同济大学版高等数学期末考试试卷
同济大学大一高等数学期末试题精确答案

课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次:适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)-1 .2.交 换ln 10(,)exI dx f x y dy =⎰⎰的积分次序后,I =___I =10(,)y e e dy f x y dx ⎰⎰__________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为→→→-+-k j i 242 .4. 已知0!n xn x e n ∞==∑,则xxe -=1(1)!n n n x n +∞=-∑ . 5. 函数332233z x y x y =+--的极小值点是 (2,2).三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,zy ∂∂.解:222y x y x z +-=∂∂; (3分)99or -解:)3(31)(-+=x x f =33(1131-+⋅x , ( 2分) 因为 ∑∞=+=-011)1(n n n x x ,)1,1(-∈x ,所以∑∞=-⋅-=-+⋅033(31)1(33(1131n n n x x =∑∞=+--01)3()31()1(n n n n x ,其中1331<-<-x ,即60<<x .( 5分)当0=x 时,级数为∑∞=031n 发散;当6=x 时,级数为∑∞=⋅-031)1(n n 发散,故x 1=∑∞=+--01)3(31()1(n n n n x ,)6,0(∈x , ( 7分)5.(本小题满分7分)求由方程08822222=+-+++z yz z y x 所确定的隐函数),(y x z z =的极值。
高等数学同济下册期末考试题及答案套

大学高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122(。
6、微分方程x y x y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是()(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小; (D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ∂∂+∂∂等于() (A )y x +;(B )x ;(C)y ;(D)0。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I等于() (A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰200102sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
同济大学版高等数学期末考试试卷

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是(). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x =和()g x =(C )()f x x =和()2g x =(D )()||x f x x=和()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩在0x =处连续,则a =().(A )0(B )14(C )1(D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为(). (A )1y x =-(B )(1)y x =-+(C )()()ln 11y x x =--(D )y x =4.设函数()||f x x =,则函数在点0x =处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微 5.点0x =是函数4y x =的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点 6.曲线1||y x =的渐近线情况是(). (A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是(). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是().(A )arctan xe C +(B )arctan xe C -+(C )x x e e C --+(D )ln()x x e e C -++9.下列定积分为零的是().(A )424arctan 1x dx x ππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe e dx --+⎰(D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()102f x dx '⎰等于().(A )()()20f f -(B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条.4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '.3.求不定积分 ①()()13dx x x ++⎰②()0a >③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C二.填空题1.2-2.-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3.①11ln||23xCx+++②ln|x C+③()1xe x C--++四.应用题1.略2.18S=。
同济大学大一高等数学期末试题-(精确答案)

课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次:适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y yB xln ln ln .ln x xy yC y ydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰21202cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量12l i j =+r r r方向的方向导数。
同济大学版高等数学期末考试试卷

《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。
同济大学大一高等数学期末试题精确答案

同济大学大一高等数学期末试题精确答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若x y z ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y y B xln ln ln .ln x xy yC yydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f).212cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 212cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分) 1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!nxn x e n ∞==∑,则x xe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,z y∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量132l i j =+方向的方向导数。
高等数学(同济)下册期末考试题及答案(5套)

高等数学(下册)考试试卷(一)之巴公井开创作一、填空题(每小题3分, 共计24分) 1、D=. 2.3为, 其值为.4、设曲线L5、设曲面∑为介于及间的部份的外侧, 则.7. 8.二、选择题(每小题2分, 共计16分)1) (A(B(C是无穷小;(D2、有二阶连续导数,是( )(AB(D)0 .3)(A )B(CD4、球面与柱面所围成的立体体积V=( ) (A(B(C(D5、设有界闭区域D 由分段光滑曲线L 所围成, L 取正向, 函数D 上具有一阶连续偏导数,(A(B(C(D 6、下列说法中毛病的是()(A )(B ) (C )(D).7,,)(A(B(C(D8)(A)收敛;(B)发散;(C)纷歧定;(D)绝对收敛.三、求解下列问题(共计15分)1、(72、(8四、求解下列问题(共计15分).17分)2闭区域(8分)五、(13其中L.六、(9在,七、(8.高等数学(下册)考试试卷(二)123交换积分次第后 4,5、设L 则曲线积分67. 8则它的Fourier二、选择题(每小题2分, 共计16分). 1则在点(0, 0)处( )(A )连续且偏导数存在; (B )连续但偏导数不存在; (C )不连续但偏导数存在; (D )不连续且偏导数不存在. 2D 上具有二阶连续偏导数, 且满足及 则( )(A )最年夜值点和最小值点肯建都在D 的内部; (B )最年夜值点和最小值点肯建都在D 的鸿沟上;(C )最年夜值点在D 的内部, 最小值点在D 的鸿沟上; (D )最小值点在D 的内部, 最年夜值点在D 的鸿沟上.3、设平面区域D 则有( )(A (B ) (C (D )不能比力. 4、设是由曲面及 所围成的空间区域, 则( )(B (C ; (D 5、设在曲线弧L 上有界说且连续, L 的参数方程为, 其上具有一阶连续导数, 且);6则曲面积分( )(A) 0 ;;;7、下列方程中, , ( )8, 则( )(A)该级数必收敛; (B)该级数必发散;(C)该级数可能收敛也可能发散; (D)则必收敛.三、求解下列问题(共计15分)1、(8A(0, 1, 0)沿A指向点B (3, -2, 2)的方向的方向导数.2、(7成的闭区域D上的最年夜值和最小值.四、求解下列问题(共计15分)1、(7分)计所围成的立体域.,2、(8五、求解下列问题(15分)1、(8其中L是从A(a,0O(0, 0)的弧., 其中是2、(7分)计算的外侧., 并使曲线积分六、(15,一、填空题(每小题3分, 共计24分)120, 03、曲围成的立体, 如果将三重积分, 则I=.4,56,面所组成,导数, 则三重积分与第二型曲面积分之间有关系式:, 该关系式称为公式.78,二、选择题(每小题2分, 共计16分) 1,( )(AB )0;(C )D2结论正确的是( )(A(B(C(D3, 积分域D , 对称部份记为D上连续,)(A)0;(B)C)4)(A(B(D5L,则曲线弧L)(B(C(D M为曲线弧L的质量., 则)(A)0;(D)(A(B(C(D8、则它的Fourier展开()(A(B)0;(C(D,,,离最短.的面积A.六、(12分)计其球面的的外侧.七、(10八、(10.高等数学(下册)考试试卷(一)参考谜底一、12、负号; 345、678、1;二、1、D; 2、D; 3、C; 4、B; 5、D; 6、B; 7、A; 8、C;三、122于是①当L 所围成的区域D 中不含O (0, 0)时D 内连续.所以由Green 公式得:I=0;②当L 所围成的区域D 中含O (0, 0)时,D 内除O (0, 0)外都连续,逆时针方向,, 则 六、由所给条件易得:即又,, 原级数发散;,, R=1, 收敛区间为[1, 3].高等数学(下册)考试试卷(二)参考谜底一、1、1; 2、-1/6; 3; 4、5678、0;二、1、C ; 2、B ; 3、A ; 4、D ; 5、C ; 6、D ; 7、B ; 8、C ;三、1A (1, 0, 1)处可微, 且故在A2DD 四、12、在柱面坐标系中 所以五、12上侧, 则由Gauss 公式得:.即高等数学(下册)考试试卷(三)参考谜底一、123467二、1、C ;2、B ;3、A ;4、C ;5、A ;6、D ;7、B ;8、B即得:,离为于是由:依题意, 椭圆到直线一定有最短距离存在, 其中.由图形的对称性,于是:。
高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。
2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。
3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。
4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。
5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。
6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。
7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。
8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高数》试卷1(上)
一.选择题(将答案代号填入括号内,每题 分,共 分)
.下列各组函数中,是相同的函数的是( )
(✌)()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 (
)g x =
( )()f x x = 和 (
)2
g x = ( )()||
x f x x
=
和 ()g x =
.函数(
)()
20ln 10
x f x x a x ≠=+⎨⎪
=⎩
在0x =处连续,则a =
( )
(✌) ( )
1
4
( ) ( ) .曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) (✌)1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( )
y x =
.设函数()||f x x =,则函数在点0x =处( )
(✌)连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微
.点0x =是函数4
y x =的( )
(✌)驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点
.曲线1
||
y x =
的渐近线情况是( ) (✌)只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线
( )既无水平渐近线又无垂直渐近线 .
211
f dx x x
⎛⎫' ⎪⎝⎭⎰
的结果是( ) (✌)1f C x ⎛⎫
-+ ⎪⎝⎭
( )1f C x ⎛⎫
--+ ⎪⎝⎭
( )1f C x ⎛⎫
+ ⎪⎝⎭
( )1f C x ⎛⎫
-+ ⎪⎝⎭
.
x x dx
e e -+⎰的结果是( )
(✌)arctan x
e C + ( )arctan x
e
C -+ ( )x x e e C --+ ( )
ln()x x e e C -++
.下列定积分为零的是( )
(✌)424arctan 1x
dx x π
π-+⎰ ( )44
arcsin x x dx ππ-⎰ ( )112x x
e e dx --+⎰ ( )()1
2
1
sin x
x x dx -+⎰
.设()f x 为连续函数,则
()1
2f x dx '⎰等于( )
(✌)()()20f f - ( )()()11102f f -⎡⎤⎣⎦( )()()1
202f f -⎡⎤⎣⎦( )()()10f f -
二.填空题(每题 分,共 分)
.设函数()21
00x e x f x x a x -⎧-≠⎪
=⎨⎪=⎩
在0x =处连续,则a =
.已知曲线()y f x =在2x =处的切线的倾斜角为5
6
π,则()2f '=
.21
x
y x =-的垂直渐近线有条 .
()21ln dx
x x =
+⎰
.()4
2
2
sin cos x
x x dx π
π
-
+=
⎰
三.计算(每小题 分,共 分) .求极限
①21lim x
x x x →∞+⎛⎫
⎪⎝⎭ ②()
20sin 1
lim x
x x x x e →-- .求曲线()ln y x y =+所确定的隐函数的导数x y ' .求不定积分 ①
()()13dx
x x ++⎰ ②
()
2
2
0a x a
>-⎰
③
x xe dx -⎰
四.应用题(每题 分,共 分)
. 作出函数3
2
3y x x =-的图像
.求曲线2
2y x =和直线4y x =-所围图形的面积
《高数》试卷 参考答案
一. 选择题
. . .✌ . . . . .✌ .✌ .
二.填空题
.2- . 3. 2 4.arctanln x c + 5.2 三.计算题 1①2
e ②
1
6
11x
y x y '=+-
①
11
ln ||23
x C x +++ ②ln |x C +
③
()1x e x C --++
四.应用题
1.略 2.18S =。