《信号与线性系统》试题与答案5

合集下载

信号与线性系统一二章自测题及参考答案

信号与线性系统一二章自测题及参考答案

第一、二章自测题1、判断题(1)若x (t )是一连续时间周期信号,则y (t )=x (2t )也是周期信号。

(2)两个周期信号之和一定是周期信号。

(3)所有非周期信号都是能量信号。

(4)两个连续线性时不变系统相互串联的结果仍然是线性时不变系统。

(5)若)()()(t h t x t y *=,则)1()2()1(+*-=-t h t x t y 。

(6)一个系统的自由响应就等于它的零输入响应。

(7)一个系统的零状态响应就等于它的自由响应。

(8)零状态响应是指系统没有激励时的响应。

(9)系统的单位冲激响应是指系统在冲激信号作用下的全响应。

(10)两个功率信号之和必为功率信号。

2、判断下列信号是能量信号还是功率信号? (1)3cos(15)0()0t t f t t π≥⎧=⎨<⎩ (2)50()0te tf t t -⎧≥=⎨<⎩(3)()6sin 23cos3f t t t =+ (4)|2|()20sin 2t f t e t -=3、填空题(1)已知)()4()(2t t t f ε+=,则)(''t f =__________________。

(2)=+-⋅+⎰∞∞-dt t t t )1()2(2δ__________________________。

(3)=-⎰∞∞-dt t )(92δ_________________________ 。

(4)=-⎰∞∞-dt t t e t j )(0δω_________________________ 。

(5)信号cos(15)cos(30)t t -的周期为 。

4、试画出下列各函数的波形图 (1)0 ),()(001>-=t t t t f ε (2))]4()([3cos )(2--=t t t t f εεπ (3)][sin )(3t t f πε=5、已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形图。

管致中《信号与线性系统》(第5版)(章节题库 连续信号的正交分解)

管致中《信号与线性系统》(第5版)(章节题库 连续信号的正交分解)

F(
j)
e2
2e2 2 j

2.频谱函数 F(jω)=g4(ω)cosπω 的傅里叶逆变换 f(t)等于______。
【答案】
f
(t)
1
[Sa2(t
)
Sa2(t
)]
【解析】因为
F(
j)
g4 () cos
1 2
g4 ()(e j
e j
)
,而
F
1[ g 4
()]
2
Sa(2t)
,根据傅里叶变换的时移特性,可得
x(t t0 ) X (w)e jwt0 ,可得 e j4w (t 4) , e j4w (t 4) ,再分别乘
以系数即得 f(t)=
。重点在于傅里叶变换的性质。
1 / 117
圣才电子书

十万种考研考证电子书、题库视频学习平 台
3.信号
的傅里叶变换为( )。
), 2
A2
E
A
2E

已知
,根据卷积定理
F2(
)
F1(
)gF1(
)
E 2
Sa2( 4
)
二、填空题
8 / 117
圣才电子书

1.信号
十万种考研考证电子书、题库视频学习平 台
的傅里叶变换 F(jω)等于______。
【答案】
【解析】
f
(t)
e2 (t)
2e2e2t (t) ,根据傅里叶变换,可得
10.图 3-2(a)所示信号 f(t)的傅里叶变换 3-2(b)所示信号 y(t)的傅里叶变换 Y(jω)为( )。
为已知,则图
5 / 117

专升本《信号与线性系统》-试卷-答案

专升本《信号与线性系统》-试卷-答案

专升本《信号与线性系统》一、(共60题,共156分)1. 能量有限信号是指总能量为有限值而平均功率为____的信号。

(2分).标准答案:1. 零;2. 系统响应中随时间增长而趋于稳定的部分称为________________分量。

(2分).标准答案:1. 稳态响应;3. 单位函数响应h(k)是指离散时间系统对____________________________________________的零状态响应。

(2分).标准答案:1. 单位函数(或δ(k));4. 若周期函数f (t)满足,则称其为________函数。

(2分).标准答案:1. 奇谐;5. h(t)是连续因果LTI系统的冲激响应,则系统稳定的充要条件是________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ____________________。

(2分).标准答案:1. ;6. ____。

(2分).标准答案:1. 0;7. 时间函数中变化较____的信号必定具有较宽的频带。

(2分).标准答案:1. 快;8. 信号的最小抽样频率为________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ____________________ Hz。

信号与线性系统_习题答案(有错版)

信号与线性系统_习题答案(有错版)
第二章习题答案
2.1 (1) 已知连续时间信号 x(t ) 如图 P2.1(a)所示。试画出下列各信号的波形图,并加以标 注。 (a) x(t − 2) (b) x(1 − t ) (c) x(2t + 2) (2) 根据图 P2.1(b)所示的信号 h(t ) ,试画出下列各信号的波形图,并加以标注。 (a) h(t + 3) (b) h( − 2) (c) h(1 − 2t ) (3) 根据图 P2.1(a)和(b)所示的 x(t ) 和 h(t ) ,画出下列各信号的波形图,并加以标注。 (a) x(t )h(−t ) (b) x(1 − t )h(t − 1) (c) x(2 − ) h(t + 4)
其基波周期 T0 是 T1 , T2 的最小公倍数。 (b) x(n) 和 y ( n) 是周期的, x(n + = N1 ) x(n), y (n + N = y ( n) 2) 令 f= (n) x(n) + y (n) ,欲使 f (n) 是周期的,必须有
= N 0 kN = mN 2 1
πn
4
,对所有 n ,
7
1 n , n奇 显然 x(n) 是非周期的,但 y1 (n) 是周期的。 h(n) = 3 0, n偶
(c) 正确。若 x(n) 的周期为 N ,则 y2 (n) 的周期为 2 N 。 (d) 正确。若 y2 (n) 的周期为 N ,则 N 只能是偶数。 x(n) 的周期为 N / 2 。 2.7 判断下列各信号是否是周期信号,如果是周期信号,求出它的基波周期。 (a) = x(t ) 2 cos(3t + π / 4) (c) x(t ) = e (e) = x ( n)
1

信号与线性系统分析试卷

信号与线性系统分析试卷

第一部分选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。

在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分等于(B)答案A. B.C. D.2.已知系统微分方程为: 若解得全响应为:t≥0.全响应中为( D ) 答案A.零输入响应分量 B.零状态响应分量C.自由响应分量 D.稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( C)答案4.信号f1(t),f2(t)波形如图所示,设f(t)=f1(t)*f2(t),则f(0)为(B)答案A.1 B.2 C.3 D.4 5.已知信号f(t)的傅里叶变换F(jω)=δ(ω-ω0),则f(t)为( A)答案6.已知信号f(t)如图所示,则其傅里叶变换为(C)答案7.f(t)=ε(t)-ε(t—1)的拉氏变换为(A)答案8. 的拉氏反变换为(D)答案9.图(a)中ab段电路是某复杂电路的一部分,其中电感L和电容C都含有初始状态,请在图(b)中选出该电路的复频域模型。

(B ) 答案10.离散信号f(n)是指(B)答案A.n的取值是连续的,而f(n)的取值是任意的信号B.n的取值是离散的,而f(n)的取值是任意的信号C.n的取值是连续的,而f(n)的取值是连续的信号D.n的取值是连续的,而f(n)的取值是离散的信号11.若序列f(n)的图形如图(a)所示,那么f(—n+1)的图形为图(b)中的( D)答案12.差分方程的齐次解为,特解为,那么系统的稳态响应为( B ) 答案13.已知离散系统的单位序列响应和系统输入如图所示,f(n)作用于系统引起的零状态响应为,那么序列不为零的点数为(C)答案A.3个 B.4个C.5个 D.6个第二部分非选题(共68分)二、填空题(本大题共9小题,每小题2分,共18分)14.=()。

答案15.GLC并联电路发生谐振时,电容上电流的幅值是电流源幅值的(Q)倍。

管致中《信号与线性系统》(第5版)(章节题库 连续时间系统的频域分析)

管致中《信号与线性系统》(第5版)(章节题库 连续时间系统的频域分析)

)。(填“因果”或“非因果”)
【答案】时变、因果
【解析】根据时不变的定义,当输入为 x(t-t0)时,输出也应该为 y(t-t0)=
(
t
t0
5
) cos(
x(
t
1
பைடு நூலகம்t0
)
)
但当输入
x(t-t0)时实际的输出为 (
t
5
) cos(
x(
t
1
t0
)
)

与要求的输出不相等,所以系统是时变的,因果性的定义是指系统在 t0 时刻的响应只与
【解析】无失真传输的定义:无失真是指响应信号与激励信号相比,只是大小与出现
的时间不同,而无波形上的变化。
3.若某系统对激励 e(t)=E1sin(ω1t)+E2sin(2ω1t)的响应为 r(t)
=KE1sin(ω1t-φ1)+KE2sin(2ω1t-2φ1),响应信号是否发生了失真?(
)(失真
或不失真)
A.W B.2W C.ω0
1 / 97
圣才电子书

D.ω0-W
十万种考研考证电子书、题库视频学习平 台
【答案】B
【解析】f(t)乘上 cos(ωt0+θ)实际上就是对信号进行调制,将原信号的频谱搬
移到- 0 和 0 的位置,由于 ω0>>W,所以频谱无重叠,则频谱宽度为原来的 2 倍
答:因为
Sa
0t
0
G20
,所以
故 故得
4.图 4-3(a)所示系统,已知输入信号 f(t)的 F(jω)=G4(ω),子系统函数 。求系统的零状态响应 y(t)。
图 4-3 答:F(jω)的图形如图 4-3(b)所示。

管致中《信号与线性系统》(第5版)(章节题库 绪 论)

管致中《信号与线性系统》(第5版)(章节题库 绪 论)
和系统 s2: 互为可逆系统。( ) 【答案】错误。 【解析】积分系统和微分系统相差一个常数,不能互为可逆系统。
2 / 23
圣才电子书

三、分析计算题
十万种考研考证电子书、题库视频学习平 台
1.已知两信号分别为 f1(t)=2cos(πt)+4sin(3t),f2(t)
2.系统 y(t)=2(t+1)x(t)+cos(t+1)是_____。(说明因果/非因果性、时 变/非时变性、线性/非线性)。
【答案】因果、时变、非线性。 【解析】y(t)=2(t+1)x(t)+cos(t+1),输出仅与现在的输入有关,系统是 因果的;响应随激励加入的时间不同而发生变换,系统是时变的;不满足齐次性和叠加性, 系统是非线性的。
图 1-4 答:(1)移位:f(-2t+1)= f[-2(t-1/2)],f(-2t+1)波形向左平移 1/2 可得 f(-2t); (2)扩展:将 f(-2t)做尺度变换,横坐标放大 2 倍,求得 f(-t); (3)反转:将 f(-t)反转,求得 f(t)波形,如图 1-5 所示。
4 / 23
圣才电子书
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 1-2 答:翻转:先将 f(t)的图形翻转,成为 f(-t); 移位:再将图形向右平移 2,成为 f(-t+2);
扩展:然后波形扩展为原来的 3 倍,成为
,如图 1-3 所示。
图 1-3 4.已知 f(-2t+1)波形如图 1-4 所示,试画出 f(t)的波形。
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 1 章 绪 论
一、填空题 1.系统的输入为 x(r),输出为 y(r)=tx(t),判断系统是否是线性的( )。 【答案】线性的

《信号与线性系统》试题与答案

《信号与线性系统》试题与答案

综合测试(三)一、选择题(本题共6小题,每小题3分,共18分)1、若想使连续时间信号在通过线性非时变系统传输时,波形不会产生失真,而仅仅是延时一段时间输出,则要求系统的单位冲激响应必须满足()A. B.C. D.2、序列和等于()A. 1B.C. D.3、连续时间信号的单边拉普拉斯变换为()A. B.C. D.4、下列各式中正确的是()A. B.C.D.5、单边Z变换对应的原时间序列为()A.B.C.D.6.请指出是下面哪一种运算的结果?()A.左移6 B. 右移6C.左移2 D. 右移2三、描述某系统的微分方程为y”(t) + 4y’(t) + 3y(t) = f(t)求当f(t) = 2e-2t,t≥0;y(0)=2,y’(0)= -1时的解;(15分)解: (1) 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2。

齐次解为y h(t) = C1e -t + C2e -3t当f(t) = 2e–2 t时,其特解可设为y p(t) = Pe -2t将其代入微分方程得P*4*e -2t + 4(–2 Pe-2t) + 3Pe-t = 2e-2t解得P=2于是特解为y p(t) =2e-t全解为:y(t) = y h(t) + y p(t) = C1e-t + C2e-3t + 2e-2t其中待定常数C1,C2由初始条件确定。

y(0) = C1+C2+ 2 = 2,y’(0) = –2C1–3C2–1= –1解得C1 = 1.5 ,C2 = –1.5最后得全解y(t) = 1.5e–t –1.5e –3t +2 e –2 t, t≥0三、描述某系统的微分方程为 y ”(t) + 5y ’(t) + 6y(t) = f(t) 求当f(t) = 2e -t ,t ≥0;y(0)=2,y ’(0)= -1时的解;( 15分)解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合测试(三)一、选择题(本题共6小题,每小题3分,共18分)1、若想使连续时间信号在通过线性非时变系统传输时,波形不会产生失真,而仅仅是延时一段时间输出,则要求系统的单位冲激响应必须满足()A. B.C. D.2、序列和等于()A. 1B.C. D.3、连续时间信号的单边拉普拉斯变换为()A. B.C. D.4、下列各式中正确的是()A. B.C.D.5、单边Z变换对应的原时间序列为()A.B.C.D.6.请指出是下面哪一种运算的结果?()A . 左移6 B. 右移6 C . 左移2 D. 右移2三、描述某系统的微分方程为 y ”(t) + 4y ’(t) + 3y(t) = f(t) 求当f(t) = 2e -2t ,t ≥0;y(0)=2,y ’(0)= -1时的解;( 15分)解: (1) 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2。

齐次解为y h (t) = C 1e -t + C 2e-3t当f(t) = 2e –2 t时,其特解可设为y p (t) = Pe -2t将其代入微分方程得P*4*e -2t + 4(–2 Pe -2t ) + 3Pe -t = 2e -2t解得 P=2于是特解为 y p (t) =2e -t全解为: y(t) = y h (t) + y p (t) = C 1e -t + C 2e -3t + 2e -2t其中 待定常数C 1,C 2由初始条件确定。

y(0) = C 1+C 2+ 2 = 2,y ’(0) = –2C 1 –3C 2 –1= –1解得 C 1 = 1.5 ,C 2 = –1.5最后得全解 y(t) = 1.5e – t – 1.5e – 3t +2 e –2 t, t ≥0三、描述某系统的微分方程为 y ”(t) + 5y ’(t) + 6y(t) = f(t) 求当f(t) = 2e -t ,t ≥0;y(0)=2,y ’(0)= -1时的解;( 15分)解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3。

齐次解为y h (t) = C 1e -2t + C 2e-3t当f(t) = 2e – t时,其特解可设为y p (t) = Pe -t将其代入微分方程得 Pe -t + 5(– Pe -t ) + 6Pe -t = 2e -t解得 P=1于是特解为 y p (t) = e -t全解为: y(t) = y h (t) + y p (t) = C 1e -2t + C 2e -3t + e -t其中 待定常数C 1,C 2由初始条件确定。

y(0) = C 1+C 2+ 1 = 2,y ’(0) = –2C 1 –3C 2 –1= –1解得 C 1 = 3 ,C 2 = – 2最后得全解 y(t) = 3e – 2t – 2e – 3t + e – t, t ≥0 四、如图信号f(t)的拉氏变换F(s) = ,试观)e e 1(e 2ss s s s-----)e e 1(e2s s ss s -----察y(t)与f(t)的关系,并求y(t) 的拉氏变换Y(s) (10分)解y(t)= 4f(0.5t) Y(s) = 4×2 F(2s)(12分)312()13k k k F s m n s s s =++<++解:部分分解法 ()100()10(2)(5)100(1)(3)3s s k sF s s s s s ===++==++其中211(1)()10(2)(5)20(3)s s k s F s s s s s =-=-=+++==-+解:333(3)()10(2)(5)10(1)3s s k s F s s s s s =-=-=+++==-+1002010()313(3)F s s s s ∴=--++解:)(e 310e 203100)(3t t f t t ε⎪⎭⎫⎝⎛--=∴--())e 2e 1(2e 82222ss s s s -----=)e 2e 1(e 22222s s ss s -----=A 卷 【第2页 共3页】 32597(),(1)(2)s s s F s s s +++=++已知求其逆变换六、有一幅度为1,脉冲宽度为2ms 的周期矩形脉冲,其周期为8ms ,如图所示,求频谱并画出频谱图频谱图。

(10分)解:付里叶变换为Fn 为实数,可直接画成一个频谱图。

ΩΩ=Ω-=-Ω-n n Tjn T tjn )2sin(2e 122τττF nωτπ2τπ2-τπ441f(t)tT-T…12τ-2τ12()212k k F s s s s =+++++解:分式分解法 11223(1)2(1)(2)311s s s k s s s s k s =-=-+=+⋅=+++==-+其中 21()212F s s s s ∴=++-++)()e e 2()(2)(')(2t t t t f t t εδδ---++=∴六、有一幅度为1,脉冲宽度为2ms 的方波,其周期为4ms ,如图所示,求频谱并画出频谱图。

(10分)解:Ω=2π*1000/4=500π付里叶变换为Fn 为实数,可直接画成一个频谱图。

或幅频图如上,相频图如下:t n n n ππ500)12sin()12(41--=∑∞=如图反馈因果系统,问当K 满足什么条件时,系统是稳定的?其中子系统的系统函数G(s)=1/[(s+1)(s+2)]解:设加法器的输出信号X(s) X(s)=KY(s)+F(s)Y(s)= G(s)X(s)=K G(s)Y(s)+ G(s)F(s)H(s)=Y(s)/F(s)=G(s)/[1-KG(s)]=1/(s2+3s+2-k) H(s)的极点为为使极点在左半平面,必须(3/2)2-2+k<(3/2)2, k<2,即当k<2,系统稳定。

如图反馈因果系统,问当K 满足什么条件时,系统是稳定的?解:如图所示,∑G(s)K F(s)Y(s)k p +-⎪⎭⎫⎝⎛±-=2232322,1在加法器处可写出系统方程为:y ”(t) + 4y ’(t) + (3-K )y(t) = f(t)H (S )=1/(S 2+4S+3-K ) 其极点为使极点在左半平面,必须4+4k<22, 即k<0,当k<0时,系统稳定。

如图反馈因果系统,问当K 满足什么条件时,系统是稳定的?解:如图所示,在前加法器处可写出方程为:X ”(t) + 4X ’(t) + 3X(t) -Ky(t) = f(t) 在后加法器处可写出方程为: 4X ’(t) + X(t) =y(t) 系统方程为:y ”(t) + 4y ’(t) + (3-K )y(t) =4f ’(t)+ f(t)H (S )=(4S+1)/(S 2+4S+3-K ) 其极点为使极点在左半平面,必须4+4k<22, 即k<0,当k<0时,系统稳定。

)3(44222,1k p --±-=k p 4422,1+±-=)3(44222,1k p --±-=k p 4422,1+±-=二、填空题(本题共6小题,每小题3分,共18分)1、计算积分2、若两个连续时间信号和的卷积积分为:则信号3、计算卷积和4、若函数的单边拉氏变换为,则函数的初值为5、若的单边拉氏变换为,则函数的单边拉氏变换为6、若信号的傅里叶变换式为,则其对应的时间信号三、按要求完成下列各题(本题共8小题,每小题5分,共40分)1、已知系统的系统函数为,如果系统的零状态响应为,请求出系统的激励信号2、已知信号的波形如下图所示,求其频谱函数3、如果一个离散系统的差分方程为:请求出该系统的单位函数响应。

4、求序列的Z变换,并求收敛区。

5、已知函数和的波形如下面图(a)和图(b)所示,求并画出的波形。

6、一个线性非时变离散时间系统的单位函数响应为如图(a)所示,当激励如图(b)所示时,求系统的零状态响应,并画出图形。

7、已知某连续时间系统函数为:,请画出该系统的零极图,并判断系统是否稳定,说明原因。

8、已知线性非时变系统的微分方程为:,若已知系统的初始状态为:,,请求出该系统的零输入响应。

四、计算题(本大题共6小题,共74分)1、(本题共10分)已知连续时间信号的频谱函数为,⑴.请求出信号的频谱函数,并画出其相应频谱图;⑵.如果分别对信号和信号进行均匀抽样,为了保证能够从所得的离散时间信号中恢复原连续信号,则需要的最大抽样间隔分别为多少秒?2、(本题16分)已知电路如图所示,激励信号为,,。

求系统的零输入响应和零状态响应,并判断自然响应和受迫响应。

3、(本题8分)某线性系统的模拟框图如下图所示,请列出系统的状态方程和输出方程4、(本题12分)一离散时间系统的差分方程为:,其中系统的激励为,响应为,已知系统初始值为,,若系统的激励信号为,请求出系统的全响应。

5、(本题12分)下面图示是由系统由几个子系统组合而成,已知各子系统的单位冲激响应分别为,,,输入信号为,试求:(1)总系统的单位冲激响应;(2)求出系统的零状态响应。

综合测试(三)答案一、解1.C2.D3.C4.D5.C6.D二、解1、2、3、4、函数的初值为 15、6、三、解1、解2、解3、解4、解5、解6、7、解极点:均在S平面的左半平面,所以系统稳定。

8、解四、解1、解(1) 信号的频谱函数为(2) 对信号进行均匀抽样,要求抽样频率,最大抽样间隔对信号进行均匀抽样,要求抽样频率最大抽样间隔2、解3、解4、解5、解。

相关文档
最新文档