同济大学数学习题及答案
高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A=(-, -5)(5, +), B=[-10, 3), 写出A B, A B, A\B及A\(A\B)的表达式.解A B=(-, 3)(5, +),A B=[-10, -5),A\B=(-, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合, 证明对偶律: (A B)C=A C B C.证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C.3. 设映射f : X Y, A X, B X . 证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f (A B )x A B , 使f (x )=y(因为x A 或x B ) y f (A )或y f (B )y f (A )f (B ), 所以 f (AB )=f (A )f (B ). (2)因为y f (A B )x A B , 使f (x )=y (因为x A 且x B ) y f (A )且y f (B ) y f (A )f (B ), 所以 f (A B )f (A )f (B ).4. 设映射f : X Y , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y X , 因为对每个y Y , 有g (y )=x X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X Y , A X . 证明:(1)f -1(f (A ))A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x A f (x )=y f (A ) f -1(y )=x f -1(f (A )),所以 f -1(f (A ))A . (2)由(1)知f -1(f (A ))A .另一方面, 对于任意的xf -1(f (A ))存在y f (A ), 使f -1(y )=x f (x )=y . 因为y f (A )且f 是单射, 所以x A . 这就证明了f -1(f (A ))A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域:(1)23+=x y ; 解 由3x +20得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 20得x 1. 函数的定义域为(-, -1)(-1, 1)(1, +). (3)211x xy --=; 解 由x0且1-x 20得函数的定义域D =[-1, 0)(0, 1].(4)241x y -=; 解 由4-x 20得 |x | 2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x 0得函数的定义D =[0, +¥).(6) y =tan(x +1);解 由21π≠+x (k =0, 1, 2, )得函数的定义域为 12-+≠ππk x (k =0, 1, 2, ). (7) y =arcsin(x -3);解 由|x -3|1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x 0且x 0得函数的定义域D =(-¥, 0)È(0, 3).(9) y =ln(x +1);解 由x +10得函数的定义域D =(-1, +¥). (10)x e y 1=.解 由x0得函数的定义域D =(-¥, 0)È(0, +¥). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x 0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, j (-2), 并作出函数y =j (x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-, 1); (2)y =x +ln x , (0, +).证明 (1)对于任意的x 1, x 2(-, 1), 有1-x 10, 1-x 20. 因为当x 1x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-, 1)内是单调增加的. (2)对于任意的x 1, x 2(0, +), 当x 1x 2时, 有0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于"x 1, x 2Î(-l , 0)且x 1<x 2, 有-x 1, -x 2Î(0, l )且-x 1-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以 f (-x 2)f (-x 1), -f (x 2)-f (x 1), f (x 2)f (x 1),这就证明了对于"x1, x2Î(-l, 0), 有f(x1)f(x2), 所以f(x)在(-l, 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l, l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数, 即两个奇函数的和是奇函数.(2)设F(x)=f(x)×g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)×g(-x)=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)×g(-x)=[-f(x)][-g(x)]=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个奇函数的积是偶函数.如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)×g(-x)=f(x)[-g(x)]=-f(x)×g(x)=-F(x),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2p .(2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin px ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =p .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学高等数学第七版下册系列练习题答案

《高等数学》期末练习题1答案题目部分,(卷面共有25题,100分,各大题标有题量和总分)一、选择(10小题,共30分)1-5.BCAAC 6-10.ABADC 二、填空(5小题,共10分)1.答案:π-arccos 452.答案:平面y x =上的所有点。
3.答案:-16xy4.答案:2220().d f r rdr πθ⎰⎰5.答案:1201611+-三、计算(8小题,共48分)1.答案:过点P 1021(,,)-,l 1方向向量为S 1221=-{,,},过点P 2131(,,)-,l 2方向向量为S 2421=-{,,},n S S P P =⨯==-12126012152{,,},{,,}距离为d P P n n ==⋅=Prj ||/||12152.答案:cos cos αβ==22∂∂∂∂z xzy==11,所以∂∂z n =+=222223.解:d d d u u x x u y y =+∂∂∂∂=-+⎛⎝ ⎫⎭⎪1x e y x y xx y yx sin cos d d 4.解:由z x z y x y =-==+=⎧⎨⎩220240,得D 内驻点(1,-2),且z (,)1215-=-在边界x y 2225+=上,令L x y x y x y =+-+-++-2222241025λ()由L x x L y y L x y x y =-+==++==+-=⎧⎨⎪⎩⎪2220242025022λλλ得x y =±=525, ,(()zz 5251510552515105-=--=+比较后可知,函数z 在点(,)12-处取最小值z (,)1215-=-在点(-525,处取最大值()5101552,5+=-z 。
5.解:原式1212001==⋅=⎰⎰⎰⎰dx xydy xdx ydy 6.解:212321xxI dx dy x y zdz=⎰⎰⎰2221027112168516xdx xy dy x dx ===⎰⎰⎰7.解:消z 后,可得L 的参数方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z t y t x sin 21sin 21cos 0t2πt t t t t s d d cos 21cos 21sin d 222=++=,故⎰Lsxyz d 61sin 21sin 21cos 2=⋅⋅=⎰πtdt t t 8.答案:()41122lim lim1=++=∞→+∞→n n a a n nn n ∴级数的收敛半径41=R 四、判断(2小题,共12分)1.解:设f x x x()=+⎛⎝ ⎫⎭⎪1221,于是()ln ()ln f x x x=-+22取极限lim ln ()lim ln()lim x x x f x x x xx →∞→∞→=-+=-+202222=0故lim ()x f x →∞=1,从而有lim n nn →∞+⎛⎝⎫⎭=12121,故而12211n nn +⎛⎝ ⎫⎭⎪=∞∑发散。
同济大学《高等数学第五版》上下册习题答案(可编辑)

同济大学《高等数学第五版》上下册习题答案习题 1?11. 设 A?∞, ?5∪5, +∞, B[?10, 3, 写出 A∪B, A∩B, A\B及 A\A\B的表达式解 A∪B?∞, 3∪5, +∞, A∩B[?10, ?5, A\B?∞, ?10∪5, +∞, A\A\B[?10, ?5C C C2. 设A、B是任意两个集合, 证明对偶律: A∩B A ∪B证明因为C C C C Cx∈A∩B ?x?A∩B? x?A或x?B? x∈A 或x∈Bx∈A ∪B ,C C C所以 A∩B A ∪B 3. 设映射 f : X →Y, A?X, B?X证明1fA∪BfA∪fB; 2fA ∩B?fA∩fB 证明因为 y∈fA∪B??x∈A∪B, 使 fxy?因为 x∈A 或 x∈B y∈fA或 y∈fB? y∈ fA∪fB,所以 fA∪BfA∪fB 2因为y∈fA∩Bx∈A∩B, 使fxy?因为 x∈A且 x∈B y∈fA且 y∈fB? y∈ fA∩fB,所以 fA∩B?fA∩fB 4. 设映射f : X→Y, 若存在一个映射g: Y→X, 使 g f I , f g I , 其中I 、I 分别是X、X YX YY上的恒等映射, 即对于每一个x∈X, 有I xx; 对于每一个y∈Y, 有I yy. 证明: f是双射, 且gX Y?1是f的逆映射: gf证明因为对于任意的y∈Y, 有xgy∈X, 且fxf[gy]I yy, 即Y中任意元素都是X中某y元素的像, 所以f为X到Y的满射又因为对于任意的x ≠x , 必有fx ≠fx , 否则若fx fx ?g[ fx ]g[fx ]x x1 2 1 2 1 2 1 2 1 2 因此 f 既是单射, 又是满射, 即 f 是双射对于映射g: Y→X, 因为对每个y∈Y, 有gyx∈X, 且满足fxf[gy]I yy, 按逆映射的y定义, g是f的逆映射 5. 设映射 f : X→Y, A?X证明: ?1 1f fA?A; ?1 2当f是单射时, 有f fAA ?1 ?1 证明 1因为x∈Afxy∈fAf yx∈f fA, ?1 所以 f fA?A1 2由1知f fA?A1 ?1 另一方面, 对于任意的x∈f fA?存在y∈fA, 使f yx?fxy因为y∈fA且f是单1 ?1射, 所以x∈A. 这就证明了f fA?A. 因此f fAA6. 求下列函数的自然定义域: 1 y 3x+2 ;2 2 解由 3x+2≥0 得 x 函数的定义域为[? , +∞3 31 2 y ;21?x2 解由 1?x ≠0得x≠±1函数的定义域为?∞, ?1∪?1, 1∪1, +∞12 3 y 1?x ;x2 解由x≠0 且 1?x ≥0得函数的定义域D[?1, 0∪0, 1]1 4 y ;24?x2 解由 4?x 0 得 |x|2函数的定义域为?2, 2 5 y sin x ;解由 x≥0 得函数的定义 D[0, +∞ 6 ytanx+1;ππx≠kπ + ?1解由 x+1≠ k0, ±1, ±2,得函数的定义域为 k0, ±1, ±2,2 2 7 yarcsinx?3; 解由|x?3|≤1 得函数的定义域 D[2, 4]1 8 y 3? x +arctan ;x 解由 3?x≥0 且 x≠0 得函数的定义域 D?∞, 0∪0, 3 9 ylnx+1; 解由 x+10 得函数的定义域 D?1, +∞1x 10 ye解由 x≠0 得函数的定义域 D?∞, 0∪0, +∞ 7. 下列各题中, 函数 fx和 gx是否相同?为什么? 2 1fxlg x , gx2lg x;2 2 fxx, gx x ;3 34 3 3 f x xx , gx x x?12 2 4fx1, gxsec x?tan x解 1不同因为定义域不同 2不同因为对应法则不同, x0时, gx?x 3相同因为定义域、对应法则均相相同 4不同因为定义域不同π|sin x| |x|πππ3 8. 设?x , 求? , ? , ?? , ??2, 并作出函数 y?x的图形π 64 4?0 |x|≥3ππ 1 ππ 2 ππ 2 解 ? |sin | , ? |sin | , ?? |sin? | , ??206 6 2 4 4 2 4 4 2 9. 试证下列函数在指定区间内的单调性:x 1 y , ?∞, 1;1? x 2yx+ln x, 0, +∞证明 1对于任意的x , x ∈?∞, 1, 有 1?x 0, 1?x 0. 因为当x x 时,1 2 1 2 1 2x x xx1 2 1 2yy 0,1 21? x 1? x 1? x 1? x1 2 1 2x所以函数 y 在区间?∞, 1内是单调增加的1? x 2对于任意的x , x ∈0, +∞, 当x x 时, 有1 2 1 2x1yy x +ln x ?x +ln x xx +ln 0,1 2 1 1 2 2 1 2x2所以函数 yx+ln x 在区间0, +∞内是单调增加的 10. 设 fx为定义在?l, l内的奇函数, 若 fx在0, l内单调增加, 证明 fx在?l, 0内也单调增加证明对于?x , x ∈?l, 0且x x , 有?x , ?x ∈0, l且?x ?x1 2 1 2 1 2 1 2 因为 fx在0, l内单调增加且为奇函数, 所以f?x f?x ,fx ?fx , fx fx ,2 1 2 1 2 1这就证明了对于?x , x ∈?l, 0, 有fx fx , 所以fx在?l, 0内也单调增加1 2 1 2 11. 设下面所考虑的函数都是定义在对称区间?l, l上的, 证明: 1两个偶函数的和是偶函数, 两个奇函数的和是奇函数; 2两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数证明1设Fxfx+gx. 如果fx和gx都是偶函数, 则F?xf?x+g?xfx+gxFx,所以 Fx为偶函数, 即两个偶函数的和是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x+g?x?fx?gx?Fx,所以 Fx为奇函数, 即两个奇函数的和是奇函数2设Fxfx?gx. 如果fx和gx都是偶函数, 则F?xf?x?g?xfx?gxFx,所以 Fx为偶函数, 即两个偶函数的积是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x?g?x[?fx][?gx]fx?gxFx,所以 Fx为偶函数, 即两个奇函数的积是偶函数如果fx是偶函数, 而gx是奇函数, 则F?xf?x?g?xfx[?gx]?fx?gx?Fx,所以 Fx为奇函数, 即偶函数与奇函数的积是奇函数 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?2 21yx 1?x ;2 32y3x ?x ;21?x3 y ;21+x4yxx?1x+1; 5ysin x?cos x+1;x ?xa +a6 y22 2 2 2 解 1因为f?x?x [1??x ]x 1?x fx, 所以fx是偶函数2 3 2 3 2由f?x3?x ??x 3x +x 可见fx既非奇函数又非偶函数221??x1? x 3因为 f ?x f x , 所以 fx是偶函数221+ x1+x 4因为f?x?x?x?1?x+1?xx+1x?1?fx, 所以fx是奇函数5由f?xsin?x?cos?x+1?sin x?cos x+1 可见 fx既非奇函数又非偶函数?x ??x ?x xa +a a +a 6因为 f ?x f x , 所以 fx是偶函数2 2 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: 1ycosx?2; 2ycos 4x; 3y1+sin πx; 4yx cos x;25ysin x 解 1是周期函数, 周期为 l2ππ 2是周期函数, 周期为 l2 3是周期函数, 周期为 l2 4不是周期函数 5是周期函数, 周期为 lπ 14. 求下列函数的反函数:3 1 y x+1 ;1?x 2 y ;1+xax+b 3 y ad?bc≠0;cx+d 4 y2sin3x; 5 y1+lnx+2;x2 6yx2 +13 33 3 解 1由 y x+1得xy ?1, 所以 y x+1的反函数为yx ?11? y1?x 1?x 1?x 2由 y 得 x , 所以 y 的反函数为 y1+x 1+ y 1+x 1+x?dy+bax+b ax+b ?dx+b 3由 y 得 x , 所以 y 的反函数为 ycy?acx+d cx+d cx?ay1 1 x 4由 y2sin 3x 得 x arcsin, 所以 y2sin 3x的反函数为 y arcsin3 2 3 2y?1 x?1 5由y1+lnx+2得xe ?2, 所以y1+lnx+2的反函数为ye ?2x xy2 2 x 6由 y 得 xlog , 所以 y 的反函数为 ylog2 2x x2 +1 1? y 2 +1 1? x 15. 设函数 fx在数集 X 上有定义, 试证: 函数 fx在 X 上有界的充分必要条件是它在 X上既有上界又有下界证明先证必要性. 设函数 fx在 X 上有界, 则存在正数 M, 使|fx|≤M, 即?M≤fx≤M. 这这就证明了 fx在 X 上有下界?M 和上界 M 再证充分性. 设函数fx在X 上有下界K 和上界K , 即K ≤fx≤ K取M|K |, |K |,1 2 1 2 1 2则M≤ K ≤fx≤ K ≤M ,1 2即 |fx|≤M这就证明了 fx在 X 上有界 16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 和x 的函数值:1 22 ππ 1 yu , usin x, x , x ;1 26 3ππ 2 ysin u, u2x, x , x ;1 28, 42 3 y u, u1+x , x 1, x 2;1 2u 2 4 ye , ux , x 0, x 1;1 22 x 5 yu , ue , x 1, x ?11 22 π 1 1 π3 32 2 2 2 解 1ysin x, y sin , y sin1 26 2 4 3 2 4ππ 2 ππ 2ysin2x, y sin2? sin , y sin2? sin 11 28 4 2 4 22 2 23 y, 1+ x y 1+1 2 , y 1+2 51 22 2 2x 0 1 4 y e , y e 1 , y e e1 22x 2?1 2 2??1 ?2 5ye , y e e , y e e1 2 17. 设 fx的定义域 D[0, 1], 求下列各函数的定义域:2 1 fx ; 2 fsinx; 3 fx+aa0; 4fx+a+fx?aa02 2 解 1由 0≤x ≤1 得|x|≤1, 所以函数fx 的定义域为[?1, 1] 2由0≤sin x≤1 得 2nπ≤x≤2n+1π n0, ±1, ±2 ?, 所以函数 fsin x的定义域为[2nπ, 2n+1π] n0, ±1, ±2 ?3由 0≤x+a≤1 得?a≤x≤1?a, 所以函数fx+a的定义域为[?a, 1?a]1 1 1 4由 0≤x+a≤1 且 0≤x?a≤1 得: 当 0a≤时, a≤x≤1?a; 当 a 时, 无解. 因此当 0a≤时2 2 21函数的定义域为[a, 1?a], 当 a 时函数无意义21 |x|1?x18. 设 f x 0 |x|1, gxe , 求f[gx]和g[fx], 并作出这两个函数的图形1 |x|1x1 |e |1 1 x0x解 f [gx] 0 |e |1 , 即 f [gx] 0 x0x1 |e |1 ?1 x0?1e |x| 1 e |x| 1f x 0 g[ f x ]e e |x|1, 即 g[ f x ] 1 |x|11 ?1?e |x|1 e |x|119. 已知水渠的横断面为等腰梯形, 斜角?40°图 1?37. 当过水断面ABCD的面积为定值S 时, 求湿周LLAC+CD+DB与水深h之间的函数关系式, 并说明定义域0图 1?37h 解 AbDC , 又从sin401h[BC +BC +2cot40 ?h]S 得2SBC ?cot40 ?h , 所以hS2?cos40L + hh sin 40 自变量 h 的取值范围应由不等式组Sh0, ?cot40 ?h0h确定, 定义域为 0h S cot400 20. 收敛音机每台售价为 90 元, 成本为 60 元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过 100 台以上的, 每多订购 1台, 售价就降低 1 分, 但最低价为每台 75 元 1将每台的实际售价 p 表示为订购量 x 的函数; 2将厂方所获的利润 P表示成订购量 x 的函数; 3某一商行订购了 1000 台, 厂方可获利润多少?解 1当 0≤x≤100时, p90令 0. 01x ?10090?75, 得x 1600. 因此当x≥1600 时, p750 0 当 100x1600 时, p90?x?100×0. 0191?0. 01x 综合上述结果得到90 0≤ x≤100 p 91?0.01x 100 x1600?75x≥1600 30x 0≤ x≤1002P p?60x 31x?0.01x 100 x1600 215xx≥16002 3 P31×1000?0. 01×1000 21000元习题 1 ?21. 观察一般项x 如下的数列x 的变化趋势, 写出它们的极限:n n1 1 x ;nn21n 2 x ?1 ;nn1x 2 + 3 ;n2nn ?1 4 x ;nn +1n 5 x n ?1n1 1x lim 0 解 1 当 n →∞时, →0,nn nn →∞2 21 1n n 2 当 n →∞时, x ?1 →0, lim ?1 0 nn →∞n n1 1 3 当 n →∞时, x2 + →2,lim2 + 2 n2 2n →∞n nn ?1 2 n ?1x 1lim 1 4 当 n →∞时, →0,nn →∞n +1 n +1 n +1n 5 当n→∞时, x n ?1 没有极限nn πcos2 2. 设数列x 的一般项 x 问 lim x ? 求出N, 使当nN 时, x 与其极限之差的n nn nn →∞n绝对值小于正数ε , 当ε 0.001 时, 求出数N 解 lim x 0nn →∞n π|cos |1 1 1 12 |x ?0| ≤? ε 0, 要使|x ?0| ε , 只要ε , 也就是 n 取 N [ ], nnn nn εε则?nN, 有|x ?0| εn1N [ ] 当ε 0.001 时, 1000ε 3. 根据数列极限的定义证明: 1 1 lim 0 ;2n →∞n3n +1 3lim 2 ;n →∞2n +1 22 2n +a 3 lim 1n →∞n 4 lim 0.999 9 1n →∞n 个1 1 1 12| ?0| ε n 1 分析要使 , 只须 , 即 n2 2εn n ε1 11 证明因为ε0,N [ ], 当 nN 时, 有| ?0| ε , 所以 lim 02 2n →∞1 13n +1 3 1 1 2 分析要使|| ε , 只须ε , 即 n2n +1 2 22n +1 4n4n 4 ε3n +1 31 3n +1 3 证明因为ε0,N [ ] , 当 nN 时, 有|| ε , 所以 lim n →∞4 ε 2n +1 2 2n +1 22 2 2 2 2 2 2n +a n +a ?n a a a 3 分析要使|, ?1| ε只须 n2 2n n n εn n +a +n2 2 2 2 2an +a n +a证明因为? ε0,N [ ] , 当?nN 时, 有| ?1| ε , 所以 lim 1n →∞ε n n11 1 4 分析要使|0.99 9 ?1| , 只须ε , 即 n 1 +lgεn ?1 n ?1ε1证明因为? ε0,N [1 +lg ] , 当?nN 时, 有|0.99 9 ?1| ε , 所以 lim 0.999 9 1n →∞εn 个 4. lim u a , 证明 lim |u | |a|并举例说明: 如果数列|x | 有极限, 但数列x 未必有n nn nn →∞ n →∞极限证明因为 lim u a , 所以? ε0, ?N ∈N, 当 nN 时, 有|u ?a| ε , 从而n nn →∞||u | ?|a|| ≤|u ?a| εn n这就证明了 lim|u | |a|nn →∞n n 数列|x | 有极限, 但数列x 未必有极限. 例如 lim| ?1 | 1, 但lim ?1 不存在n nn →∞ n →∞ 5. 设数列x 有界, 又 lim y 0 , 证明: lim x y 0 nn →∞ n →∞证明因为数列x 有界, 所以存在M, 使?n ∈Z, 有|x | ≤Mn nε又 lim y 0 , 所以ε0, ?N ∈N, 当 nN 时, 有| y | 从而当 nN 时, 有n nn →∞Mε |x y ?0| |x y | ≤M | y | M ε ,n n n n nM所以 lim x y 0n nn →∞ 6. 对于数列x 若x →a k →∞, x →a k →∞, 证明: x →a n →∞n 2k 2k +1 n 证明因为x →a k →∞, x →a k →∞, 所以ε0,2k 2k +1?K , 当 2k2K 时, 有| x ?a | ε ;1 1 2kK , ?当 2k+12K +1 时, 有| x ?a | ε2 2 2k+1取N 2K , 2K +1, 只要nN, 就有|x ?a | ε因此x →a n →∞1 2 n n 习题 1 ?31. 根据函数极限的定义证明: 1 lim3x ?1 8;x →3 2 lim5x +2 12;x →22x ?4 3 lim ?4;x → ?2x +231 ?4x 4 lim 21x →2x +121 证明 1 分析 |3x ?1 ?8| |3x ?9| 3|x ?3|, 要使|3x ?1 ?8| ε , 只须|x ?3| ε31 证明因为ε 0,δε , 当 0 |x ?3| δ时, 有|3x ?1 ?8| ε , 所以 lim3x ?1 8x →331 2 分析 |5x +2 ?12| |5x ?10| 5|x ?2|, 要使|5x +2 ?12| ε , 只须|x ?2| ε51δε证明因为ε 0,, 当 0 |x ?2| δ时, 有|5x +2 ?12| ε , 所以 lim5x +2 12x →252 2 2x ?4 x +4x +4 x ?4 3 分析 ? ?4 |x +2| |x ? ?2| , 要使 ? ?4 ε , 只须x +2 x +2 x +2|x ? ?2| ε2 2x ?4 x ?4 证明因为ε 0,δε , 当 0 |x ? ?2| δ时, 有 ? ?4 ε ,所以 lim ?4x → ?2x +2 x +2331 ?4x 1 1 ?4x 1 1 4 分析 , 要使 ?2 ε , 只须|x ?| ε 2 |1 ?2x ?2| 2|x ?|2x +1 2 2x +1 2 23 31 1 1 ?4x 1 ?4x 证明因为ε 0,δε , 当 0 |x ?| δ时, 有 ?2 ε , 所以 lim 212 2 2x +1 2x +1x →2 2. 根据函数极限的定义证明:31 + x 1 1 ;lim3x →∞22xsin x 2 lim 0x → +∞x33 3 31 + x 1 1 + xx 1 1 + x 1 1 证明 1 分析 , 要使ε , 只须ε , 即3 3 3 3 32 22x 2x 2|x| 2x 2|x|1|x| 32 ε 331 1 + x 11 + x 1 证明因为ε 0,X , 当|x| X 时, 有ε , 所以 lim3 33x →∞2 22x 2x2 εsin x |sin x| 1 sin x 1 1 2 分析 ?0 ≤ , 要使 ?0 ε , 只须ε , 即 x 2εx x x x x1sin x sin x 证明因为ε 0,X , 当 x X 时, 有 ?0 ε , 所以 lim 0 2x → +∞εx x2 3. 当x →2 时, y x →4. 问δ等于多少, 使当|x ?2| δ时, |y ?4|0. 001 ?2 解由于x →2, |x ?2| →0, 不妨设|x ?2| 1, 即 1 x 3. 要使|x ?4| |x +2||x ?2| 5|x ?2| 0. 001, 只要0.0012|x ?2| 0.0002, 取δ 0. 0002, 则当 0 |x ?2| δ时, 就有|x ?4| 0. 00152x ?1 4. 当x →∞时, y →1, 问X 等于多少, 使当|x|X 时, |y ?1|0.012x +32x ?1 44 解要使 ?1 0.01, 只 ,|x| ?3 397 X 3972 20.01x +3 x +3 5. 证明函数 fx |x| 当 x →0 时极限为零x |x| 6. 求 f x , ?x 当 x →0 时的左?右极限, 并说明它们在 x →0 时的极限是否存在x x 证明因为xlim f x lim lim 1 1,x →0 x →0 x x →0xlim f x lim lim 1 1,+ + +x →0 x →0 x x →0lim f x lim f x,? +x →0 x →0所以极限 lim f x 存在x →0 因为|x| ?xlim ?x lim lim ?1,x →0 x →0 x →0x x|x| xlim ?x lim lim 1,+ + +x →0 x →0 x →0x xlim ?x ≠ lim ?x,? +x →0 x →0所以极限 lim ?x 不存在x →0 7. 证明: 若 x →+ ∞及 x →?∞时, 函数 fx 的极限都存在且都等于 A, 则 lim f x Ax →∞证明因为 lim f x A , lim f x A , 所以? ε0,x → ?∞ x →+∞?X 0, 使当x ?X 时, 有|fx ?A| ε ;1 1?X 0, 使当x X 时, 有|fx ?A| ε2 2取XX , X , 则当|x| X时, 有|fx ?A| ε , 即 lim f x A1 2x →∞ 8. 根据极限的定义证明: 函数fx 当x →x 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性. 设fx →Ax →x , 则? ε0,δ 0, 使当 0|x ?x | δ时, 有0 0|fx ?A| ε因此当xδxx 和x xx + δ时都有0 0 0 0|fx ?A| ε这说明fx 当x →x 时左右极限都存在并且都等于A0 再证明充分性. 设fx ?0 fx +0 A, 则? ε0,0 0? δ 0, 使当xδ xx 时, 有| fx ?A ε ;1 0 1 0? δ 0, 使当x xx + δ时, 有| fx ?A| ε2 0 0 2取δ min δ , δ , 则当0|x ?x | δ时, 有xδ xx 及x xx + δ , 从而有1 2 0 0 1 0 0 0 2| fx ?A| ε ,即fx →Ax →x0 9. 试给出 x →∞时函数极限的局部有界性的定理, 并加以证明解 x →∞时函数极限的局部有界性的定理 : 如果 fx 当 x→∞时的极限存在 , 则存在 X0 及M 0 , 使当|x|X 时, |fx| M证明设 fx →Ax →∞ , 则对于ε 1 , ?X0 , 当|x| X 时, 有|fx ?A| ε 1所以|fx| |fx ?A+A| ≤|fx ?A| +|A| 1 +|A| 这就是说存在 X0 及 M 0 , 使当|x| X 时, |fx| M , 其中 M 1 +|A|习题1 ?41. 两个无穷小的商是否一定是无穷小?举例说明之解不一定αx 2 αx 例如, 当 x →0 时, αx 2x, βx 3x 都是无穷小, 但 lim , 不是无穷小x →0β x 3 β x 2. 根据定义证明:2x ?9 1 y 当 x →3 时为无穷小;x +31 2 y xsin 当 x →0 时为无穷小x2x ?9 证明 1 当 x ≠3 时| y| |x ?3|因为ε 0,δε , 当 0 |x ?3| δ时, 有x +32x ?9| y| |x ?3| δε ,x +32x ?9所以当 x →3 时 y 为无穷小x +31 2 当 x ≠0 时| y| |x||sin | ≤|x ?0|因为? ε 0,δε , 当 0 |x ?0| δ时, 有x1| y| |x||sin | ≤|x ?0| δε ,x1所以当 x →0 时 y xsin 为无穷小x1 +2x 3. 根据定义证明: 函数 y 为当x →0 时的无穷大. 问x 应满足什么条件, 能使x4|y|10 ?1 +2x 1 1 1 1 证明分析| y|2 + ≥ ?2 , 要使|y| M, 只须 ?2 M , 即|x|x x |x| |x| M +21 1 + 2x 证明因为 ?M 0,δ , 使当 0 |x ?0| δ时, 有 M ,M +2 x1 +2x所以当 x →0 时, 函数 y 是无穷大x1 14 4 取M 10 , 则δ当 0 |x ?0| 时, |y|104 410 +2 10 +2 4. 求下列极限并说明理由:2x +1 1 lim ;n →∞x21x 2 limx →01x2x +1 1 1 2x +1 解 1 因为 2 + , 而当 x→∞时是无穷小, 所以 lim 2n →∞x x x x2 21x 1x 2 因为 1 + x x ≠1, 而当 x →0 时 x 为无穷小, 所以 lim 1 x →01x 1x 5. 根据函数极限或无穷大定义, 填写下表: 6. 函数 y xcos x 在?∞, +∞内是否有界?这个函数是否为当 x →+∞时的无穷大?为什么?解函数 y xcos x 在?∞, +∞内无界这是因为?M 0, 在 ?∞, +∞内总能找到这样的 x, 使得|yx| M. 例如y2k π 2k π cos2k π 2k π k 0, 1, 2,,当 k 充分大时, 就有| y2k π| M 当 x →+ ∞时, 函数 y xcos x 不是无穷大这是因为?M 0, 找不到这样一个时刻 N, 使对一切大于 N 的 x, 都有|yx| M. 例如πππy2k π + 2k π + cos2k π + 0 k 0, 1, 2,,2 2 2π对任何大的 N, 当 k 充分大时, 总有 x 2k π + N , 但|yx| 0 M21 1+ 7. 证明: 函数 y sin 在区间0, 1] 上无界, 但这函数不是当x →0 时的无穷大x x1 1 证明函数 y sin 在区间0, 1] 上无界. 这是因为x xM 0, 在0, 1] 中总可以找到点x , 使yx M. 例如当k k1x k 0, 1, 2,kπ2k π +2时, 有πyx 2k π + ,k2当k 充分大时, yx Mk+当x →0 时, 函数 y sin 不是无穷大. 这是因为x xM 0, 对所有的δ 0, 总可以找到这样的点x , 使 0 x δ, 但yx M. 例如可取k k k1x k 0, 1, 2,,k2k π当k 充分大时, x δ, 但yx 2k πsin2k π 0 Mk k习题 1 ?51. 计算下列极限:2x +5 1 lim ;x →2x ?32 2x +5 2 +5 解 lim ?9x →2x ?3 2 ?32x ?3 2 lim ;2x → 3 x +1223 ?3x ?3 解 lim 02x → 3 x +13 +12x ?2x +1 3 lim ;2x →1x ?122x ?2x +1 x ?1 x ?1 0 解 lim lim lim 0 2x →1 x →1 x →1x ?1 x ?1x +1 x +1 23 24x ?2x +x 4 lim ;2x →03x +2x3 2 24x ?2x +x 4x ?2x +1 1 解 lim lim2x →0 x →03x + 2x 3x + 2 22 2x +h ?x 5 lim ;h →0h2 22 2 2x +h ?xx +2hx +h ?x 解 lim lim lim2x +h 2x h →0 h →0 h →0h h1 1 6 lim2+ ;2x →∞x x1 1 1 1 解 lim2+ 2lim + lim 22 2x →∞ x →∞ x →∞x x x x2x ?1 7 lim ;2x →∞2x ?x ?11122x 解 lim lim2x →∞ x ?xx →∞ 1 1 22 12?2x x2x +x 8 lim ;4 2x →∞x ?3x ?12x +x 解 lim 0 分子次数低于分母次数, 极限为零4 2x →∞x ?3x ?11 1+22 3x +xx x 或 lim lim 04 2x →∞ x →∞ 2 11?2 4x x2x6x + 8 9 lim ;2x →4x5x + 42x ?2x ?4x ?6x +8 x ?2 4 ?2 2lim lim lim 解2x →4 x →4 x →4x ?5x +4 x ?1x ?4 x ?1 4 ?1 31 1 10 lim1 +2 ;2x →∞x x1 1 1 1 解 lim1 +2 lim1 + lim2 1 ×2 22 2x →∞ x →∞ x →∞x x x x1 1 1 11 lim1 + + + + ;nn →∞2 4 21n +11 ?1 1 12 解 lim1 + + + + lim 2 nn →∞ n →∞ 12 4 2121 +2 +3 + +n ?1 12 lim ; 2n →∞nn ?1n1 +2 +3 + +n ?1 1 n ?1 12 解lim lim lim2 2n →∞ n →∞ n →∞n n 2 n 2n +1n +2n +3 13 lim ;3n →∞5nn +1n +2n +3 1 解 lim 分子与分母的次数相同, 极限为最高次项系数之比3n →∞ 5n 5n +1n +2n +31 123 1 或 lim lim1 + 1 + 1 +3n →∞ n →∞5n 5 n n n 51 3 14 lim ;3x →11 ?x 1 ?x21 ?xx +21 3 1 +x +x ?3 x +2lim lim ?lim ?lim ?1 解3 2 2 2x →1 x →1 x →1 x →11 ?x 1 ?x 1 ?x1 +x +x 1 ?x1 +x +x 1 +x +x 2. 计算下列极限:3 2x +2x 1 lim ;2x →223 2x ?20 x +2x 解因为 lim 0 , 所以 lim ∞3 2 2x →2 x →2x +2x 16 x ?22x 2 lim ;x →∞2x +12x 解 lim ∞因为分子次数高于分母次数x →∞2x +13 3 lim2x ?x +1x →∞3 解 lim2x ?x +1 ∞因为分子次数高于分母次数x →∞ 3. 计算下列极限:12 1 limx sin ;x →0x1 2 12 解 limx sin 0 当x →0 时, x 是无穷小, 而 sin 是有界变量x →0arctanx 2 limx →∞xarctanx 1 1 解 lim lim ?arctanx 0 当 x →∞时, 是无穷小, 而arctan x 是有界变量x →∞ x →∞x x x 4. 证明本节定理 3 中的2. 习题 1 ?61. 计算下列极限:sin ωx 1 lim ;x →0xsin ωx sin ωx 解 lim ω lim ωx →0 x →0x ωxtan3x 2 lim ;x →0xtan3x sin3x 1 解 lim 3lim3x →0 x →0x 3x cos3xsin2x 3 lim ;x →0sin5xsin2x sin2x 5x 2 2 解 lim lim?x →0 x →0sin5x 2x sin5x 5 5 4 lim x cot x ;x →0x x 解 lim xcot x lim ?cosx lim ?limcosx 1x →0 x →0 x →0 x →0sin x sin x1 ?cos2x 5 lim ;x →0xsin x21 ?cos2x 1 ?cos2x 2sin x sin x2 解法一 lim lim lim 2lim 22 2x →0 x →0 x →0 x →0xsin x x x x21 ?cos2x 2sin x sin x 解法二 lim lim 2lim 2x →0 x →0 x →0xsin x xsin x xxn 6 lim 2 sin x 为不等于零的常数nn →∞2xsinnxn2 解 lim2 sin lim ?x xnxn →∞ n →∞2n2 2. 计算下列极限:1x 1 lim1 ?x ;x →01 11?1?1?1?x ?xx 解 lim1x lim[1 + ?x] lim[1 + ?x] e x →0 x →0 x →01x 2 lim1 +2x ;x →01 1 1?222x 2x 2x 解 lim1 +2x lim1 +2x [ lim1 +2x ] ex →0 x →0 x →01 + x2x 3 lim ;x →∞x1 + x 1 22x x 2[ ] 解 lim lim1 + ex →∞ x →∞x x1kx 4 lim1 k 为正整数x →∞x1 1kx ?x ?k ?k 解 lim1 lim1 + ex →∞ x →∞xx 3. 根据函数极限的定义, 证明极限存在的准则 I ′解 4. 利用极限存在准则证明:1 1 lim 1 + 1;n →∞ n1 1 证明因为1 1 + 1 + ,n n1而lim1 1 且 lim1 + 1,n →∞ n →∞ n1由极限存在准则 I, lim 1 + 1n →∞n1 1 12 limn + + + 1;2 2 2n →∞n + π n +2 π n +n π证明因为2 2n 1 1 1 nn + + + ,2 2 2 2 2n +n π n + π n +2 π n +n π n + π2 2n n而lim 1, lim 1,2 2n →∞ n →∞n +n π n + π1 1 1所以 limn + + + 12 2 2n →∞ n + π n +2 π n +n π 3 数列 2 , 2 + 2 , 2 + 2 + 2 , 的极限存在; 证明 x 2 , x 2 + x n 1, 2, 3,1 n +1 n 先证明数列x 有界. 当n 1 时 x2 2 , 假定n k 时x 2, 当n k +1 时,n k1x 2 + x 2 +2 2,k +1 k所以x 2n 1, 2, 3,, 即数列x 有界n n 再证明数列单调增22 + xx ?x ?2x +1n n n nxx 2 + xx ,n +1 n n n2 + x + x 2 + x + xn n n n而x ?2 0, x +1 0, 所以x ?x 0, 即数列x 单调增n n n +1 n n 因为数列x 单调增加有上界, 所以此数列是有极限的nnlim 1 + x 1 4 ;x →0 证明当|x| ≤1 时, 则有n 1 +x ≤1 +|x| ≤1 +|x| ,n 1 +x ≥1 ?|x| ≥1 ?|x| ,n从而有 1 ?|x| ≤ 1 + x ≤1 +|x|因为 lim1 ?|x| lim1 +|x| 1,x →0 x →0根据夹逼准则, 有nlim 1 + x 1x →01 5 lim x [ ] 1+x →0 x1 1 1 1 证明因为 ?1 [ ] ≤ , 所以1x x [ ] ≤1x x x x1 又因为 lim 1x lim 1 1 , 根据夹逼准则, 有 lim x [ ] 1+ + +x →0 x →0 x →0x习题 1?72 23 1. 当x→0 时, 2x?x 与x ?x 相比, 哪一个是高阶无穷小?2 3 2x ?x x?x 解因为 lim lim 0,2x→0 x→02?x2x?x2 3 2 3 2所以当x→0 时, x ?x 是高阶无穷小, 即x ?x o2x?x13 2 2. 当x→1 时, 无穷小 1?x 和11?x , 2 1x 是否同阶?是否等价? 23 21?x 1?x1+x+x2 解 1 因为 lim lim lim1+x+x 3,x→1 x→1 x→11?x 1?x3所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 但不是等价无穷小121?x12 2 因为 lim lim1+x1,x→1 x→11?x 212所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 而且是等价无穷小2 3. 证明: 当x→0 时, 有: 1 arctanx~x;2x 2 secx?1~2arctanx y 证明 1 因为 lim lim 1 提示: 令yarctan x, 则当x→0 时, y →0,x→0 y→0x tany所以当x→0 时, arctanx~xx x22sin 2sin2secx?1 1?cosx2 2 2 因为 lim 2lim lim lim 1,2 2x→0 x→0 x→0 x→01 x2 x cosx xx2 222x所以当x→0 时, secx?1~2 4. 利用等价无穷小的性质, 求下列极限:tan3x 1 lim ;x→02xnsinx 2 lim n, m 为正整数;mx→0sinxtanx?sinx 3 lim ;3x→0sin xsinx?tanx 4 limx→0 3 21+x ?1 1+sinx ?1tan3x 3x 3 解 1 lim lim x→0 x→02x 2x 21 nmnnsinx x 2 lim lim 0 nmm mx→0 x→0sinx x∞nm1 12sinx ?1 xtanx?sinx 1?cosx 1cosx2 3 lim lim lim lim3 3 2 2x→0 sin x x→0 sin x x→0 cosxsin x x→0x cosx 2 4 因为。
同济大学《高等数学》第七版上、下册答案(详解)

0
+
无
-
-
yf(x)
1
极小值
↗
无
↗
0
拐点
↗
无
↗
-1
极大值
练习3-7
总习题三
x
(, 0)
0
f(x)
+
不存在
-
0
+
f(x)
↗
2
极大值
↘
极小值
↗
练习4-2
练习4-3
练习4-4
>>>
总习题四
练习5-1
练习5-2
练习5-3
练习5-4
总习题五
练习6-2
练习6-3
总习题六
练习7-1
练习7-2
练习7-3
练习7-4
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3练习3-4Biblioteka 练习3-5练习3-6
x
(2)
2
(21)
1
(11)
1
(1)
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)
练习7-5
练习7-6
总习题七
练习8-1
高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
第六版同济大学高等数学上下课后答案详解

|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
高等数学(同济)下册期末考试题及答案(5套)

大学高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分òò£++1||||22)ln(y x dxdy y x的符号为的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(b a y j ££îíì==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++òòåds y x )122( 。
6、微分方程xyx ydx dytan+=的通解为的通解为 。
7、方程04)4(=-y y的通解为的通解为。
8、级数å¥=+1)1(1n n n 的和为的和为 。
二、选择题(每小题2分,共计16分)分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是(处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;处连续;(B )),(y x f x¢,),(y x f y¢在),(00y x 的某邻域内存在;的某邻域内存在;(C ) yy x f x y x f z yxD ¢-D ¢-D ),(),(0当0)()(22®D +D y x 时,是无穷小;时,是无穷小;(D )0)()(),(),(lim22000000=D +D D¢-D ¢-D ®D ®D y x yy x f x y x f z y x y x 。
2、设),()(x y xf y xyf u +=其中f 具有二阶连续导数,则2222yu y x u x ¶¶+¶¶等于(等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。
同济大学数学习题及答案

⑵ 若 lim f ( x ) ⋅ g ( x ) 及 lim f (x ) 都存在,则 lim g ( x ) 也存在。
x→a x→a x→a
2. 求下列极限: ⑴ lim e ;
x → +∞ 1 x
⑵ lim e
x →0
−
100 x
;
⑶ lim−
x→0
1 1+ a
1 x
(a > 0) 。
sin αx (β ≠ 0) ; x → 0 sin β x
tan 5 x ; sin 3 x
⑵ lim 2 n sin
n→∞
x ( x 为不等于零的常数) ; 2n
⑶ lim
x→0
⑷ lim
x→0
x ; sin (sin x )
1 − cos 2 x ; x sin x
⑸ lim+ x cot x ;
⎧1 ⎪ x sin x, ⎪ ⑴ f ( x ) = ⎨k , ⎪ 1 ⎪ x sin + 1, x ⎩
x<0 x=0 x>0 0 ≤ x <1 ⎧2 x, ⑵ f (x ) = ⎨ 。 ⎩k − 3 x , 1 ≤ x < 2
3. 研究下列函数的连续性,并画出函数的图形。
⎧x2 , ⑴ f (x ) = ⎨ ⎩2 − x,
2
(
)
⑵ sin x ;
⑶
[ f (x )]y ( x ) ( f (x ) > 0) ;
4. 设 f ( x ) = e x , f [φ ( x )] = 1 − x ,且 φ ( x ) ≥ 0 ,求 φ ( x ) 并写出它的定义域。
⎧1, x < 1 ⎪ 5. 设 f ( x ) = ⎨0, x = 1 , g ( x ) = e 2 ,求 f [g ( x )] 和 g [ f ( x )] ,并作这两个函数的图形。 ⎪ ⎩− 1, x > 1 6. 收音机每台售价为 90 元,成本为 60 元,厂方为鼓励销售商大量采购,决定凡是订 购量超过 100 台以上的,每多订购一台,售价就降低 1 分,但最低价为每台 75 元, ⑴ 将每台的实际售价 P 表示为订购量 x 的函数; ⑵ 将厂方所获的利润 P 表示程订购量 x 的函数; ⑶ 某一商行订购了 1000 台,厂方可获利润多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学 练习题)习题1-1 映射与函数1. 设是定义在对称区间上的任何函数。
()x f (l l ,−⑴ 证明:()()()x f x f x −+=φ是偶函数,()()()x f x f x −−=ψ是奇函数;⑵ 证明定义在区间()l l ,−上任何函数可以表示为一个偶函数与一个奇函数的和。
2. 设在数集()x f X 上有定义,试证:()x f 在X 上有界的充分必要条件是它在X 上既有上界又有下界。
3. 指出下列函数是否为复合函数,若是复合函数,分析它是由哪些函数复合而成的: ⑴ ()325cos 1x e +;⑵ x sin ;⑶ ()[]()x y x f ()()0>x f ;4. 设,()2x e x f =()[]x x f −=1φ,且()0≥x φ,求()x φ并写出它的定义域。
5. 设()⎪⎩⎪⎨⎧>−=<=1,11011x x x x f ,,,,求()2e x g =()[]x g f 和()[]x f g ,并作这两个函数的图形。
6. 收音机每台售价为90元,成本为60元,厂方为鼓励销售商大量采购,决定凡是订购量超过100台以上的,每多订购一台,售价就降低1分,但最低价为每台75元, ⑴ 将每台的实际售价表示为订购量的函数; P x ⑵ 将厂方所获的利润表示程订购量的函数; P x ⑶ 某一商行订购了1000台,厂方可获利润多少?⑴ 1lim22=+∞→na n n ; ⑵ 19999.0lim =∞→"个n n ; 2. 若,证明a u n n =∞→lim a u n n =∞→lim ,并举例说明:如果数列{n x 有极限,数列{}n x 未必有极限;3. 设数列{有界,又}n x 0lim =∞→n n y ,证明:0lim =∞→n n n y x ;4. 对于数列{,若}n x a x k →−12()∞→k ,a x k →2()∞→k ,证明a x n →()∞→n 5. 证明的充要条件为对任一a x n n =∞→lim 0>ε,区间()εε+−a a ,外最多只有有限多项n x 6. 利用第5题的结论证明定理4(收敛数列与子数列的关系)⑴ 424lim22−=+−−→x x x ; ⑵ 0sin lim=+∞→xxx ;2. 当时,,问2→x 42→=x y δ等于多少,使当δ<−2x 时,001.02<−y 。
3. 根据极限定义证明:存在的充分必要条件是()x f x x 0lim →()x f 在处左极限、右极限各自存在并相等。
0x 4. 分别求()x xx f =,()xx x =φ,当时左、右极限,并说明它们在时极限是否存在?0→x 0→x 5. 证明:当+∞→x 及时,函数−∞→x ()x f 极限都存在且都等于A ,则()A x f x =∞→lim 。
6. 设,证明存在正数,使得()A x f x =∞→lim x ()x f 在()()∞+∪−∞−,,x x 有界。
习题1-4 无穷小与无穷大1. 两个无穷小的商是否一定无穷小?试举例说明可能出现的各种情况。
2. 根据定义证明:当时,0→x x x y 1sin =为无穷小。
3. 根据定义证明:当时,0→x xxy 21+=为无穷大,并问应满足什么条件,能使x 410>y ?4. 求下列极限并说明理由:⑴ xx x 12lim +∞→;⑵ xx x −−→11lim 20;5. 当时,0x x →()x f 是无穷大,是对任何收敛于点到0x {}n x 都有,而()∞=∞→n n x f lim ()x f 在的任一去心邻域是无界量,是指有一个收敛于的点到使,所以无穷大是无界量,而无界量未必是无穷大。
由此分析0x 0x n x ()∞=∞→n n x f lim ()xx x f 1sin 1=当时是一个无界量而非无穷大。
0→x 6. 函数x x y cos =在内是否有界?这个函数是否为(∞+∞−,)+∞→x 时的无穷大?为什么?习题1-5 极限运算法则1. 指出下列解法有悖于极限运算法则的,并给出正确的解法:⑴ 2222lim 1lim 121lim n n n n n n n ∞→∞→∞→+=⎟⎠⎞⎜⎝⎛−+++"01lim 2=−++∞→n n n " ⑵ 3113113lim 11lim1311lim x x x x x x x −−−=⎟⎠⎞⎜⎝⎛−−−→→→0=∞−∞= ⑶ ()()()15321lim3=∞∞=+++∞→n n n n n⑷ ()11cos1lim 21−−→x x x ()011cos lim 1lim 121=−−=→→x x x x2. 求下列极限⑴ xx x arctan lim ∞→;⑵ 1!sin lim 32+∞→n n n n ;3. 求下列极限⑴ ()⎦⎤⎢⎣⎡+++⋅+⋅∞→11321211lim n n n "; ⑵ nnn b b b a a a ++++++++∞→""2211lim()1,1<<b a ; ⑶ 4586lim 224+−+−→x x x x x ;⑷ ⎟⎠⎞⎜⎝⎛−⋅⎟⎠⎞⎜⎝⎛+∞→21211lim x x x ; 4. 求下列极限 ⑴ 22lim2+−→x x x ; ⑵ 145lim1−−−→x xx x ;⑶ ()x x x xx −−++∞→22lim。
习题1-6 极限存在准则两个重要极限1. 计算下列极限 ⑴ xxx βαsin sin lim0→(0≠)β;⑵ nn n x2sin2lim ∞→(为不等于零的常数); x ⑶ xxx 3sin 5tan lim 0→;⑷ ()x xx sin sin lim 0→;⑸ x x x cot lim 0+→;⑹ xx xx sin 2cos 1lim0−→;⑺ x xx −→ππsin lim。
2. 计算下列极限⑴ kxx x ⎟⎠⎞⎜⎝⎛−∞→11lim (正整数);⑵ k bxx x a ⎟⎠⎞⎜⎝⎛+∞→1lim ;3. 利用极限夹逼存在准则,证明:⑴ 11211lim 222=⎟⎠⎞⎜⎝⎛++++++∞→πππn n n n n n ";⑵ 0!lim=∞→nn n n 。
4. 利用单调有界数列必有极限存在准则,证明:数列2、22+、222++…极限存在,并求出极限。
习题1-7 无穷小的比较1. ⑴ 等价无穷小的替代求极限其优越性何在? ⑵ 我们要熟记哪些在时常见的等价无穷小?0→x ⑶ 将下列时的无穷小按低阶到高阶次序排列起来: 0→x① x arcsin ;② ()11212−+x;③ ()1cos 2−x ;④ ()3tan x ;2. 当时,下列函数哪个是比高阶的无穷小?哪个是的同阶无穷小?哪个是的等价无穷小?0→x x x x⑴ ()xx x x 1arctan 323+=α; ⑵ ()1arcsin 3−+=x e x x β; ⑶ ()()3113x x −−=γ。
3. 证明无穷小等价关系具有下列性质:⑴ αα~自反性; ⑵ 若βα~、γβ~,则γα~(传递性)。
4. 利用等价无穷小的替代性质,求下列极限:⑴ ()()m n x x x sin sin lim 0→(n 、为正整数); ⑵ m ⎟⎠⎞⎜⎝⎛−∞→x x x 1cos 1lim 2; ⑶ x x x x 2sin 3553lim2+−∞→;⑷ xxx x 30sin sin tan lim−→; ⑸ ()()1sin 111tan sin lim320−+−+−→x x xx x ;⑹ ⎟⎠⎞⎜⎝⎛−→x x x 6tan 3tan lim 6ππ;⑺ ()211cos 1lim −+→x xx π;⑻ xbxax m nx +−−→11lim 0。
习题1-8 函数的连续性与间断点1. 单项选择填空题⑴ 在点处有定义是当时()x f 0x x =0x x →()x f 有极限的( )条件; ⑵ 在点处有定义是在()x f 0x x =()x f 0x x =处连续的( )条件; A.必要; B.充分; C.充要; D.无关 2. 问常数取何值时,可使下列函数在分段点处连续?k ⑴ ()⎪⎪⎩⎪⎪⎨⎧>+=<=0,11sin 0,0,sin 1x x x x k x x x x f⑵ ()。
⎩⎨⎧<≤−<≤=21,310,2x x k x x x f 3. 研究下列函数的连续性,并画出函数的图形。
⑴ ;⑵ ()()⎩⎨⎧≤<−≤≤=21,210,2x x x x x f ⎪⎩⎪⎨⎧≤<≤=31,1,x x xx x x f 。
4. 求()633223−+−−+=x x x x x x f 连续区间,并求()x f x 0lim →,()x f x 3lim −→,。
()x f x 2lim →5. 下列函数在指出点处间断,说明这些间断点属于哪一类,如是可去间断点,则补充或改变函数的定义使它连续:⑴ 23122+−−=x x x y ,1=x ,; 2=x ⑵ x x y tan =,πk x =,2ππ+=k x ,()",2,1,0±±=k ; 6. 讨论()x x x x f nnn 2211lim+−=∞→的连续性,若有间断点,判别类型,并指出是否为初等函数?()x f习题1-9 连续函数的运算与初等函数连续性1. 判断下列命题真伪,并说明理由:⑴ 若及都存在,则()()[]x g x f ax +→lim ()x f ax →lim ()x g ax →lim 也存在;⑵ 若及都存在,则()()x g x f ax ⋅→lim ()x f ax →lim ()x g ax →lim 也存在。
2. 求下列极限: ⑴ xx e 1lim +∞→;⑵ xx e1000lim −→;⑶ xx a1011lim +−→()0>a 。
3. 求下列极限 ⑴ (x x 2cos 2ln lim π→)6;⑵ ax ax x −−→sin sin lim;⑶ ()[]x x x ln cos 1ln cos lim −++∞→。
4. 求下列极限: ⑴ bxaxx cos ln cos ln lim 0→;⑵ ()xx x2cos 2tan 31lim +→;⑶ xx x x x ⎟⎟⎠⎞⎜⎜⎝⎛−+∞→21lim 22;⑷ bx a a bx b x −−→lim()0>a 。
习题1-10 闭区间上连续函数的性质1. 证明方程至少有一个根介于1和2之间。