常用微波元件介绍
合集下载
《微波技术与天线》第五章微波元件

15
微波电抗性元件
波导元件的实现方法
谐振窗
0 2a' r (
a 2 b 2 )( ) a' b' ( 1, ) r1 r2 r b 2 1( ) b'
微波电抗性元件
传输线中的不均匀区域
指传输线中的结构、尺寸、参数发生突变的区域。 具有电容或电感的性质,可等效为电感或电容,即电 抗元件。 原理 在传输线的不均匀区域附近,电磁场比较复杂,可分 解为主模和多个高次模式的叠加,其中主模可以传输、 而高次模截止,只能分布在不均匀区附近。因此不均 匀区附近储存了高次模式的电磁场能量。 若储存的主要是磁场能量(在某区域磁场储能>电场 储能不均匀区域相当于一个储存磁能的电感。 若储存的主要是电场能量(在某区域电场储能>磁场 储能)不均匀区域相当于一个储存电能的电容。 8 3/26/2019
主要内容
微波电阻性元件 微波电抗性元件
波导元件的实现方法 微带元件的实现方法
衰减器 匹配负载 阻抗调配器和阻抗变换器 连接元件 分支元件 定向耦合器 功率分配器 3/26/2019
5
衰减器
微波电阻性元件
用来控制微波传输线中传输功率的装置。 通过对波的吸收、反射或截止来衰减微波能量。 主要应用 去耦 消除负载失配对信号源的影响。 调节微波源输出的功率电平。
10
微波电抗性元件
波导元件的实现方法
电容膜片 电容膜片并联电纳的相对值:
bC BC 4b d 2t b d ln(csc ) ( ) Y0 g 2b g d b
3/26/2019
11
微波电抗性元件
波导元件的实现方法
电感膜片 主模在膜片处有平行于膜片的电场,为满足膜片的边 界条件,需要反方向的电场来抵消,故产生的高次模 是TE模。 此高次模是截止模,在膜片附近储存的磁能大于电能, 相当于一个电感。 由于膜片起分流作用,故该膜片为并联电感。
常用微波元器件

第5章 常用微波元器件
为了改善其输入端的匹配,在输入同轴线的终端接
以匹配负载; 为了改善其输出端的匹配,在小环上装有 一个电阻,使其阻值R=Z0。经如此改善后的输入、输出 同轴线几乎都接近匹配。 在需要获得很大衰减量或者要求衰减调节范围很宽 时可采用截止式衰减器。
第5章 常用微波元器件
3. 匹配负载 匹配负载是一种接在传输系统终端的单端口微波元件, 它几乎能无反射地吸收入射波的全部功率。图5-3(a)所示的 是一种矩形波导小功率匹配负载,它是内置有吸收片的终端 短路的一段波导。吸收片的存在对波导系统来说总是引入了 一种不连续性,为了尽量减小反射,吸收片应做成尖劈形, 且其长度应为λp/2的整数倍,如图5-3(b)所示。只有这样才能 使吸收片在斜面上的每一点引起的电磁波的反射都能被与其 相距λp/4的另一点引起的反射所抵消,从而使波导系统得到 良好的匹配。 尖劈是一种缓变过渡结构。实践表明,由此引起的对波 的反射远小于突变结构,且尖劈劈角越小,即斜面拉得越长, 匹配性能愈好。这种小功率匹配负载允许耗散的平均功率达 W级,一般可在10%~15%的频带内达到驻波比ρ<1.05的近于 理想的匹配程度。
第5章 常用微波元器件
图5-4 电感膜片处的场分布及等效电路 (a) 电感膜片附近的场分布; (b) (b) 电感膜片在传输线中的等效电路
第5章 常用微波元器件
窗口面积为b×d的电感膜片,当膜片的厚度t极薄可以
不予考虑时,其相对电纳B的近似计算公式为
p B 2 d B cot Y0 a 2a
第5章 常用微波元器件
衰减器衰减量的大小用A来表示,设Ei和Eo分别为衰减
器的输入和输出电场强度, 则
E o Ei e A
常见微波元件PPT课件

• 尖劈形吸收体——小功率 • 楔形吸收体——大功率
中功率负载
大功率风冷匹配负载
3 2
4
波导型定向耦合器,其
1
4端口配置了一个小功 率匹配负载。
4
1
微带线型耦合器,其 4端口 配置了一个50 欧姆的匹配 负载。
• 短路负载 • 作用:将电磁能量全部反射回去 • 基本要求: 保证接触处||=1;当活塞移动时,接触损耗变化小;大功率时,活塞与波导壁间不应 产生打火现象。 • 种类:
隔离口④:一路经lg/4、另一路经3lg/4(等幅反相)在④口输出,④无输出。
由端口①输入的功率:
端口①匹配无反射;
S11 0
直通臂②输出功率为一半,相位滞后 /2;
耦合臂③输出功率为一半,相位滞后 ;
隔离口④无输出。
S41 0
分支耦合线具有结构对称性,其任一
端口都可作输入端口,两输出端口总
是在与输入端口相反的一边。
• 同轴线微带转换器
① 工作原理:同轴线中心导体 电流在微带线上激励场
② 注意:与微带连接处的同轴 线内导体的直径的选取与微 带线的特性阻抗有关,通常 使内导体直径等于微带线宽 度。
• 波导微带转换器
作用:将TE10 波转换为TEM 工作原理:在波导与微带线之间加一段脊波导过渡段,使微带线与波
3 1
E-T的S矩阵为:
2
1
1
1
2
2
2
S
1
1
1
2
2
2
1
1
0
2
2
H-T分支
1. 当信号由③口入时,①和②口都有等幅同 相输出
2. 当信号由1和2端口等幅同相输入时,3端口 输出最大
中功率负载
大功率风冷匹配负载
3 2
4
波导型定向耦合器,其
1
4端口配置了一个小功 率匹配负载。
4
1
微带线型耦合器,其 4端口 配置了一个50 欧姆的匹配 负载。
• 短路负载 • 作用:将电磁能量全部反射回去 • 基本要求: 保证接触处||=1;当活塞移动时,接触损耗变化小;大功率时,活塞与波导壁间不应 产生打火现象。 • 种类:
隔离口④:一路经lg/4、另一路经3lg/4(等幅反相)在④口输出,④无输出。
由端口①输入的功率:
端口①匹配无反射;
S11 0
直通臂②输出功率为一半,相位滞后 /2;
耦合臂③输出功率为一半,相位滞后 ;
隔离口④无输出。
S41 0
分支耦合线具有结构对称性,其任一
端口都可作输入端口,两输出端口总
是在与输入端口相反的一边。
• 同轴线微带转换器
① 工作原理:同轴线中心导体 电流在微带线上激励场
② 注意:与微带连接处的同轴 线内导体的直径的选取与微 带线的特性阻抗有关,通常 使内导体直径等于微带线宽 度。
• 波导微带转换器
作用:将TE10 波转换为TEM 工作原理:在波导与微带线之间加一段脊波导过渡段,使微带线与波
3 1
E-T的S矩阵为:
2
1
1
1
2
2
2
S
1
1
1
2
2
2
1
1
0
2
2
H-T分支
1. 当信号由③口入时,①和②口都有等幅同 相输出
2. 当信号由1和2端口等幅同相输入时,3端口 输出最大
第5章 微波元件

螺钉是低功率微波装置中普遍采用的调谐和匹配元件 , 它 是在波导宽边中央插入可调螺钉作为调配元件, 如图 5 - 7 所示。 螺钉深度的不同等效为不同的电抗元件, 使用时为了避免波导 短路击穿, 螺钉都设计成容性, 即螺钉旋入波导中的深度应小于 3b/4(b为波导窄边尺寸)。 由第1章的支节调配原理可知:多个 相距一定距离的螺钉可构成螺钉阻抗调配器, 不同的是这里支 节用容性螺钉来代替。
波导连接头除了法兰接头之外, 还有各种扭转和弯曲元件 (如图 5 - 4 所示)以满足不同的需要。当需要改变电磁波的极 化方向而不改变其传输方向时,用波导扭转元件; 当需要改变 电磁波的方向时,可用波导弯曲。波导弯曲可分为E面弯曲和 H面弯曲。 为了使反射最小, 扭转长度应为(2n+1)λg/4, E面波 导弯曲的曲率半径应满足R≥1.5b, H面弯曲的曲率半径应满足 R≥1.5a。
(b) 所示 , 它们的有效短路面不在活塞和系统内壁直接接触处 ,
而向波源方向移动λg/2的距离。
第5章 微波元器件
这种结构是由两段不同等效特性阻抗的 λg/4 变换段构成 , 其工作原理可用如图 5 - 1(c)所示的等效电路来表示, 其中cd段
相当于λg/4终端短路的传输线 , bc 段相当于λg/4终端开路的传
第5章 微波元器件
第5章 微波元器件
5.1 连接匹配元件 5.2 功率分配元器件 5.3 微波谐振器件
5.4 微波铁氧体器件Leabharlann 返回主目录第5章 微波元器件
第5章 微波元器件
无论在哪个频段工作的电子设备, 都需要各种功能的元器件, 既有如电容、电感、电阻、滤波器、分配器、谐振回路等无源 元器件, 以实现信号匹配、 分配、 滤波等; 又有晶体管等有源
微波炉的元件介绍

安宝路MC-2318机械式烧烤型微波炉电路图
冷却风扇:给磁控管散热,同时使炉腔气流对流
炉腔:也称谐振腔,用来存放和加热食物
微波耦 合入口
微波耦
合入口
波导
六,炉灯
炉灯是在炉膛内装个220v15w小电灯,照亮炉膛,观察 食物加热程度。盛食物的园盘是否转动等。 炉灯装在磁 控管左边,电灯不亮,右手用尖嘴钳夹住卡子,左手用小 一字起子撬出灯座,小电灯就连在下面
七、电动机
微波炉里有三个小电动机。电机的电路符号,在本图 里是园圈里加m字。文字符号就是m。三个电机分别在: a,电风扇里。大家都好看,好拆。 b,定时器里。坏了 连定时器买个新的,没多少钱 c,转盘电机
八、热电断路器
热电断路器,也叫热电熔断器,是用来保护磁控管的。 如果由于某种原因使磁控管的温度超过145---155度时, 热电断路器就自动断开,切断电源。从而保护了磁控管 热电断路器在微波炉里紧贴在磁控管上方。
它被安装在磁控管的外壳上,上盖的端面与磁控管直接接触,磁 控管工作时,其温度变化通过上盖端面传导给热感应片。在正常温 度范围内,保护器的动、静触头相接触,为导通状态。当出现冷却 风扇停转等异常情况而导致磁控管温度快速上升并达到规定(保护) 的数值时,热感应片受热而变形,使顶杆动作,将弹簧片压下,这 样动触头便脱离静触头,于是电路被切断,磁控管停止工作,温度 开始慢慢下降。当磁控管温度降到一定值后,热感应片又动作,恢 复原形,使动、静触头相接触,电路又被接通,磁控管重新工作, 这就是自恢复功能
三、二极管
普通二极管,正向导通4----5k欧,反向电阻几m欧以 上这里的高压二极管工作在4000v电路里 。正向电阻 100k欧左右,反向电阻‘无穷大,负极有圆环可接底板, 正极有套脚可插在高压电容器上。
《微波元器件介绍》课件

《微波元器件介绍》PPT 课件
微波元器件是通信和雷达等领域中的重要组成部分。本课件将介绍微波元器 件的应用、分类、选型原则、关键技术以及发展趋势。
1. 简介
微波元器件是用于处理和传输微波信号的电子器件。广泛应用于通信、雷达、 卫星通信、无线电天线和导航系统等领域。
• 什么是微波元器件 • 微波元器件的应用领域 • 微波元器件的分类
2. 常见的微波元器件
射频开关
通过控制电路的开关状态,实现对微波信号 的开关和切换,广泛应用于无线通信和雷达 系统。
耦合器
用于将微波信号从一个端口耦合到另一个端 口,常用于功率分配和天线系统。
功分器
将输入的微波信号均匀分配到多个输出端口, 常用于通信和雷达系统中的功率分配。
衰减器
用于减小微波信号的功率,常用于信号衰减 和匹配。
材料科学的进步将推动微波元器件的
设计优化与仿真技术应用
4
发展。
设计优化和仿真技术的应用将提高微 波元器件的性能和效率。
6. 总结
微波元器件在通信和雷达等领域中起着重要作用。随着技术的发展,微波元器件将继续提高集成度和性 能,推动通信技术的发展。 谢谢观看。
3.Байду номын сангаас微波元器件的选型原则
1 频率范围
选择适合所需频率范围的微波元器件。
3 功率处理能力
选择能够处理所需功率的微波元器件。
2 带宽与损耗
考虑微波元器件的带宽和损耗,确保符合 系统要求。
4 稳定性与可靠性
考虑微波元器件的稳定性和可靠性,确保 长期运行稳定。
4. 微波元器件的关键技术
封装与加工工艺
微波元器件的封装和加工工 艺需要考虑对微波信号的影 响。
材料选择与制备
微波元器件是通信和雷达等领域中的重要组成部分。本课件将介绍微波元器 件的应用、分类、选型原则、关键技术以及发展趋势。
1. 简介
微波元器件是用于处理和传输微波信号的电子器件。广泛应用于通信、雷达、 卫星通信、无线电天线和导航系统等领域。
• 什么是微波元器件 • 微波元器件的应用领域 • 微波元器件的分类
2. 常见的微波元器件
射频开关
通过控制电路的开关状态,实现对微波信号 的开关和切换,广泛应用于无线通信和雷达 系统。
耦合器
用于将微波信号从一个端口耦合到另一个端 口,常用于功率分配和天线系统。
功分器
将输入的微波信号均匀分配到多个输出端口, 常用于通信和雷达系统中的功率分配。
衰减器
用于减小微波信号的功率,常用于信号衰减 和匹配。
材料科学的进步将推动微波元器件的
设计优化与仿真技术应用
4
发展。
设计优化和仿真技术的应用将提高微 波元器件的性能和效率。
6. 总结
微波元器件在通信和雷达等领域中起着重要作用。随着技术的发展,微波元器件将继续提高集成度和性 能,推动通信技术的发展。 谢谢观看。
3.Байду номын сангаас微波元器件的选型原则
1 频率范围
选择适合所需频率范围的微波元器件。
3 功率处理能力
选择能够处理所需功率的微波元器件。
2 带宽与损耗
考虑微波元器件的带宽和损耗,确保符合 系统要求。
4 稳定性与可靠性
考虑微波元器件的稳定性和可靠性,确保 长期运行稳定。
4. 微波元器件的关键技术
封装与加工工艺
微波元器件的封装和加工工 艺需要考虑对微波信号的影 响。
材料选择与制备
新微波第8章 常用微波元件

一端口元件
一端口元件是一类负载元件,种类不多。 常用一端口元件:
短路负载 匹配负载 失配负载
短路负载(短路器) (Short-circuiting load)
作用:将电磁被能量全部反射回去。
结构:将波导或同轴线的终端短路(用金属导体全部封闭起来) 即构成波导或同轴线的短路负载。
实:短路负载都做成可调的,称可调短路活塞。
主要技术指标
工作频率 输入驻波比
功率容量
按吸收功率大小分类
低功率负载(小于1w) 高功率负载(大于1w)
低功率匹配负载
高功率匹配负载
构造原理:与低功率负载同,还需考虑热量的吸收和发散问题。
吸收物质可以是固体(如石墨和水泥混合物)或液体 (通常用水)。 水负载:水作吸收物质,水流动携出热量。在波导终端安装劈形 玻璃容器,其内通水以吸收微波功率;进水吸收微波功率后温度升 高,根据水的流量和进出水的温度差可测量微波输出功率值。
输入阻抗
Zin jZ0tg
其中:Z0为波导或同轴线的特性阻抗,θ=2πl/λg, l 是短路面与参考面之间的长度,λg为导波波长。
短路活塞(shorting piston)
主要要求:
①接触处的损耗小,其反射系数的模应接近1; ② 当活塞移动时,接触损耗的变化要小; ③大功率运用时,活塞与波导壁(或同轴线内外导体壁) 间不应发生打火现象。
扼流式活塞
形式:有效短路面不在活塞与传输线内壁直接接触处。
优点:损耗小,且损耗稳定 。 缺点:活塞太长;
频带窄,带宽一般10~15%。
匹配负载
概念:是一种能全部吸收输入功率的一端口元件。
结构:一 段终端短路的波导或同轴线,其中放有吸波物质。
用途:微波测量中常用作匹配标准; 调整仪器和机器(如调整雷达发射机)时用作等效天线。
一端口元件是一类负载元件,种类不多。 常用一端口元件:
短路负载 匹配负载 失配负载
短路负载(短路器) (Short-circuiting load)
作用:将电磁被能量全部反射回去。
结构:将波导或同轴线的终端短路(用金属导体全部封闭起来) 即构成波导或同轴线的短路负载。
实:短路负载都做成可调的,称可调短路活塞。
主要技术指标
工作频率 输入驻波比
功率容量
按吸收功率大小分类
低功率负载(小于1w) 高功率负载(大于1w)
低功率匹配负载
高功率匹配负载
构造原理:与低功率负载同,还需考虑热量的吸收和发散问题。
吸收物质可以是固体(如石墨和水泥混合物)或液体 (通常用水)。 水负载:水作吸收物质,水流动携出热量。在波导终端安装劈形 玻璃容器,其内通水以吸收微波功率;进水吸收微波功率后温度升 高,根据水的流量和进出水的温度差可测量微波输出功率值。
输入阻抗
Zin jZ0tg
其中:Z0为波导或同轴线的特性阻抗,θ=2πl/λg, l 是短路面与参考面之间的长度,λg为导波波长。
短路活塞(shorting piston)
主要要求:
①接触处的损耗小,其反射系数的模应接近1; ② 当活塞移动时,接触损耗的变化要小; ③大功率运用时,活塞与波导壁(或同轴线内外导体壁) 间不应发生打火现象。
扼流式活塞
形式:有效短路面不在活塞与传输线内壁直接接触处。
优点:损耗小,且损耗稳定 。 缺点:活塞太长;
频带窄,带宽一般10~15%。
匹配负载
概念:是一种能全部吸收输入功率的一端口元件。
结构:一 段终端短路的波导或同轴线,其中放有吸波物质。
用途:微波测量中常用作匹配标准; 调整仪器和机器(如调整雷达发射机)时用作等效天线。
常用微波元件介绍

谐振窗及其等效电路
常用微波元件介绍
波导可 调螺钉 及其等 效电路
第五章 常用微波元件
5-3 连接元件和终端负载
一、连接元件
在微波技术中,把相同类型传输线连接在一起的装置统称为接头。常用 的接头有同轴接头和波导接头两种。把不同类型的传输线连接在一起的 装置称为转接元件,又称作转换接头。常用的有同轴线与波导、同轴线 与微带线、波导与微带线间的转接元件。
电感膜片电纳的近似计算公式为
Bp
a
Y0ctg22da
电感膜片及其等效电路
常用微波元件介绍
第五章 常用微波元件
三、 谐振窗 下图给出了谐振窗的结构示意图和等效电路。即在横向金属膜片上
开设一个小窗,称为谐振窗。 四、螺钉
螺钉插入波导的深度可以调节,电纳的性质和大小可随之改变,使 用方便,是小功率微波设备中常采用的调谐和匹配元件。
微波元件分类:
微波元件
波导型 同轴型 微带型
近年来,为了实现微波系统的小型化,开始采用由微带和集中参 数元件组成的微波集成电路,可以在一块基片上做出大量的元件, 组成复杂的微波系统,完成各种不同功能。
常用微波元件介绍
第五章 常用微波元件
5-2 波导中的电抗元件
电抗元件包括电感器和电容器。电感器是指能够集中磁场和存储磁 能的元件;而电容器是指能够集中电场和存储电能的元件。
第五章 常用微波元件
5-1 引 言
微波元件的功能在于对微波信号进行各种变换,按其变换性质可将 微波元件分为如下三类:
一、线性互易元件
凡是元件中没有非线性和非互易性物质都属于这一类。常用的线性互 易元件包括:匹配负载、衰减器、移相器、短路活塞、功分器、微波 电桥、定向耦合器、阻抗变换器和滤波器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-4 衰减器和移相器
衰减器和移相器均属于二端口网络。
衰减器的作用是对通过它的微波能量产生衰减;
移相器的作用是对通过它的微波信号产生一定的相移,微波能量可 无衰减地通过。
一、衰减器
理想的衰减器应是只有衰减而无相移的二端口网络,其散射矩
阵为
0 el
S el
0
衰减器的衰减量表示为:
A 10常lo用g微波PPoi元件d介B绍
(一)接头 对接头的基本要求是:连接点接触可靠,不引起电磁的反射,输入驻
波比尽可能小,一般在1.2以下;工作频带要宽;电磁能量无泄漏;结构 牢固,装拆方便,易于加工等。
常用微波元件介绍
波导 接头
第五章 常用微波元件
(二)转接元件 在将不同类型的传输线或元件连接时,不仅要考虑阻抗匹配,而且
还应该考虑模式的变换。 1、同轴线波导转换器 连接同轴线与波导的元件,称为同轴线波导转换器,其结构如图所示。 2、波导微带转接器 通常在波导与微带线之间加一段脊波导过渡段来实现阻抗匹配。
一、电容膜片 在矩形波导的横向放置一块金属膜片,在其上对称或不对称之处开 一个与波导宽壁尺寸相同的窄长窗口,如图所示。
电纳的近似计算公式为
电容膜片及其等效电路常用微波元件介绍
4b
B
p
Y0
lncsc2db
第五章 常用微波元件
二、电感膜片
矩形波导中的电感膜片及其等效电路如图所示。当在波导窄壁上放置 金属膜片后,会使波导宽壁上的电流产生分流,于是在膜片的附近必 然会产生磁场,并存储一部分磁能,因此这种膜片称为电感膜片。
对匹配负载的基本要求是: (1)有较宽的工作频带, (2) 输入驻波比小和一定
的功率容量。
常用微波元件介绍
第五章 常用微波元件
(二)短路负载
短路负载又称 为短路器,它的 作用是将电磁能 量全部反射回去。 将同轴线和波导 终端短路,即分 别成为同轴线和 波导固定短路器。
常用微波元件介绍
第五章 常用微波元件
常用微波元件介绍
第五章 常用微波元件
5-5 阻抗变换器
为了消除不良反射现象,可在其间接入一阻抗变换器,以获得良好的匹 配。
常用的阻抗变换器有两种:一种是由四分之一波长传输线段构成的阶 梯阻抗变换器(包括单节和多节);另一种是渐变线阻抗变换器。
第五章 常用微波元件
5-1 引 言
微波元件的功能在于对微波信号进行各种变换,按其变换性质可将 微波元件分为如下三类:
一、线性互易元件
凡是元件中没有非线性和非互易性物质都属于这一类。常用的线性互 易元件包括:匹配负载、衰减器、移相器、短路活塞、功分器、微波 电桥、定向耦合器、阻抗变换器和滤波器等。
二、线性非互易元件
微波元件分类:
微波元件
波导型 同轴型 微带型
近年来,为了实现微波系统的小型化,开始采用由微带和集中参 数元件组成的微波集成电路,可以在一块基片上做出大量的元件, 组成复杂的微波系统,完成各种不同功能。
常用微波元件介绍
第五章 常用微波元件
5-2 波导中的电抗元件
电抗元件包括电感器和电容器。电感器是指能够集中磁场和存储磁 能的元件;而电容器是指能够集中电场和存储电能的元件。
这类元件中包含磁化铁氧体等各向异性媒质,具有非互易特性,其散 射矩阵是不对称的。但仍工作于线性区域,属于线性元件范围。常用 的线性非互易元件有隔离器、环行器等。
常用微波元件介绍
第五章 常用微波元件
三、非线性元件
这类元件中含有非线性物质,能对微波信号进行非线性变换,从而引 起频率的改变,并能通过电磁控制以改变元件的特性参量。常用的非 线性元件有检波器、混频器、变频器以及电磁快控元件等。
谐振窗及其等效电路
常用微波元件介绍
波导可 调螺钉 及其等 效电路
第五章 常用微波元件
5-3 连接元件和终端负载
一、连接元件
在微波技术中,把相同类型传输线连接在一起的装置统称为接头。常用 的接头有同轴接头和波导接头两种。把不同类型的传输线连接在一起的 装置称为转接元件,又称作转换接头。常用的有同轴线与波导、同轴线 与微带线、波导与微带线间的转接元件。
同 轴 线
微
矩形波导圆波导模式变换器
带
常用微波元件介绍
第五章 常用微波元件
二、终端负载
传输线终端所接元件称为终端负载,常用的终端负载有匹配负载和短路 负载两种。匹配负载是将所有的电磁能量全部吸收而无反射;而短路负载 是将所有的电磁能量全部反射回去,一点能量也不吸收 (一) 匹配负载
匹配负载能几乎无反射地吸收入射波的全部功率。当需要在传输系 统工作于行波状态时,都要用到匹配负载。
常用微波元件介绍
第五章 常用微波元件
二、移相器
移相器是对电磁波只产生一定的相移而不产生能量衰 减的微波元件,它是一个无反射、无衰减的二端口网 络,其散射矩阵为
0 ej
S ej0Βιβλιοθήκη 其中移相器的相移量为 l2lp
因此,可变移相器与可变衰减器在结构形式上完全相似,所不同 的是:前者是改变介质片的位置,后者是改变吸收片的位置。
同轴线波导
常用微波元件介绍 波导微带
第五章 常用微波元件
3、 同轴线微带转接器
同轴线微带转接器的结构如图所示。与微带连接处的同轴线内导体直 径的选取与微带线的特性阻抗有关,通常使内导体直径等于微带线宽度。
4、矩形波导圆波导模式变换器
矩形波导圆波导模式变换器,大多采用波导横截面的逐渐变化来 达到模式的变换。
第五章 常用微波元件
衰减器在原理上可以分为吸收式和截止式两种 (一)、吸收式
在波导内放入与电场方向平行的吸收片,当微波能 量通过吸收片时,将吸收一部分能量而产生衰减, 这种衰减器称为吸收衰减器,如图所示。
常用微波元件介绍
第五章 常用微波元件
(二)、截止式
截止衰减器是在传输线中插入一小段横向尺寸较小的传输线段,使电 磁波在这一小段传输线内处在截止状态下传输,即电磁波经过这段传 输线后微波能量很快衰减,控制截止传输线的长度,就可以调节衰减 量的大小,如图所示。
电感膜片电纳的近似计算公式为
Bp
a
Y0ctg22da
电感膜片及其等效电路
常用微波元件介绍
第五章 常用微波元件
三、 谐振窗 下图给出了谐振窗的结构示意图和等效电路。即在横向金属膜片上
开设一个小窗,称为谐振窗。 四、螺钉
螺钉插入波导的深度可以调节,电纳的性质和大小可随之改变,使 用方便,是小功率微波设备中常采用的调谐和匹配元件。