电动力学习题解答

合集下载

电动力学习题及答案

电动力学习题及答案
第二章 静电场习题解答
根据前面的内容讨论知道:在所考虑区域内 没有自由电荷分布时,可用Laplace's equation求 解场分布;在所考虑的区域内有自由电荷分布时, 且用Poisson‘s equation 求解场分布。
如果在所考虑的区域内只有一个或多个点电 荷,区域边界是导体或介质界面,这类问题又如 何求解场分布? 这就是本节主要研究的一个问 题。解决这类问题的一种特殊方法称为 — 镜象 法。
电场。右半空间的电场是Q及S面上的感应电荷面密
度 感 共同产生的。以假想的点电荷Q'等效地代替感 应电荷,右半空间的电势必须满足以下条件:
1 2 Q ( x a, y 0, z 0) 0 R 0 x 0 0 (1) (2) (3)
由(4)式得
b 2 Q Q a 将(6)式代入(5)式得
2
(6)
b 2 (a R02 ) ( R02 b 2 ) a
1 2 2 2 即b (a R0 )b R0 0 a
2
解此二次方程,得到
2 R0 b a b a
将此代入(6)式,即有
Q Q R0 Q Q a
c、
Q


4
-Q 5 +Q 4
+Q 6 7
-Q
B
Q
A
1 -Q
3 -Q 2 +Q
要保证 A B 0 则必须有7个象电荷,故电势为
1 1 1 1 1 1 1 1 ( ) 4 0 r r1 r2 r3 r4 r5 r6 r7
一般说明:只要 满足2 偶数的情形,都可用 镜象法求解,此时象电荷的个数等于 (2 ) 1 ,

郭硕鸿《电动力学》习题解答完全版(章)

郭硕鸿《电动力学》习题解答完全版(章)

= (µµ −1)∇× Hr = ( µ −1)rj f ,(r1 < r < r2)
0
µ0
αrM = nr× (Mr 2 − Mr 1),(n从介质1指向介质2

r3
= − ε −ε 0 ρ f (3− 0) = −(ε −ε 0 )ρ f

ε
σ P = P1n − P2n
考虑外球壳时 r r2 n从介质 1指向介质 2 介质指向真空 P2n = 0
-5-
电动力学习题解答
第一章 电磁现象的普遍规律
σ P = P1n = (ε −ε 0)
r 3 − r13 ρ f rr r=r2 3εr 3
= cos(kr ⋅rr)(kxerx + k yery + kzerz )Er0 = cos(kr ⋅rr)(kr ⋅ Er) ∇×[Er0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er0
4. 应用高斯定理证明
∫ dV∇× fr = ∫S dSr× fr
V
应用斯托克斯 Stokes 定理证明
∫S dSr×∇φ = ∫Ldlrφ
证明 1)由高斯定理
dV∇⋅ gr = ∫S dSr ⋅ gr

∫ ∫ 即
V
(∂ g x ∂x V
+ ∂g y ∂y
+ ∂g zz )dV = ∂
g
S
xdS x + g ydS y + g zdS z
而 ∇× frdV = [(∂ f z − ∂∂z f y )ir ∂+ ( f x − ∂∂x f z )rj∂+ ( f y − ∂∂y f x )kr]dV

电动力学习题集答案-1

电动力学习题集答案-1

电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,()r r r r r zy x k j i z z y y x x k j i r=++=-+-+-++=∇∂∂∂∂∂∂z'-z y'-y x'-x 222)'()'()'(⎪⎪⎪⎭⎫ ⎝⎛=-+-+-=-+-+-==-+-+--∂∂-∂∂--+-+--∂∂r z z z r y y yr x x z z y y x x x x x z z y y x x z z y y x x z z y y x x )'(222)'(222)'()'()'()'(2)'(2222)'()'()'(,)'()'()'(,)'()'()'(222同理,=⨯∇r 0'''=---∂∂∂∂∂∂z z y y x x e e e z y x xx x , 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.)](4[)](423[)](42[)1(1120420320220023r b rar b r r r r a r b rrr r r a r b r r a E r b rr a E r r r δπερδπεδπεεερ+=⇒+⋅-=+∇⋅-⋅∇=∇-⋅∇=⋅∇=⇒∇-=⇒-=∇ 8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,RR P P P P n n P ⋅-=--=--=)0cos ()(12θ()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.1:1:021221112=⇒===⇒==E E E E E E D D n n ττ17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.εεσσεσεσεεττ::0021201201221112=⇒=⇒=⇒⎩⎨⎧=====D D E E E E D D n n 内球面上 18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.,2202220b Ir b r B I r B πμππμπ=⇒=⋅ πμπμπμπμμμππ161640402122120442043204222200022I b b I b dr r I b br I b rdr rdr B W =====⎰⎰⎰20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。

电动力学课后题解答

电动力学课后题解答

设Σ系两件事件间隔为S2,Σ'系中为S'2,假定满足S2=A S'2 由于时空各向同性,A 只依赖于参照系相对运动速度的大小而不依赖于方向,即:A=A(v)。

由于时间空间是均匀的每个点都是平权的,则反变换应为:S‘2=A(-v)S2。

因为相对运动方向不会影响物理规律,所以A(v)=A(-v)。

因此S2=A(v)S’2=A(v)A(-v)S2,可知A(v)与速度大小v 也无关。

考虑到恒等变换取A=1。

由此得到S2=S'2,即间隔为一不变量。

三同时的相对性1、同时同地事件结论:同时同地两事件,在任何惯性系中仍是同时同地事件2、同地不时同事件2121t t x x ≠=,设)0(12>∆>t t t )0(12>'∆'>'t t t 结论:同地不同时两事件,在其他惯性系中一般为不同地不同时事件,但时间顺序不会颠倒,即因果律不变。

3、同时不同地事件2121,xx t t ≠=若12x x >)0(12<'∆'<'t t t 若12x x <)0(12>'∆'>'t t t 结论:同时不同地两事件,在其他惯性系中一般为不同时、不同地事件。

2121x x t t '=''=',221c 'β-∆-∆=∆x v t t 同时的相对性:不同的惯性系时间不再统一,否定了绝对时空机动目录上页下页返回结束结论:有因果关系的事情在任何惯性系都不会改变。

例:在Σ系中观测石家庄和北京在同一时刻出生了两个小孩,在Σ'系(如坐飞船,v 接近光速)观测结果如何?又:一个生孩子的过程在不同惯性系的观测结果如何?飞船从石家庄→北京北京的小孩先出生。

12t t '<'⇒飞船从北京→石家庄12t t '>'⇒北京的小孩后出生。

郭硕鸿《电动力学》习题解答完全版(1-6章)

郭硕鸿《电动力学》习题解答完全版(1-6章)
'
微商 (∇ = e x
r ∂ r ∂ r ∂ + ey + e z ) 的关系 ∂x ∂y ∂z r r r r r r 1 r r r ' ' 1 ' r ∇r = −∇ r = , ∇ = −∇ = − 3 , ∇ × 3 = 0, ∇ ⋅ 3 = −∇ 3 = 0.(r ≠ 0) r r r r r r r
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
3. 设 r =
( x − x ' ) 2 + ( y − y ' ) 2 + ( z − z ' ) 2 为源点 x ' 到场点 x 的距离 r 的方向规定为从 r ∂ r ∂ r ∂ + e y ' + e z ' ) 与对场变数求 ∂x ' ∂y ∂z
源点指向场点 1 证明下列结果 并体会对源变数求微商 (∇ = e x
证明
r ∂( x − x ' ) ∂( y − y ' ) ∂( z − z ' ) ∇⋅r = + + =3 ∂x ∂y ∂z r ex r ∂ ∇×r = ∂x x − x' r ey ∂ ∂y y − y' r ez ∂ =0 ∂z z − z'

电动力学习题答案

电动力学习题答案

电动力学习题答案电动力学是物理学中研究电荷、电场、磁场和它们之间相互作用的分支。

以下是一些典型的电动力学习题及其答案。

# 习题一:库仑定律的应用问题:两个点电荷,一个带电为+3μC,另一个为 -5μC,它们之间的距离为 2m。

求它们之间的静电力大小。

解答:根据库仑定律,两个点电荷之间的静电力 \( F \) 由下式给出:\[ F = k \frac{|q_1 q_2|}{r^2} \]其中 \( k \) 是库仑常数,\( q_1 \) 和 \( q_2 \) 是电荷量,\( r \) 是它们之间的距离。

代入给定的数值:\[ F = 8.9875 \times 10^9 \frac{N \cdot m^2}{C^2} \times\frac{3 \times 10^{-6} C \times (-5 \times 10^{-6} C)}{(2 m)^2} \]\[ F = 37.5 N \]# 习题二:电场强度的计算问题:一个无限大均匀带电平面,电荷面密度为 \( \sigma \)。

求距离平面\( d \) 处的电场强度。

解答:对于无限大均匀带电平面,电场强度 \( E \) 垂直于平面,大小为:\[ E = \frac{\sigma}{2\epsilon_0} \]其中 \( \epsilon_0 \) 是真空电容率。

# 习题三:电势能的计算问题:一个点电荷 \( q \) 位于另一个点电荷 \( Q \) 产生的电场中,两者之间的距离为 \( r \)。

求点电荷 \( q \) 在该电场中的电势能。

解答:点电荷 \( q \) 在由点电荷 \( Q \) 产生的电场中的电势能 \( U \) 为:\[ U = -k \frac{qQ}{r} \]# 习题四:洛伦兹力的计算问题:一个带电粒子,电荷量为 \( q \),以速度 \( v \) 进入一个垂直于其运动方向的磁场 \( B \) 中。

【全】刘觉平电动力学课后习题答案

【全】刘觉平电动力学课后习题答案

第一章三維歐氏空間中的張量目录:习题1.1 正交坐标系的转动 (2)习题1.2 物理量在空间转动变换下的分类 (9)习题1.3 物理量在空间反演变换下的进一步分类 (10)习题1.4 张量代数 (15)习题1.5 张量分析 (21)习题1.6 Helmholtz定理 (35)习题1.7 正交曲线坐标系 (38)习题1.8 正交曲线坐标系中的微分运算 (42)习题1.11、 设三个矢量,,a b c r r r 形成右(左)旋系,证明,当循环置换矢量,,a b c r r r的次序,即当考察矢量,,(,,)b c a c a b r rr r r r 时,右(左)旋系仍保持为右(左)旋系。

证明:()V a b c =⨯⋅r r r,对于右旋系有V>0.当循环置换矢量,,a b c r r r次序时, ()V b c a '=⨯⋅r r r =()0c a b V ⨯⋅=〉rr r 。

(*)所以,右旋系仍然保持为右旋系 同理可知左旋系情况也成立。

附:(*)证明。

由于张量方程成立与否与坐标无关,故可以选取直角坐标系,则结论是明显的。

2、 写出矢量诸分量在下列情况下的变换矩阵:当Cartesian 坐标系绕z 轴转动角度α时。

解:变换矩阵元表达式为 ij i j a e e '=⋅r r1112212213233233cos ,sin ,sin ,cos ,0,1a a a a a a a a αααα===-===== 故()cos sin 0sin cos 0001R ααααα⎛⎫⎪=- ⎪ ⎪⎝⎭3、 设坐标系绕z 轴转α角,再绕新的y 轴(即原来的y 轴在第一次转动后所处的位置)转β角,最后绕新的z 轴(即原来的z 轴经第一、二次转动后所处的位置)转γ角;这三个角称为Euler 角。

试用三个转动矩阵相乘的办法求矢量诸分量的在坐标轴转动时的变换矩阵。

解:我们将每次变换的坐标分别写成列向量,,,X X X X '''''', 则 ()()(),,z y z X R X X R X X R X αβγ'''''''''''''===∴()()()z y z X R R R X γβα''''''=绕y '-轴转β角相当于“先将坐标系的y '-轴转回至原来位置,再绕原来的y-轴(固定轴)转β角,最后将y-轴转至y '-轴的位置”。

《电动力学》课后答案

《电动力学》课后答案

电动力学答案第一章电磁现象的普遍规律1.根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇A A A A )()(221∇⋅−∇=×∇×A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=c c c c BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+×∇×=⋅∇,所以A A A A A A )()()(21∇⋅−⋅∇=×∇×即A A A A )()(221∇⋅−∇=×∇×A2.设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )(,u u u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ×∇=×∇证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=×∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zx y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)(u A ×∇=3.设222)'()'()'(z z y y x x r −+−+−=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。

(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球的电势;(4)求该带电介质球产生的静电场总能量。

解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。

当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。

提示:空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加,后者满足拉普拉斯方程。

解:(一)分离变量法空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加。

设极化电荷产生的电势为ϕ',它满足拉普拉斯方程。

在球坐标系中解的形式为:)()(内θϕcos 1n nn nn n P R b R a ∑++=' )()(外θϕcos 1n nn n n n P R dR c ∑++=' 当∞→R 时,0→'外ϕ,0=∴n c 。

当0→R 时,内ϕ'为有限,0=∴n b 。

所以 )(内θϕcos n nn n P R a ∑=' , )(外θϕcos 1n nn nP R d ∑+=' 由于球对称性,电势只与R 有关,所以)1(,0≥=n a n )1(,0≥=n d n 0a ='内ϕ, R d /0='外ϕ 所以空间各点电势可写成R Q a f πεϕ40+=内R Q R d f πεϕ40+=外当0R R →时,由 外内ϕϕ= 得: 000/R d a =由 n n∂∂=∂∂外内ϕεϕε得:20002002044R d R Q R Q f fεπεεπ+=,)11(400εεπ-=f Q d 则 )11(4000εεπ-=R Q a f所以 )(内εεππεϕ114400-+=R Q R Q f f )(外εεππεϕ11440-+=R Q R Q f f RQ f 04πε=(二)应用高斯定理在球外,R>R 0 ,由高斯定理得:f p f Q Q Q Q d =+==⋅⎰总外s E 0ε,(整个导体球的束缚电荷0=p Q ),所以 r fR Q e E 204πε=外 ,积分后得:R Q dR RQ d fR R f 02044πεπεϕ⎰⎰∞∞==⋅=R E 外外 在球,R<R 0 ,由介质中的高斯定理得:f Q d =⋅⎰s E 内ε,所以r f RQ e E 24πε=内 ,积分后得:RQ R Q RQ d d f f f R R R0044400πεπεπεϕ+-=⋅+⋅=⎰⎰∞R E R E 外内内 结果相同。

4. 均匀介质球(电容率为1ε)的中心置一自由电偶极子f p ,球外充满了另一种介质(电容率为2ε),求空间各点的电势和极化电荷分布。

解:以球心为原点,f p 的方向为极轴方向建立球坐标系。

空间各点的电势可分为三种电荷的贡献,即球心处自由电偶极子、极化电偶极子及球面上的极化面电荷三部分的贡献,其中电偶极子产生的总电势为314/R f πεR p ⋅。

所以球电势可写成:314/'R f i i πεϕϕR p ⋅+=;球外电势可写成:31o o 4/'R f πεϕϕR p ⋅+=其中i 'ϕ和o 'ϕ为球面的极化面电荷激发的电势,满足拉普拉斯方程。

由于对称性,i 'ϕ和o 'ϕ均与φ无关。

考虑到0→R 时i 'ϕ为有限值;∞→R 时0'o →ϕ,故拉普拉斯方程的解为:)(cos 0R R P R a n nn n i ≤='∑)(θϕ )(cos 01oR R P Rb nn n n≥='∑+)(θϕ 由此 )(cos 4/031R R P R a R n nnn f i ≤+⋅=∑)(θπεϕR p (1) )(cos 4/0131o R R P R b R n n nn f ≥+⋅=+-∑)()(θπεϕR p (2)边界条件为:0oR R R R i===ϕϕ (3)o 21R R R R i RR==∂∂=∂∂ϕεϕε (4)将(1)(2)代入(3)和(4),然后比较)cos θ(n P 的系数,可得:)1(0,0≠==n b a n n3211211)2(2/)(R p a f εεπεεε+-= )2(2/)(211213011εεπεεε+-==f p R a b于是得到所求的解为:)()2(2)(4)2(2cos )(4030211213132112131R R R R R R p Rf f f f i ≤⋅+-+⋅=+-+⋅=R p Rp R p εεπεεεπεεεπεθεεπεϕ)()2(43)2(2)(4)2(2cos )(403213211213122112131o R R R R R R p R f f f f f ≥+⋅=⋅+-+⋅=+-+⋅=εεπεεπεεεπεεεπεθεεπεϕR p R p R p R p 在均匀介质部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体部,只有球心处存在极化电荷。

fp ρεεεεεεεεερ)1/()1(][])[(101010101-=⋅∇-=-⋅-∇=-⋅-∇=⋅-∇=D D E P所以 f p p p )1/(10-=εε在两介质交界面上,极化电荷面密度为o 020121)()()(E e E e p p e ⋅--⋅-=-⋅=r i r r p εεεεσo 0201)()(R R iRR∂∂-+∂∂--=ϕεεϕεε由于0o 21R R i RR∂∂=∂∂ϕεϕε,所以θεεπεεεεϕϕεσcos )2(2)(3)(30211210o00R p R R f R i p +-=∂∂-∂∂= 5. 空心导体球壳的外半径为1R 和2R ,球中心置一偶极子p 球壳上带电Q ,求空间各点的电势和电荷分布。

解:以球心为原点,以p 的方向为极轴方向建立球坐标系。

在1R R <及2R R >两均匀区域,电势满足拉普拉斯方程。

通解形式均为)()(θcos 1n nn nn n P R b R a ∑++ 当∞→R 时,电势趋于零,所以2R R >时,电势可写为)(θϕcos 1o n nn n P R b∑+= (1) 当0→R 时,电势应趋于偶极子p 激发的电势:20304/cos 4/R p R f πεθπε=⋅R p所以1R R <时,电势可写为)(θπεθϕcos 4cos 20n nn n i P R a R p ∑+=(2) 设球壳的电势为s ϕ,则s n nn nR P R b ϕθϕ==∑+)(cos 12o 2(3) s n nn n R iP R a R p ϕθπεθϕ=+=∑)(cos 4/cos 12101(4)由(3)得: 20R b s ϕ= ;)0(0≠=n b n由(4)得: s a ϕ=0 ;31014/R p a πε-= ;)1,0(0≠=n a n所以R R s /2o ϕϕ=(5)310204/cos 4/cos R pR R p s i πεθϕπεθϕ-+= (6) 再由 Q R R RR s S==⋅∂∂⎰2220o 04d πϕεϕεS 得: 204/R Q s πεϕ= (7)将(7)代入(5)(6)得:R Q 0o 4/πεϕ= )(2R R >)(414cos 44cos 312303102020R R Q R R pR R Q R p i R p R p ⋅-+⋅=-+=πεπεθπεπεθϕ 在2R R =处,电荷分布为:22o42R QR D R n πϕεσ=∂∂-== 在1R R =处,电荷分布为:3104cos 3'1R p RD R i n πθϕεσ-=∂∂=-=6. 在均匀外电场0E 中置入一带均匀自由电荷f ρ的绝缘介质球(电容率为ε),求空间各点的电势。

相关文档
最新文档