲线2x y =上求一点,使过此点的切线与0,8==y x 所围成位于第一象限的三角形的面积最大.解:(一)在曲边2x y =上任取一点()2,t t ,则曲线在该点处切线斜率为()t x t y k tx 22|=='==.从而曲线在该点处切线方程为()t x t t y -=-.22① ①中令0=y ,解得 2tx =;令8=x ,解得 .162t t y -=②所以曲线在该点处的切线与两直角边8,0==x y 围成的三角形面积为()()()80.6484116.28.21232≤≤+-=-⎪⎭⎫ ⎝⎛-=t t t t t t t t S ③(二) 令()()02566434164164322=+-=+-='t t t t t S ,④ 得.16=t (舍)或者.316=t又因为()()64641-=''t t S ,01296316<-=⎪⎭⎫ ⎝⎛''S ,所以当316=t 时,()t S 取到最大 值.即所求点为⎪⎭⎫⎝⎛9256,316.四、(8分)就k 的不同情况讨论曲线k x y +=ln 4与 x x y 4ln 4+=交点的个数解:问题等价于讨论方程0ln 4ln 44=--+k x x x 有几个不同的根.令 ()k x x x x f --+=ln 44ln 4,()+∞∈,0x .①则 ()()xx x x x x x f 1l n 4144l n 433-+=-+='.② 由()0='x f ,解得唯一驻点1=x .【注意到:()01ln 03=-+⇔='x x x f .记 ()1ln 3-+=x x x g ,()+∞∈,0x .因为()01ln 32>+='xxx g ,故()x g 在()+∞,0上单调增加,故方程01ln 3=-+x x 至多有一个实根.】因为当10<<x 时,()0<'x f ;而当1>x 时,()0>'x f ,故()k f -=41为函数()x f 的最小值.又()()+∞=--+=++→→k x x x x f x x ln 44ln lim lim 4; ()()k x x x x f x x --+=+∞→+∞→ln 44ln lim lim 4+∞=⎪⎭⎫ ⎝⎛--+=+∞→x k x x x x x x 4334ln 1ln 14ln 1.ln 41ln lim . 根据以上分析可画出()x f y =的草图(略).就此草图易作出以下判断 (1)当4<k 时,方程()0=x f 无实根,从而两曲线无交点;(2)当4=k 时,方程()0=x f 恰有一个实根,从而两曲线恰有一个交点; (3)当4>k 时,方程()0=x f 恰有两个实根,从而两曲线恰有两个交点.。
郑州大学数值计算方法试卷

郑州大学数值计算方法试卷一、填空题。
(共23分)1、4∶( )= 24÷( )=( )%2、如果a× =b× =c× =d× (a、b、c、d都大于0),那么a、b、c、d中,( )最大,( )最小。
3、六(1)班女生人数是男生的45 ,男生人数是女生人数的( )%,女生比男生人数少( )%。
4、一项工程,甲每月完成它的512 ,2个月完成这项工程的( ),还剩下这项工程的( )。
5、一种大豆的出油率是10%,300千克大豆可出油( )千克,要榨300千克豆油需大豆( )千克。
6、( )乘6的倒数等于1;20吨比( )吨少;( )平方米比15平方米多13 平方米。
7、冰化成水后,体积减少了112 ,水结成冰后,体积增加( )。
8、一种电扇300元,先后两次降价,第一次按八折售出,第二次降价10%。
这种电扇最后售价( )元。
9、一根绳子长8米,对折再对折,每段绳长是( ),每段绳长是这根绳子的( )。
10、一个长方体棱长总和是120厘米,长、宽、高的比是5:3:2。
这个长方体的体积是( )立方厘米。
11、化简比,并求比值。
4:18 ;20分钟:2小时;3吨:600千克化简比是:( ) ( ) ( )比值是:( ) ( ) ( )二、判断。
(共5分)1、两个长方体体积相等,表面积就一定相等。
( )2、男生人数比女生多,女生人数则比男生少。
( )3、一千克糖用去25 千克后,还剩下它的60%。
( )4、一件商品先涨价10%,再降价10%,现价与原价相同 ( )三、选择题。
(共5分)1、一个长方体有4个面的面积相等,其余两个面一定是( )。
A、长方形B、正方形C、无法确定2、甲数的17 等于乙数的18 ,甲数、乙数不为0,那么甲数( )乙数。
A、大于B、小于C、等于D、无法确定3、一年前王老师把3000元钱存入了银行,定期2年。
年利息按2.25%计算,到期可得本金和税后利息一共( )元。