2015通州区数学一模跟答案

合集下载

北京市通州区高考数学一模试卷(理科).docx

北京市通州区高考数学一模试卷(理科).docx

高中数学学习材料马鸣风萧萧*整理制作2015年北京市通州区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)复数z=(2﹣i)2在复平面内对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:利用复数的运算、几何意义即可得出.【解析】:解:复数z=(2﹣i)2=3﹣4i在复平面内对应的点(3,﹣4)所在的象限是第四象限.故选:D.【点评】:本题考查了复数的运算、几何意义,属于基础题.2.(5分)已知双曲线离心率是,那么b等于()A.1 B. 2 C.D.【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:由双曲线离心率是,可得a=2,c=,即可求出b的值.【解析】:解:∵双曲线双曲线离心率是,∴a=2,c=,∴b==1,故选:A.【点评】:本题主要考查双曲线的简单性质的应用,属于基础题.3.(5分)在正方体ABCD﹣A1B1C1D1中,已知M,N分别是A1B1,BB1的中点,过M,N,C1的截面截正方体所得的几何体,如图所示,那么该几何体的侧视图是()A.B.C.D.【考点】:简单空间图形的三视图.【专题】:空间位置关系与距离.【分析】:根据题意,得出该几何体的侧视图是什么,从而得出正确的结论.【解析】:解:根据题意,得;该几何体的侧视图是点A、D、D1、A1在平面BCC1B1上的投影,且NC1是被挡住的线段,应为虚线;∴符合条件的是B选项.故选:B.【点评】:本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力的应用问题,是基础题目.4.(5分)设a=﹣1,b=2log3m,那么“a=b”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】:必要条件、充分条件与充要条件的判断.【专题】:集合.【分析】:根据充分条件和必要条件的定义进行判断即可.【解析】:解:若a=b,则2log3m=﹣1,解得,当时,b=2log3m=2log3=log3=﹣1,此时a=b,即“a=b”是“”的充要条件,故选:C【点评】:本题主要考查充分条件和必要条件的判断,根据对数的运算法则是解决本题的关键.5.(5分)已知函数f(x)=那么该函数是()A.奇函数,且在定义域内单调递减B.奇函数,且在定义域内单调递增C.非奇非偶函数,且在(0,+∞)上单调递增D.偶函数,且在(0,+∞)上单调递增【考点】:分段函数的应用.【专题】:函数的性质及应用.【分析】:运用函数的奇偶性和单调性的定义,注意函数的定义域的运用,加以判断即可得到.【解析】:解:函数f(x)=,定义域关于原点对称,当x>0时,﹣x<0,f(﹣x)=﹣2x=﹣f(x),当x<0时,﹣x>0,f(﹣x)=2﹣x=﹣f(x),则有对于x∈{x|x∈R,x≠0},都有f(﹣x)=﹣f(x),故f(x)为奇函数,又x>0时,f(x)=2x递增,x<0时,f(x)=﹣2﹣x递增,又x<0时,f(x)<0,x>0时,f(x)>0,由单调性的定义可得f(x)在定义域内为递增函数.故选:B.【点评】:本题考分段函数的奇偶性和单调性的判断,主要考查定义法的运用,属于中档题.6.(5分)将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是()A.B.C.D.【考点】:函数y=Asin(ωx+φ)的图象变换.【专题】:三角函数的图像与性质.【分析】:由条件根据函数y=Acos(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.【解析】:解:将函数y=cos(x+)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=cos(x+)的图象;令x+=kπ,k∈z,求得x=2kπ,故所得函数的图象的一条对称轴方程为x=,故选:D.【点评】:本题主要考查函数y=Acos(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.7.(5分)李江同学在某商场运动品专柜买一件运动服,获100元的代金券一张,此代金券可以用于购买指定的价格分别为18元、30元、39元的3款运动袜,规定代金券必须一次性用完,且剩余额不能兑换成现金.李江同学不想再添现金,使代金券的利用率超过95%,不同的选择方式的种数是()A.3 B. 4 C. 5 D. 6【考点】:进行简单的合情推理.【专题】:综合题;推理和证明.【分析】:设3款运动袜分别为x,y,z个,则18x+30y+39z>95,可得x=0,y=2,z=1或x=1,y=0,z=2或x=2,y=2,z=0,即可得出结论.【解析】:解:设3款运动袜分别为x,y,z个,则18x+30y+39z>95,x=0,y=2,z=1或x=1,y=0,z=2或x=2,y=2,z=0,故不同的选择方式的种数是3种,故选:A.【点评】:本题考查合情推理,考查学生分析解决问题的能力,比较基础.8.(5分)已知定义在R上的函数f(x)的图象是连续不断的一条曲线,若存在实数t,使得f(x+t)+tf(x)=0对任意x都成立,则称f(x)是“回旋函数”.给下列四个命题:①函数f(x)=x+1不是“回旋函数”;②函数f(x)=x2是“回旋函数”;③若函数f(x)=a x(a>1)是“回旋函数”,则t<0;④若函数f(x)是t=2时的“回旋函数”,则f(x)在[0,4030]上至少有2015个零点.其中为真命题的个数是()A.1 B. 2 C. 3 D. 4【考点】:抽象函数及其应用.【专题】:函数的性质及应用.【分析】:①利用回旋函数的定义即可.②利用回旋函数的定义,令x=0,则必须有a=0;令x=1,则有a2+3a+1=0,故可判断;③若指数函数y=a x为阶数为t回旋函数,根据定义求解,得出结论.④由定义得到f(x+2)=﹣2f(x),由零点存在定理得,在区间(x,x+2)上必有一个零点令x=0,2,2×2,3×2,…,2015×2,即可得到【解析】:解:对于①函数f(x)=x+1为回旋函数,则由f(x+t)+tf(x)=0,得x+t+1+t (x+1)=0,t(x+2)=﹣1﹣x,∴t=﹣,故结论正确.对于.②函数f(x)=x2是“回旋函数”若(x+t)2+tx2=0对任意实数都成立,令x=0,则必须有t=0,令x=1,则有t2+3t+1=0,显然t=0不是这个方程的解,故假设不成立,该函数不是回旋函数,故结论不正确;对于③,若指数函数y=a x为阶数为t回旋函数,则a x+t+ta x=0,a t+t=0,∴t<0,∴结论成立,对于④:若f(x)是t=2的回旋函数,则f(x+2)+2f(x)=0对任意的实数x都成立,即有f(x+2)=﹣2f(x),则f(x+2)与f(x)异号,由零点存在定理得,在区间(x,x+2)上必有一个零点,可令x=0,2,4,6,…,2015×2,则函数f(x)在[0,4030]上至少存在2015个零点.故结论正确故真命题为:①③④,故选:C.【点评】:本题考查新定义的理解和运用,考查函数的周期、函数的零点注意转化为函数的图象的交点个数,考查数形结合的能力,以及运算能力,属于中档题二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)已知集合A={1,2,3,4},B={1,3,m},且B⊆A,那么实数m=2或4.【考点】:集合的包含关系判断及应用.【专题】:集合.【分析】:利用元素与集合之间的关系即可得出.【解析】:解:∵集合A={1,2,3,4},B={1,3,m},且B⊆A,∴m∈A,∴m=2或4.故答案为:2或4.【点评】:本题考查了元素与集合之间的关系,属于基础题.10.(5分)已知数列{a n}中,a2=2,a n+1﹣2a n=0,那么数列{a n}的前6项和是63.【考点】:数列递推式.【专题】:等差数列与等比数列.【分析】:利用等比数列的前n项和公式即可得出.【解析】:解:∵a2=2,a n+1﹣2a n=0,∴a n+1=2a n,∴2a1=2,解得a1=1.∴数列{a n}是等比数列,首项为1,公比为2,∴S6==63.故答案为:63.【点评】:本题考查了等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.11.(5分)已知某程序框图如图所示,那么执行该程序后输出的结果是0.【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序框图,依次写出每次循环得到的a,i的值,当i=5时满足条件i>4,退出循环,输出a的值为0.【解析】:解:模拟执行程序框图,可得a=2,i=1不满足条件i>4,a=,i=2不满足条件i>4,a=1,i=3不满足条件i>4,a=,i=4不满足条件i>4,a=0,i=5满足条件i>4,退出循环,输出a的值为0.故答案为:0.【点评】:本题主要考查了循环结构的程序框图,依次写出每次循环得到的a,i的值是解题的关键,属于基础题.12.(5分)如图,已知PA是圆O的切线,切点为A,PC过圆心O,且与圆O交于B,C两点,过C点作CD⊥PA,垂足为D,PA=4,BC=6,那么CD=.【考点】:相似三角形的判定;相似三角形的性质.【专题】:选作题;推理和证明.【分析】:利用切割线定理,求出PO,利用△OAP∽△CDP,求出CD.【解析】:解:由题意,利用切割线定理可得:42=PB•(PB+6),∴PB=2,∴PO=5,连接OA,则OA⊥PA,∵CD⊥PA,∴△OAP∽△CDP,∴,∴∴CD=.故答案为:.【点评】:本题考查切割线定理,考查三角形相似的判定与性质,考查学生分析解决问题的能力,比较基础.13.(5分)11位数的手机号码,前七位是1581870,如果后四位只能从数字1,3,7中选取,且每个数字至少出现一次,那么存在1与3相邻的手机号码的个数是16.【考点】:计数原理的应用.【专题】:应用题;排列组合.【分析】:分类讨论,利用列举法,即可得出结论.【解析】:解:若重复的是1,有1317,1371,1137,7131,1713,7113,共6个;1,3交换,重复1317,7131,有4个若重复是3,有1337,1373,3137,7133,3713,7313,共6个;1,3交换,重复3137,7313,有4个若重复是7,有1377,7137,7713,3177,7317,7731,共6个,共有10+10+6=26.故答案为:26.【点评】:本题考查计数原理的运用,考查列举法,比较基础.14.(5分)如图,在四边形ABCD中,∠BAD=90°,∠ADC=120°,AD=DC=2,AB=4,动点M在△BCD内(含边界)运动,设=+μ,则λ+μ的取值范围是[1,].【考点】:简单线性规划的应用;平面向量的基本定理及其意义.【专题】:不等式的解法及应用;平面向量及应用.【分析】:建立空间坐标系,利用向量的基本定理,求出M的坐标,利用线性规划的知识进行求解.【解析】:解:将四边形ABCD放入坐标系中,则A(0,0),D(0,2),B(4,0),∵∠ADC=120°,AD=DC=2,∴∠DCA=30°,AC=,则C(),设M(x,y),∵=+μ,∴(x,y)=λ(4,0)+μ(0,2)=(4λ,2μ),即x=4λ,y=2μ,则λ=,μ=,则λ+μ=+,设z=+,则y=+2z,平移直线y=+2z,由图象知当直线y=+2z经过点B(4,0)时,截距最小,此时z最小,z=,当直线y=+2z经过点C()时,截距最大,此时z最大,即z=,故1≤z≤,故λ+μ的取值范围是[1,],故答案为:[1,]【点评】:本题主要考查平面向量基本定理的应用以及线性规划的综合应用,建立坐标系是解决本题的关键.综合性较强,难度较大.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)在△ABC中,角A,B,C的对边分别是a,b,c,已知c=5,,△ABC 的面积是.(Ⅰ)求b的值;(Ⅱ)求cos2A的值.【考点】:正弦定理;余弦定理.【专题】:解三角形.【分析】:(Ⅰ)由条件利用正弦定理求得a的值,再利用余弦定理求得b的值.(Ⅱ)由正弦定理求得sinA的值,再利用二倍角的余弦公式求得cos2A的值.【解析】:解:(Ⅰ)因为△ABC的面积是,c=5,,所以=,即=,求得a=3.由余弦定理b2=a2+c2﹣2accosB,得,求得b=7.(Ⅱ)由正弦定理,可得,∴.【点评】:本题主要考查正弦定理和余弦定理、二倍角的余弦公式的应用,属于基础题.16.(13分)随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了了解公众对“延迟退休”的态度,某校课外研究性学习小组对某社区随机抽取了5人进行调查,将调查情况进行整理后制成下表:年龄在[25,30),[55,60)的被调查者中赞成人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.(Ⅰ)求年龄在[25,30)的被调查者中选取的2人都是赞成的概率;(Ⅱ)求选中的4人中,至少有3人赞成的概率;(Ⅲ)若选中的4人中,不赞成的人数为X,求随机变量X的分布列和数学期望.【考点】:离散型随机变量的期望与方差;离散型随机变量及其分布列.【专题】:应用题;概率与统计.【分析】:(Ⅰ)利用古典概型的概率公式,求出年龄在[25,30)的被调查者中选取的2人都是赞成的概率;(Ⅱ)利用古典概型的概率公式,互斥事件的概率公式,求选中的4人中,至少有3人赞成的概率;(Ⅲ)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解析】:解:(Ⅰ)设“年龄在[25,30)的被调查者中选取的2人都是赞成”为事件A,所以.…(3分)(Ⅱ)设“选中的4人中,至少有3人赞成”为事件B,所以.…(7分)(Ⅲ)X的可能取值为0,1,2,3.所以,,,.…(11分)所以X的分布列是…(12分)所以EX=0×+1×+2×=.…(13分)【点评】:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.17.(14分)如图,在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC,且∠A1AC=,点O为AC的中点.(Ⅰ)求证:AC⊥平面A1OB;(Ⅱ)求二面角B1﹣AC﹣B的余弦值;(Ⅲ)若点B关于AC的对称点是D,在直线A1A上是否存在点P,使DP∥平面AB1C.若存在,请确定点P的位置;若不存在,请说明理由.【考点】:二面角的平面角及求法;直线与平面垂直的判定.【专题】:综合题;空间位置关系与距离;空间角.【分析】:(Ⅰ)连结A1C,证明A1O⊥AC,BO⊥AC,可得AC⊥平面A1OB;(Ⅱ)以O为坐标原点,分别以OB,OC,OA1为x轴,y轴,z轴建立空间直角坐标系,求出平面AB1C的法向量、平面ABC的法向量,利用向量的夹角公式求二面角B1﹣AC﹣B 的余弦值;(Ⅲ)设在直线A1A上存在点P符合题意,则点P的坐标设为(x,y,z),.由,得.求出λ,即可得出结论.【解析】:(Ⅰ)证明:连结A1C,因为AC=AA1,,AB=BC,点O为AC的中点,所以A1O⊥AC,BO⊥AC.因为A1O∩BO=O,所以AC⊥平面A1OB.…(4分)(Ⅱ)解:因为侧面A1ACC1⊥底面ABC,所以A1O⊥平面ABC.所以A1O⊥BO.…(5分)所以以O为坐标原点,分别以OB,OC,OA1为x轴,y轴,z轴建立空间直角坐标系,所以A(0,﹣1,0),,C(0,1,0),,,所以,,.设平面AB1C的法向量为,所以即所以.…(7分)因为平面ABC的法向量为,所以<.所以二面角B1﹣AC﹣B的余弦值是.…(9分)(Ⅲ)解:存在.因为点B关于AC的对称点是D,所以点.…(10分)假设在直线A1A上存在点P符合题意,则点P的坐标设为(x,y,z),.所以.所以.所以.…(12分)因为DP∥平面AB1C,平面AB1C的法向量为,所以由,得.所以λ=1.…(13分)所以在直线A1A上存在点P,使DP∥平面AB1C,且点P恰为A1点.…(14分)【点评】:本题考查线面垂直,考查二面角的余弦值,考查线面平行,正确运用向量法是关键.18.(13分)已知椭圆C:=1(a>b>0)的左焦点是F(﹣1,0),上顶点是B,且|BF|=2,直线y=k(x+1)与椭圆C相交于M,N两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若在x轴上存在点P,使得与k的取值无关,求点P的坐标.【考点】:椭圆的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:(Ⅰ)由椭圆C的左焦点是F(﹣1,0),且|BF|=2,可得c,a.再利用a2=b2+c2,得b2即可.(II)直线方程与椭圆方程联立可得根与系数的关系,利用数量积及其使得与k的取值无关,即可得出.【解析】:解:(Ⅰ)∵椭圆C的左焦点是F(﹣1,0),且|BF|=2,∴c=1,a=2.由a2=b2+c2,得b2=3.∴椭圆C的标准方程是.(Ⅱ)∵直线y=k(x+1)与椭圆C相交于M,N两点,联立方程组消去y,得(3+4k2)x2+8k2x+4k2﹣12=0.∴△=144k2+144>0.设点M(x1,y1),N(x2,y2),P(x0,0),∴,.∴=(x1﹣x0)•(x2﹣x0)+y1y2=====,∵与k的取值无关,∴.∴.∴点P的坐标是.【点评】:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、数量积运算性质,考查了推理能力与计算能力,属于难题.19.(13分)已知函数f(x)=ae﹣x﹣x+1,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在(0,f(0))处的切线方程;(Ⅱ)若对任意x∈(0,+∞),f(x)<0恒成立,求a的取值范围;(Ⅲ)当x∈(0,+∞)时,求证:2e﹣x﹣2<x2﹣x.【考点】:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】:导数的综合应用.【分析】:(Ⅰ)当a=1时,求函数的导数,利用导数的几何意义即可求曲线y=f(x)在(0,f(0))处的切线方程;(Ⅱ)若对任意x∈(0,+∞),f(x)<0恒成立,利用导数研究函数的最值即可求a的取值范围;(Ⅲ)构造函数,利用导数研究函数的单调性和最值即可证明不等式.【解析】:解:(Ⅰ)因为f(x)=ae﹣x﹣x+1,a=1,所以f(x)=e﹣x﹣x+1.所以f'(x)=﹣e﹣x﹣1.所以f(0)=2,f'(0)=﹣2.所以切线方程是y﹣2=﹣2x,即2x+y﹣2=0.(Ⅱ)由f(x)<0可得ae﹣x﹣x+1<0.所以a<(x﹣1)e x.令g(x)=(x﹣1)e x.所以g'(x)=xe x>0.所以g(x)在(0,+∞)上单调递增.所以﹣1<g(x)<0.所以a≤﹣1.(Ⅲ)令.所以h'(x)=﹣2e﹣x﹣x2+1.…(9分)由(Ⅱ)可知,当a=﹣2时,f(x)=﹣2e﹣x﹣x+1<0.所以h'(x)<0.所以h(x)在(0,+∞)上单调递减.所以h(x)<h(0)=0.所以.【点评】:本题主要考查导数的几何意义以及导数的综合应用,要求熟练掌握函数单调性,最值和导数之间的关系,考查学生的运算和推理能力.20.(14分)设函数f(x)=,方程f(x)=x有唯一解,数列{a n}满足f(a n)=a n+1(n∈N*),且f(1)=数列{b n}满足b n=.(Ⅰ)求证:数列是等差数列;(Ⅱ)数列{c n}满足c n=,其前n项和为S n,若存在n∈N*,使kS n=成立,求k的最小值;(Ⅲ)若对任意n∈N*,使不等式成立,求实数t的最大值.【考点】:数列与不等式的综合;数列的求和.【专题】:函数的性质及应用;等差数列与等比数列.【分析】:(Ⅰ)通过根的判别式为零可知=x有唯一解时,从而,计算可知,利用得a1=1;(Ⅱ)通过(Ⅰ)得b n=2n﹣1,通过拆项可知c n=(﹣),从而利用基本不等式解可得;(Ⅲ)对已知不等式变形及可知>0,通过作商法可知g(n)是递增数列,计算即可.【解析】:解:(Ⅰ)∵,方程f(x)=x有唯一解,∴,即mx2+(2m﹣1)x=0(m≠0)有唯一解.∴△=4m2﹣4m+1=0.所以,∴,∴,∴a n a n+1+2a n+1﹣2a n=0,∴,∴,∵,∴,解得a1=1.所以数列首项为1,公差为的等差数列;(Ⅱ)由(Ⅰ)得,∴.∵,∴b n=2n﹣1,∴,∴=,∵,∴,所以,当且仅当,即n=2时等号成立.所以k的最小值是;(Ⅲ)∵,∴.令,∵,∴g(n)>0,∴=,∴g(n)是递增数列,从而,∴.所以t的最大值是.【点评】:本题是一道数列与不等式的综合题,涉及到基本不等式,数列的单调性,根的判别式等知识,考查分析、解决问题的能力以及计算能力,注意解题方法的积累,属于难题.。

2015年北京市通州区中考数学一模试卷带解析答案

2015年北京市通州区中考数学一模试卷带解析答案
第 2 页(共 32 页)
灯塔落在地面上的影长为 12 米,然后在同一时刻立一根高 2 米的标杆,测得 标杆影长为 0.5 米,那么燃灯塔高度为 米.
14. (3 分)生物学研究表明在 8﹣17 岁期间,男女生身高增长速度规律呈现如 图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是 岁,在 岁时男生女生的身高增长速度是一样的.
四、解答题(每题 5 分,共 25 分)
第 4 页(共 32 页)
22. (5 分)为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排 放设施进行改造.某施工队承担铺设地下排污管道任务共 2200 米,为了减少 施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管 道的长度比原计划多 10%,结果提前两天完成任务.求原计划平均每天铺设 排污管道的长度. 23. (5 分)已知菱形 ABCD 的对角线 AC 与 BD 相交于点 E,点 F 在 BC 的延长 线上, 且 CF=BC, 连接 DF, 点 G 是 DF 中点, 连接 CG. 求证: 四边形 ECGD 是矩形.
2. (3 分)北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨 道交通日均运送乘客达到 1320 万人次.数据 1320 万用科学记数法表示正确 的是( ) B.13.2×102 万 C.1.32×103 万 D.1.32×104 万 )
A.132×101 万
3. (3 分)某几何体的通州区中考一模数学试卷
一、选择题(每题只有一个正确答案,共 10 个小题,每小题 3 分,共 30 分) 1. (3 分)﹣2 的绝对值是( A.±2 B.2 ) C. D.
A.圆柱
B.三棱柱
C.长方体 ) C.2a2+a2=3a4

数学_2015年北京市通州区高考数学一模试卷(理科)(含答案)

数学_2015年北京市通州区高考数学一模试卷(理科)(含答案)

2015年北京市通州区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 复数z=(2−i)2在复平面内对应的点所在的象限是()A 第一象限B 第二象限C 第三象限D 第四象限2. 已知双曲线x24−y2b2=1(b>0)离心率是√52,那么b等于()A 1B 2C √5D 2√53. 在正方体ABCD−A1B1C1D1中,已知M,N分别是A1B1,BB1的中点,过M,N,C1的截面截正方体所得的几何体,如图所示,那么该几何体的侧视图是()A B C D4. 设a=−1,b=21og3m,那么“a=b”是“m=√33”的()A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件5. 已知函数f(x)={2x,x>0−2−x,x<0那么该函数是()A 奇函数,且在定义域内单调递减B 奇函数,且在定义域内单调递增C 非奇非偶函数,且在(0, +∞)上单调递增D 偶函数,且在(0, +∞)上单调递增6. 将函数f(x)=cos(x+π3)的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是()A x=π3 B x=−π6C x=−π3D x=−2π37. 李江同学在某商场运动品专柜买一件运动服,获100元的代金券一张,此代金券可以用于购买指定的价格分别为18元、30元、39元的3款运动袜,规定代金券必须一次性用完,且剩余额不能兑换成现金.李江同学不想再添现金,使代金券的利用率超过95%,不同的选择方式的种数是()A 3B 4C 5D 68. 已知定义在R上的函数f(x)的图象是连续不断的一条曲线,若存在实数t,使得f(x+ t)+tf(x)=0对任意x都成立,则称f(x)是“回旋函数”.给下列四个命题:①函数f(x)=x+1不是“回旋函数”;②函数f(x)=x2是“回旋函数”;③若函数f(x)=a x(a>1)是“回旋函数”,则t<0;④若函数f(x)是t=2时的“回旋函数”,则f(x)在[0, 4030]上至少有2015个零点.其中为真命题的个数是()A 1B 2C 3D 4二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知集合A ={1, 2, 3, 4},B ={1, 3, m},且B ⊆A ,那么实数m =________.10. 已知数列{a n }中,a 2=2,a n+1−2a n =0,那么数列{a n }的前6项和是________. 11. 已知某程序框图如图所示,那么执行该程序后输出的结果是________.12. 如图,已知PA 是圆O 的切线,切点为A ,PC 过圆心O ,且与圆O 交于B ,C 两点,过C 点作CD ⊥PA ,垂足为D ,PA =4,BC =6,那么CD =________.13. 11位数的手机号码,前七位是1581870,如果后四位只能从数字1,3,7中选取,且每个数字至少出现一次,那么存在1与3相邻的手机号码的个数是________.14. 如图,在四边形ABCD 中,∠BAD =90∘,∠ADC =120∘,AD =DC =2,AB =4,动点M 在△BCD 内(含边界)运动,设AM →=λAB →+μAD →,则λ+μ的取值范围是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知c =5,B =2π3,△ABC 的面积是15√34. (1)求b 的值;(2)求cos2A 的值.16. 随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了了解公众对“延迟退休”的态度,某校课外研究性学习小组对某社区随机抽取了5人进行调查,将调查情况进行整理后制成下表:中各随机选取2人,进行跟踪调查.(Ⅰ)求年龄在[25, 30)的被调查者中选取的2人都是赞成的概率; (Ⅱ)求选中的4人中,至少有3人赞成的概率;(Ⅲ)若选中的4人中,不赞成的人数为X ,求随机变量X 的分布列和数学期望.17.如图,在各棱长均为2的三棱柱ABC −A 1B 1C 1中,侧面A 1ACC 1⊥底面ABC ,且∠A 1AC =π3,点O 为AC 的中点.(1)求证:AC ⊥平面A 1OB ;(2)求二面角B 1−AC −B 的余弦值;(3)若点B 关于AC 的对称点是D ,在直线A 1A 上是否存在点P ,使DP // 平面AB 1C .若存在,请确定点P 的位置;若不存在,请说明理由.18. 已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左焦点是F(−1, 0),上顶点是B ,且|BF|=2,直线y =k(x +1)与椭圆C 相交于M ,N 两点. (1)求椭圆C 的标准方程;(2)若在x 轴上存在点P ,使得PM →⋅PN →与k 的取值无关,求点P 的坐标. 19. 已知函数f(x)=ae −x −x +1,a ∈R .(1)当a =1时,求曲线y =f(x)在(0, f(0))处的切线方程; (2)若对任意x ∈(0, +∞),f(x)<0恒成立,求a 的取值范围; (3)当x ∈(0, +∞)时,求证:2e −x −2<12x 2−x .20. 设函数f(x)=xm(x+2),方程f(x)=x 有唯一解,数列{a n }满足f(a n )=a n+1(n ∈N ∗),且f(1)=23数列{b n }满足b n =4−3a n a n(n ∈N ∗).(1)求证:数列{1a n}是等差数列; (2)数列{c n }满足c n =1b n ⋅b n+1(n ∈N ∗),其前n 项和为S n ,若存在n ∈N ∗,使kS n =12n +4(k ∈R)成立,求k 的最小值; (3)若对任意n ∈N ∗,使不等式t(1b 1+1)(1b 2+1)…(1b n+1)≤√2n+1成立,求实数t 的最大值.2015年北京市通州区高考数学一模试卷(理科)答案1. D2. A3. B4. C5. B6. D7. A8. C9. 2或4 10. 63 11. 0 12. 24513. 16 14. [1, √34+32]15. 解:(1)因为△ABC 的面积是15√34,c =5,B =2π3,所以12acsinB =15√34,即12a ⋅5⋅√32=15√34,求得a =3.由余弦定理b 2=a 2+c 2−2accosB ,得b 2=25+9−2×5×3×cos 2π3=49,求得b =7.(2)由正弦定理asinA =bsinB ,可得sinA =37×√32=3√314,∴ cos2A =1−2sin 2A =1−2×(3√314)2=7198.16. (1) 设“年龄在[25, 30)的被调查者中选取的2人都是赞成”为事件A , 所以P(A)=C 32C 52=310.(2) 设“选中的4人中,至少有3人赞成”为事件B , 所以P(B)=C 32C21C11C 52C32+C 31C21C22C 52C32+C32C22C 52C32=12.(Ⅲ)X 的可能取值为0,1,2,3. 所以P(X =0)=C32C22C 52C32=110,P(X =1)=C 31C21C22+C 32C21C11C 52C32=25,P(X =2)=C 22C22+C 31C21C21C11C 52C32=1330,P(X =3)=C 22C21C11C 52C32=115.所以X 的分布列是所以EX =0×110+1×25+2×1330+3×115=2215.17.(1)证明:连结A 1C ,因为AC =AA 1,∠A 1AC =π3,AB =BC ,点O 为AC 的中点,所以A 1O ⊥AC ,BO ⊥AC . 因为A 1O ∩BO =O , 所以AC ⊥平面A 1OB .…(2)解:因为侧面A 1ACC 1⊥底面ABC , 所以A 1O ⊥平面ABC .所以A 1O ⊥BO .…所以以O 为坐标原点,分别以OB ,OC ,OA 1为x 轴,y 轴,z 轴建立空间直角坐标系, 所以A(0, −1, 0),B(√3,0,0),C(0, 1, 0),A 1(0,0,√3),B 1(√3,1,√3), 所以AA 1→=(0,1,√3),AB 1→=(√3,2,√3),AC →=(0,2,0).设平面AB 1C 的法向量为n →=(x,y,z),所以{n →⋅AC →˙即{√3x +2y +√3z =02y =0.所以n →=(−1,0,1).…因为平面ABC 的法向量为A 1O →=(0,0,√3), 所以<cos⟨AA 1→,n >=√3⋅=√22. 所以二面角B 1−AC −B 的余弦值是√22.… (3)解:存在.因为点B 关于AC 的对称点是D ,所以点D(−√3,0,0).…假设在直线A 1A 上存在点P 符合题意,则点P 的坐标设为(x, y, z),AP →=λAA 1→. 所以AP →=(x,y +1,z).所以P(0,λ−1,√3λ). 所以DP →=(√3,λ−1,√3λ).…因为DP // 平面AB 1C ,平面AB 1C 的法向量为n →=(−1,0,1), 所以由DP →⋅n →=0,得−√3+√3λ=0.所以λ=1.…所以在直线A 1A 上存在点P ,使DP // 平面AB 1C ,且点P 恰为A 1点.… 18. 解:(1)∵ 椭圆C 的左焦点是F(−1, 0),且|BF|=2, ∴ c =1,a =2.由a 2=b 2+c 2,得b 2=3.∴ 椭圆C 的标准方程是x 24+y 23=1.(2)∵ 直线y =k(x +1)与椭圆C 相交于M ,N 两点,联立方程组{y =k(x +1)x 24+y 23=1消去y ,得(3+4k 2)x 2+8k 2x +4k 2−12=0.∴ △=144k 2+144>0.设点M(x 1, y 1),N(x 2, y 2),P(x 0, 0), ∴ x 1+x 2=−8k 23+4k 2,x 1⋅x 2=4k 2−123+4k 2.∴ PM →⋅PN →=(x 1−x 0,y 1)⋅(x 2−x 0,y 2) =(x 1−x 0)•(x 2−x 0)+y 1y 2=x 1⋅x 2−x 0(x 1+x 2)+x 02+k 2(x 1+1)(x 2+1)=(1+k 2)x 1⋅x 2+(k 2−x 0)(x 1+x 2)+k 2+x 02=(1+k 2)⋅4k 2−123+4k 2+(k 2−x 0)⋅−8k 23+4k2+k 2+x 02 =4k 2−12+4k 4−12k 2−8k 4+8x 0k 2+3k 2+4k 43+4k 2+x 02=(8x 0−5)k 2−123+4k 2+x 02,∵ PM →⋅PN →与k 的取值无关, ∴8x 0−5−12=43.∴ x 0=−118. ∴ 点P 的坐标是(−118,0).19. 解:(1)因为f(x)=ae −x −x +1,a =1,所以f(x)=e −x −x +1.所以f ′(x)=−e −x −1. 所以f(0)=2,f ′(0)=−2.所以切线方程是y −2=−2x ,即2x +y −2=0. (2)由f(x)<0可得ae −x −x +1<0. 所以a <(x −1)e x .令g(x)=(x −1)e x .所以g ′(x)=xe x >0. 所以g(x)在(0, +∞)上单调递增. 所以−1<g(x)<0.所以a ≤−1. (3)令ℎ(x)=2e −x −2−12x 2+x .所以ℎ′(x)=−2e −x −x 2+1.…由(2)可知,当a =−2时,f(x)=−2e −x −x +1<0. 所以ℎ′(x)<0.所以ℎ(x)在(0, +∞)上单调递减.所以ℎ(x)<ℎ(0)=0. 所以2e −x −2<12x 2−x .20. 解:(1)∵ f(x)=xm(x+2),方程f(x)=x 有唯一解,∴ xm(x+2)=x ,即mx 2+(2m −1)x =0(m ≠0)有唯一解. ∴ △=4m 2−4m +1=0.所以m =12, ∴ f(x)=2xx+2,∴ f(a n )=2a nan +2=a n+1,∴ a n a n+1+2a n+1−2a n =0, ∴ 1+2a n−2an+1=0,∴1a n+1−1a n=12,∵ f(a 1)=23,∴ 2a 1a1+2=23,解得a 1=1. 所以数列{1a n}首项为1,公差为12的等差数列; (2) 由(1)得 1a n=12n +12,∴ a n =2n+1.∵ b n =4−3a n a n ,∴ b n =2n −1,∴ c n =1bn ⋅b n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),∴ S n =12(1−13+13−15+⋯+12n−1−12n+1)=12(1−12n+1)=n2n+1, ∵ kS n =12n +4,∴ k =n 2+172n+4n=n +4n +172,所以k ≥4+172=252,当且仅当n =4n ,即n =2时等号成立. 所以k 的最小值是252; (3)∵ t(1b 1+1)(1b 2+1)…(1b n+1)≤√2n+1,∴ t ≤(1b 1+1)(1b 2+1)…(1b n+1)√2n+1. 令g(n)=(1b 1+1)(1b 2+1)…(1b n+1)√2n+1,∵ 1b n+1=12n−1+1=2n2n−1>0,∴ g(n)>0,∴g(n+1)g(n)=(1b n+1+1)√2n+1√2n+3=√4n 2+8+3=√4(n+1)2−1>1,∴ g(n)是递增数列,从而g(n)≥g(1)=2√33,∴ t ≤2√33. 所以t 的最大值是2√33.。

2014-2015第一学期通州区高三数学摸底考试答案(理)

2014-2015第一学期通州区高三数学摸底考试答案(理)

高三数学(理科)摸底考试参考答案2015年1月一.选择题:二.填空题:9.38 10. 80- 11. 4 12. 3 13. 2314. (],ln 2-∞三.解答题: 15.(本小题13分)解:(Ⅰ)因为()24cos 4sin cos 3f x x x x =+-,所以()()2cos212sin 23f x x x =++-2sin 22cos 21x x =+-2 1.4x π⎛⎫=+- ⎪⎝⎭ …………………… 3分所以1 3.424f πππ⎛⎫⎛⎫-=-+-=- ⎪ ⎪⎝⎭⎝⎭…………………… 5分 对称轴方程是2,42x k k Z πππ+=+∈,即,.82k x k Z ππ=+∈ …………………… 7分 (Ⅱ)因为82x ππ-≤≤ ,所以502.44x ππ≤+≤…………………… 9分 所以242x ππ+=,即8x π=时, …………………… 11分()f x 有最大值是1, …………………… 13分解:设甲完成任务为事件1A ,乙完成任务为事件2A ,丙完成任务为事件3A , 所以()112P A =,()213P A =,()31.4P A = …………………… 1分 (Ⅰ)设“三人中只有乙完成了任务”为事件B . 所以()1231131().2348P B P A A A ==⨯⨯= …………………… 4分 (Ⅱ)设“甲、乙二人中至少有一人完成了任务”为事件C . 则()13135()11.248P C P A A =-=-⨯= …………………… 7分 (Ⅲ)X 的可能取值为0,1,2,3. 所以()1231231(0)2344P X P A A A ===⨯⨯=, ()()()123123123(1)P X P A A A P A A A P A A A ==++ 1231131211123423423424=⨯⨯+⨯⨯+⨯⨯=, ()()()123123123(2)P X P A A A P A A A P A A A ==++ 11312111112342342344=⨯⨯+⨯⨯+⨯⨯=, ()1231111(4).23424P X P A A A ===⨯⨯= …………………… 11分所以X 的分布列是…………………… 12分 所以0EX =⨯141+⨯11242+⨯141133.2412+⨯= …………………… 13分解:(Ⅰ)证明:取1AC 的中点F ,连结DF ,EF ,因为点D ,F 分别是11AC ,1AC 的中点,所以1//DF AA ,11.2DF AA = 因为点E 分别是1BB 的中点,所以11//B E AA ,111.2B E AA =所以1//DF B E ,1.DF B E = 所以四边形1DFEB 是平行四边形. 所以1//.B D EF 因为EF ⊂平面1AC E ,1B D ⊄平面1AC E ,所以1B D //平面1.AC E …………… 4分 (Ⅱ)因为1CC ⊥平面ABC ,所以1CC ⊥平面111A B C , 因为1B D ⊂平面111A B C ,所以 B D ⊥因为,60BC AC ACB =∠=︒,所以ABC ∆是等边三角形. 所以111A B C ∆是等边三角形. 因为点D 是11AC 的中点,所以111.AC B D ⊥ 因为1111CC AC C =,所以1BD ⊥平面11.AAC C 因为1//B D EF , 所以EF ⊥平面11.AAC C因为EF ⊂平面1AC E ,所以平面1AC E ⊥平面11.AAC C …………………… 9分 (Ⅲ)以点C 为原点,如图所示建立空间直角坐标系.设 2.BC =所以,0)A ,(0,2,0)B ,1(0,0,2)C ,(0,2,1)E .所以(,0)AB =, 1(0,2,1)C E =-,1(3,1,2)C A =-. 设平面1AC E 的法向量为(, , )x y z =n ,所以110,0.C E C A ⎧⋅=⎪⎨⋅=⎪⎩n n即 20,20. y z y z -=⎧⎪+-=令1y =,则(3,1,2)=n . 设直线AB 与平面1AC E 所成的角是.θ所以sin cos ,42AB AB ABθ⋅-=〈〉===⋅n n n所以直线AB 与平面1AC E 所成的角的正弦值是4…………………… 14分解:(Ⅰ)因为函数()ln f x x a x =+,所以()1.a x af x x x+'=+=………………… 1分 (1)当0a ≥时,()0.f x '>所以()f x 的递增区间是()0,+∞,无递减区间.…… 3分 (2)当0a <时,令()0f x '>,得x a >-,令()0f x '<,得0.x a <<-所以()f x 的递增区间是(),a -+∞,递减区间是()0,.a - …………………… 5分 综上,当0a ≥时,()f x 的递增区间是()0,+∞,无递减区间,当0a <时,()f x 的递增区间是(),a -+∞,递减区间是()0,.a - (Ⅱ)(1)当0a =时,().f x x = ()f x 在()0,+∞上显然无零点,所以方程()0f x =没有实数根. …………………… 6分 (2)当0a >时,()f x 在()0,+∞上单调递增,因为()110f =>,1110aa f e e --⎛⎫=-< ⎪⎝⎭,所以()110.af fe -⎛⎫⋅< ⎪⎝⎭所以()f x 在()0,+∞上有零点.所以方程()0f x =有实数根. …………………… 8分 (3)当0a <时,()f x 的递增区间是(),a -+∞,递减区间是()0,a -, 所以()f a -是()f x 的极小值,也是()f x 的最小值.所以()f x 没有实数根等价于()0.f a -> …………………… 11分 所以()ln 0.a a a -+->所以()1ln 0.a a --->⎡⎤⎣⎦所以()ln 1.a -<所以a e >-. …………………… 12分 综上,a 的取值范围是(],0.e - …………………… 13分解:(Ⅰ)因为2OA =,所以 2.a = …………………… 1分 因为OAB ∆是等腰直角三角形,所以点B 的坐标是()1,1或()1,1.-………………… 2分 所以211 1.4b += 所以23.4b = 所以椭圆C 的方程是223 1.44x y += …………………… 4分 (Ⅱ)设点()()()112233,,,,,P x y M x y N x y , 所以221.PM OMx k k y =-=-…………………… 5分 所以直线PM 的方程是()2222x y y x x y -=--,即222222.x x y y x y +=+ 所以224.3x x y y +=…………………… 6分 同理可得直线PN 的方程是334.3x x y y += …………………… 7分因为点()11,P x y 是直线PM ,PN 的交点,所以有121213134,34.3x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩所以直线MN 的方程是114.3x x y y +=…………………… 9分令0y =,得143x x =;令0x =,得14.3y y =所以143m x =,14.3n y =所以143x m =,14.3y n=…………………… 11分 因为点()11,P x y 是椭圆C 上一点,所以22443 4.33m n ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭化简得22139.4m n += 所以2213m n +是定值. …………………… 13分解:(Ⅰ)因为112a =,2121n n n a a a n +=+, 所以221134a a a =+=,.23225764a a a =+=…………………… 2分 (Ⅱ)下面用数学归纳法证明:.n a n < (1)当1n =时,左边12=,右边1=,不等式成立. …………………… 3分 (2)假设当()n k k N *=∈时,不等式成立. 即.k a k <因为112a =,2121n n n a a a n+=+,所以0.n a > 所以22.k a k < …………………… 4分 所以2212211 1.k k k a a a k k k k k+=+<+⋅=+所以当1n k =+时,等式也成立.由(1)和(2)可知不等式对n N *∈都成立. …………………… 6分(Ⅲ)因为112a =,2121n n n a a a n +=+,所以22211.n n nn a n a a +=+ 所以222211111.n n n n n nn a a a n a a n a +-=-=++ …………………… 9分由(Ⅱ)知0.n a n <<所以221111111.1n n n a a n a n n n n +-=>=-+++…………… 11分 所以当2n ≥时,有1123111111111111.1123nn n n a a a a a a n n n n +-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++->-+-++- ⎪⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 所以211111.21n a a n +->-+ 所以121111411511.2132166n n a a n n n ++<-+=-+=+++ 所以166.511n n a n ++>+ 所以当3n ≥时,6.56n na n >+ …………………… 14分。

北京市通州区2015年初中毕业统一检测

北京市通州区2015年初中毕业统一检测

北京市通州区2015年初中毕业统一检测数 学页,五道大题,一、选择题(每题只有一个正确答案,每题3分,共30分) 1.3的相反数是( )A .31B .31-C .3D .3-2.据科学家估计,地球的年龄大约是4600000000年,这个数用科学计数法表示为( ) A .4.6×108B .46×108C .4.6×109D .0.46×10103.如图,△ABC 中,∠C =90°,BC =2,AB =3,则下列结论正确的是( ) A .35sin =A B .32cos =A C .32sin =A D .25tan =A 4 )A D5.下列说法正确的是( ) A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差20.2S =甲,乙组数据的方差20.5S =乙,则乙组数据比甲组数据稳定 6.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为()A.12B .15C .23D .13A第3题图7.如图,数轴上用点A ,B ,C ,D 表示有理数,下列语句正确的有( )①A 点所表示的有理数大于B 点所表示的有理数;②B 点所表示的有理数的绝对值大于C 点所表示的有理数的绝对值; ③A 点所表示的有理数与D 点所表示的有理数和为0; ④C 点所表示的有理数与B 点所表示的有理数的乘积大于0 A .①② B .①③ C .②③ D .③④ 8.如图,在⊙O 中,如果 2AB AC =,那么( ) A .AB =AC B .AB =2ACC .AB <2ACD .AB >2AC9.如图,点A 的坐标为(-1,0),点B 在直线x y =上运动,当线段AB 最短时,点B的坐标为( ) A .(0,0)B .)21,21(--C .)22,22(-D .)22,22(--10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度......y 之间的关系用图象描述大致是( )A .B .C .D . 二、填空题(每题3分,共18分) 11.分解因式:241x -= .12.将抛物线22y x =向上平移3个单位长度得到的抛物线表达式是 . 13.已知扇形的半径为4㎝,圆心角为120°,则此扇形的弧长是 cm 14.将一副三角尺如图所示叠放在一起,则BE EC的值是 .15.如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中第10题图A8题图s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h .16.若x 是不等于1的实数,我们把11x-称为x 的差倒数,如2的差倒数是1112=--,-1的差倒数为11112=-(-),现已知,x 1=13-,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,……,依次类推,则x 2015= .三、解答题(每题4分,共20分)17.如图, EC =AC ,∠BCE =∠DCA ,∠A =∠E ,求证:BC =DC .18sin45°+ (cos60°-π)0113-⎛⎫- ⎪⎝⎭19.解分式方程2111x x x +=+-. 20.小明在初三复习归纳时发现初中阶段学习了三个非负数,分别是:①2a ;③a (a 是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知2(2)10x x y +++-=,求y x 的值.请你利用三个非负数的知识解答这个问题.21.已知函数61y x=-与函数y kx =交于点A (2,b )、B (-3,m )两点(点A 在第一象限), (1)求b ,m ,k 的值; (2)函数61y x=-与x 轴交于点C ,求△ABC 的面积. 四、解答题(每题4分,共12分)E ABCDO第14题图第17题图22.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。

2015北京通州区初三一模试题和答案

2015北京通州区初三一模试题和答案

通州区2015年初三模拟考试一、选择题(每题只有一个正确答案,共10个小题,每小题3分,共30分) 1.2-的绝对值是( )A .2±B .2C .12 D .12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320万人次.数据1320万用科学计数法表示正确的是( )A .113210⨯万 B .213.210⨯万 C .31.3210⨯万 D .41.3210⨯万 3.某几何体的三视图如图所示,这个几何体是( ) A .圆柱 B .三棱柱 C. 长方体D .圆锥4.下列等式一定成立的是( ). A .22a a a ⋅=B .22=÷a aC .22423a a a +=D .()33a a -=-5.如图,点A 、D 在射线AE 上,直线AB ∥CD ,∠CDE =140°, 那么∠A 的度数为( ) A .140° B .60° C .50°D .40° 6.一个多边形的每一个内角均为108°,那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95 90 85 80 人数4682那么20名学生决赛成绩的众数和中位数分别是( )A .85, 90B .85, 87.5C .90, 85D .95, 908.物理某一实验的电路图如图所示,其中K 1,K 2,K 3 为电路开关,L 1 ,L 2为能正常发光的灯泡.任意闭合开关K 1, K 2, K 3中的两个,那么能让两盏灯泡同时..发光的概率为( ) A .31B .32C .21D .619.如图,AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,那么sin ∠ABD 的值是( )A .43 B .34 C .35 D .45DCAOBK 2K 3 K 1L 1L 210.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB = y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则△ABC 的面积为( )DCABPA .4B .6C .12D .14二、填空题:(每题3分,共18分)11.分解因式:2a 2-4a +2=________________.12.使得分式321x -有意义的x 的取值范围是 . 13.燃灯佛舍利塔(简称燃灯塔)是通州八景之一,该塔始建于南北朝北周宇文时期,距今已有1300多年历史.燃灯塔距运河300 米,是通州的象征.某同学想利用相似三角形的有关知识来求 燃灯塔的高度.他先测量出燃灯塔落在地面上的影长为12米, 然后在同一时刻立一根高2米的标杆,测得标杆影长为0.5米, 那么燃灯塔高度为 米.14.生物学研究表明在8—17岁期间,男女生身高增长速度规律呈现如下图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是 岁,在 岁时男生女生的身高增长速度是一样的.15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的长等于 .yx74O 如图(1)如图(2)-4-34-2-112316.如图,在平面直角坐标系xOy 中,四边形ABOC 是正方形,点A 的坐标为(1,1).¼1AA 是以点B 为圆心,BA 为半径的圆弧;¼12A A 是以点O 为圆心,1OA 为半径的圆弧,¼23A A 是以点C 为圆心,2CA 为半径的圆弧,¼34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述做法得到的曲线12345AA A A A A ……称为“正方形的渐开线”,那么点5A 的坐标是 , 点2015A 的坐标是 .第15题图 第16题图 三、解答题(每题5分,共25分)17.如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D . 求证:AC =OD .18.计算:()120151122tan 6012-⎛⎫+--︒-- ⎪⎝⎭19.解不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩,并把不等式组的解集在数轴上表示出来.20.已知:2450x x +-=,求代数式22(1)(1)(2)x x x +---的值.21.如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (m ,3),B (-3,n )两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式 6x>kx +b 的解集.ABxy O yx A 3A 4A 2A 1C A O B通州区2013年至2014年三期自行车投放数量统计图(单位:辆)通州区2013年至2014年三期所投放的 自行车租赁点百分比统计图四、解答题(每题5分,共25分)22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.23.已知菱形ABCD 的对角线AC 与BD 相交于点E ,点F 在BC 的延长线上,且CF=BC ,连接DF ,点G 是DF 中点,连接CG .求证:四边形 ECGD 是矩形.24.为倡导“1公里步行、3公里单车、5公里汽车(地铁、轻轨)”出行模式, 2013年5月环保公共自行车正式“驶入”通州,通州区分三期投放白绿环保公共自行车.第一期投放租赁点以八通线通州北苑、梨园站为中心,共投放21个租赁点。

2015年各区一模27题及答案

2015年各区一模27题及答案

2015年各区中考数学一模试题第27题 1海淀2东城3西城4朝阳5丰台6石景山7昌平 8顺义9通州10大兴11怀柔12密云13平谷 14延庆15房山16燕山17门头沟解答题(本题共22分,第27题7分,第28题7分,第29题8分) 海淀一模27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.东城一模27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.西城一模27 已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.朝阳一模27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1的一个交点记为A ,与M 2的一个交点记为B ,点A 的横坐标是-3.(1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .①当点C 的横坐标为2时,直线n x y +=恰好经过正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的取值范围(直接写出结果).丰台一模27.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.石景山一模27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于(3,0)A ,B 两点.(1)求抛物线的表达式及点B 的坐标;(2)当23x -<<时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点(4,2)C 的直线(0)y kx b k =+≠与图象M在第三象限内有两个公共点,结合图象求b 的取值范围.顺义一模27.在平面直角坐标系xOy 中,抛物线21212y ax x a =+-+与y 轴交于C 点,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为-1.(1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为'P ,求点'P 的坐标; (3)将抛物线在A ,B 两点之间的部分(包括A , B 两点),先向下平移3个单位,再向左平移m (0m >)个单位,平移后的图象记为图象G ,若图象G 与直线'PP 无交点,求m 的取值范围.通州一模27.二次函数2(0)y ax bx c a =++≠的图象与一次函数1y x b =+k 的图象交于)10(,A 、B 两点,(1,0)C 为二次函数图象的顶点.(1)求二次函数2(0)y ax bx c a =++≠的表达式;(2)在所给的平面直角坐标系中画出二次函数2(0)y ax bx c a =++≠的图象和一次函数1y x b =+k 的图象;(3)把(1)中的二次函数2(0)y ax bx c a =++≠的图象平移后得到新的二次函数4444123123321213xOy22(0,)y ax bx c m a m =+++≠为常数的图象,.定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为1y 或2y ,如果1y ≠2y ,函数f 的函数值等于1y 、2y 中的较小值;如果1y =2y ,函数f 的函数值等于1y (或2y ).” 当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.大兴一模27.已知抛物线222y x x k =++-与x 轴有两个不同的交点.(1) 求k 的取值范围;(2)若k 为正整数,且该抛物线与x 轴的交点都是整数点,求k 的值.(3)如果反比例函数my x=的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足1<0x <2,请直接写出m 的取值范围.怀柔一模27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a 为正整数. (1)求a 的值.(2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m 2+1个单位,当 -2≤x≤1时,二次函数有最小值-3,求实数m 的值.23.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区,两地区与该农机租赁公司商定每天的租赁价格见下表:每台甲型收割机的租金 每台甲型收割机的租金 A 地区 1800 1600 B 地区16001200(1)派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元)求x 与y 间的函数关系时,并写出x 的取值范围;(2)若使农机租菱公司这50台联合收割机一天的租金总额比低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议。

2015--2016通州初三一模数学试题及答案

2015--2016通州初三一模数学试题及答案

2015-2016通州初三模拟考试(一模) 数学试卷 2016.4一、选择题(本题共30分,每小题3分)1. 2015年9月3日在北京举行了中国人民抗日战争暨世界反法西斯战争胜利70周年纪念活动,正式受阅12000人. 将12000用科学记数法表示正确的是( )A .41210⨯ B .51.210⨯ C .41.210⨯ D .40.1210⨯ 2.如图,数轴上有A 、B 、C 、D 四点,其中表示互为相反数的两个实数所对应的点是( )A .点A 与点DB .点A 与点C C .点B 与点D D . 点B 与点C 3.下列各式运算的结果为6a 的是( )A .33a a + B .33()a C .33a a ⋅ D .122a a ÷4. 下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D . 5.在一定温度下向一定量的水中不断加入食盐(NaCl ),那么能表示食盐溶液的溶质质量分数y 与加入的食盐(NaCl )的量x 之间的变化关系的图象大致是( )6.在一个不透明的盒子中装有m 个除颜色外完全相同的球,这m 个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为15,那么m 的值是( ) A .12 B .15 C .18 D .21 7.如图,把含有45︒角的直角三角板的两个顶点放在一个矩形纸条的对边上.如果∠1=20︒,那么∠2的度数是( )A. 30︒B. 25︒C. 20︒D. 15︒8.为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的( )A .中位数B .平均数C .众数D .方差9.如图,为测量池塘边上两点A 、B 之间的距离,小明在池塘的一侧选取一点O ,测 得OA 、OB 的中点分别是点D 、E ,且DE =14米,那么A 、B 间的距离是( )A .18米B .24米C .30米D .28米D C BA -3-2-1021D.C.B.A.xyO10. 如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(-2,3),点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是( )A .(0,0)B .(-1,1)C .(-1,0)D .(-1,-1) 二、填空题(本题共18分,每小题3分)11. 已知3m n +=,2m n -=,那么22m n -的值是 .12. 写出图象经过点(-1,1)的一个函数的表达式是______________________________.13.手机悦动圈是记录步行数和热量消耗数的工具,下表是孙老师用手机悦动圈连续记录的一周当中,每孙老师发现每天步行数和卡路里消耗数近似成正比例关系.孙老师想使自己的卡路里消耗数达到300大卡,预估他一天步行约为__________步.(直接写出结果,精确到个位)14. 我们知道,无限循环小数都可以化成分数.例如:将0.3g化成分数时,可设0.3x =g,则有3.310x =g,1030.3x =+g,103x x =+,解得13x =,即0.3g 化成分数是13.仿此方法,将0.45g g 化成分数是____________.15.在学习“用直尺和圆规作射线OC ,使它平分∠AOB ”时,教科书介绍如下:*作法:(1)以O 为圆心,任意长为半径作弧,交OA 于D ,交OB 于E ;(2)分别以D ,E 为圆心,以大于12DE的同样长为半径作弧,两弧交于点C ;(3)作射线OC .则OC 就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC 就是∠AOB 的平分线. 小华的思路是连接DC 、EC ,可证△ODC ≌△OEC ,就能得到∠AOC =∠BOC . 其中证明△ODC ≌△OEC 的理由是_______________________________________.16. 在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理. 如图1是由边长 相等的小正方形和直角三角形构成的, 可以用其面积关系验证勾股定理. 图2 是由图1放入矩形内得到的, 90BAC ∠=︒,AB =3,AC =4,则D , E ,F ,G ,H ,I 都在矩形KLMJ那么矩形KLMJ 的面积为__________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17. 计算:0312(π2016)4cos 60()2--+--︒+;图118. 解不等式组⎪⎩⎪⎨⎧->--≥2215143x x x x ,并把它的解集在数轴上表示出来.19.已知2210a a --=,求代数式()()()222a a b a b b -++-+的值.20.如图,在△ABC 中,AC =BC ,BD ⊥AC 于点D ,在△ABC 外作∠CAE =∠CBD ,过点C 作CE ⊥AE 于点E .如果∠BCE =140︒,求∠BAC 的度数.21.通州区运河两岸的“运河绿道”和步行道是健身的主要场地之一. 杨师傅分别体验了60公里的“运河绿道”骑行和16公里的健步走,已知骑行的平均速度是健步走平均速度的4倍,结果健步走比骑行多用了12分钟,求杨师傅健步走的平均速度是每小时多少公里?22. 如图,在平面直角坐标系中,一次函数y kx b =+与反比例函数(0)my m x=≠的图象交于点A (3,1),且过点B (0,-2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上一点,且ABP △的面积是3,求点P 的坐标.23.如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E . (1)求证:四边形AECD 是菱形;(2)如果点E 是AB 的中点,AC =4,EC =2.5,求四边形ABCD 的面积.24. 已知关于x 的一元二次方程22(21)0x k x k k -+++=. (1)求证:方程有两个不相等的实数根; (2)当方程有一个根为5时,求k 的值.25. 北京市初中开放性实践活动从2015年10月底进入正式实施阶段. 资源单位发布三种预约方式:自主选课、团体约课、送课到校,可供约25万人次学生学习. 截至2016年3月底,某区统计了初一学生参加自主选课人次的部分相关数据,绘制的统计图如下:根据以上信息解答下列问题: (1)直接写出扇形统计图中m 的值;(2)据2016年3月底预约数据显示,该区初一学生有12000人次参加自主选课,而团体约课比自主选课多8000人次,送课到校是团体约课的2.5倍. 请在下图中用折线统计图将该区初一学生自主选课、团体约课、送课到校人次表示出来;(3)根据上面扇形统计图的信息,请你为资源单位提一条积极的建议.截至2016截至2016年3月底,某区初一学生 自主选课人次分布统计图其他类 12%电子与控制 m %能源与材料6%结构与机械22%健康与安全18%自然与环境 10%信息与数据 2%26.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE ⊥PD ,交PD的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ; (2)连结OC ,如果PD=ABC=60︒,求OC 的长.27.已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C .(1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;28.△ABC 中,45ABC ∠=︒,AB BC ≠,BE AC ⊥于点E ,AD BC ⊥于点D .(1)如图1,作ADB ∠的角平分线DF 交BE 于点F ,连接AF . 求证:FAB FBA ∠=∠; (2)如图2,连接DE ,点G 与点D 关于直线AC 对称,连接DG 、EG .①依据题意补全图形;②用等式表示线段AE 、BE 、DG 之间的数量关系,并加以证明.29. 对于⊙P 及一个矩形给出如下定义:如果⊙P 上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A2),顶点C 、D 在x 轴上,且OC =OD. (1)当⊙P 的半径为4时,①在P 1(0,3-),P 2(3),P 3(-1)中可以成为矩形ABCD 的“等距圆”的圆心的是_________________________; ②如果点P在直线13y x =-+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标; (2)已知点P 在y 轴上,且⊙P 是矩形ABCD 的“等距圆”,如果⊙P 与直线AD 没有公共点,直接写出点P 的纵坐标m 的取值范围.图2图12016届通州初三数学一模参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11. 6; 12. 1y x =-、y x =- (答案不唯一); 13.7500; 14. 511或4599; 15. SSS ; 16. 110;三、解答题(本题共72分,) 17. 解:原式=121482+-⨯+;………………… 4分; =9. ………………… 5分.18.解不等式组: 3415122, ①②x x x x .≥-⎧⎪⎨->-⎪⎩解:解不等式①,得1x ≤; ………………… 2分;解不等式②,得1x >-; ………………… 4分;………………… 5分.所以这个不等式组的解集是11x -<≤.19. 已知2210a a --=,求代数式()()()222a a b a b b -++-+的值.解:原式=222244a a a b b -++-+, ………………… 2分;=2244a a -+, ………………… 3分;∵2210a a --=,∴221a a -=, ………………… 4分;∴2242a a -=∴原式=246+=. ………………… 5分. 20.解:∵BD ⊥AC ,CE ⊥AE ,∴90BDC E ∠=∠=︒,∵∠CAE =∠CBD ,∴△BDC ∽△AEC , ………………… 2分; ∴∠BCD =∠ACE , ∵∠BCE =140︒,∴∠BCD =∠ACE =70︒, ………………… 4分; ∵AC =BC ,∴∠ABC =∠BAC=55︒. ………………… 5分.21.解:设杨师傅健步走的平均速度是每小时x 公里. ………… 1分;根据题意得:166012460x x -=. ………… 3分; 解得:5x =, ………… 4分; 经检验:5x =是原方程的根且符合实际问题的意义,答:杨师傅健步走的平均速度是每小时5公里. ………… 5分. 22. 解:(1)∵反比例函数(0)my m x=≠的图象过点A (3,1), ∴31m =∴3m =.∴反比例函数的表达式为3y x=. ………………… 1分; ∵一次函数y kx b =+的图象过点A (3,1)和B (0,-2). ∴312k b b +=⎧⎨=-⎩,解得:12k b =⎧⎨=-⎩,∴一次函数的表达式为2y x =-. ………………… 3分; (2)令0y =,∴20x -=,2x =,∴一次函数2y x =-的图象与x 轴的交点C 的坐标为(2,0). ∵S △ABP = 3,1112322PC PC ⋅+⋅=. ∴2PC =,∴点P 的坐标为(0,0)、(4,0). ………………… 5分; 23.(1)证明: ∵AB ∥CD ,CE ∥AD ,∴四边形AECD 是平行四边形, ………………… 1分;∵AC 平分∠BAD , ∴EAC DAC ∠=∠,∵AB ∥CD ,∴EAC ACD ∠=∠, ∴DAC ACD ∠=∠,∴AD =CD , ………………… 2分; ∴四边形AECD 是菱形. (2)∵四边形AECD 是菱形,∴AE =CE ,∴EAC ACE ∠=∠, ∵点E 是AB 的中点, ∴AE =BE , ∴B ECB ∠=∠,∴90ACE ECB ∠+∠=︒,即90ACB ∠=︒ ………………… 3分; ∵点E 是AB 的中点,EC =2.5, ∴AB =2EC=5,∴BC =3. ………………… 4分; ∴S △ABC =162BC AC ⋅=. ∵点E 是AB 的中点,四边形AECD 是菱形, ∴S △AEC =S △EBC =S △ACD =3.∴四边形ABCD 的面积=S △AEC +S △EBC +S △ACD =9. ………………… 5分; 24. (1)证明:△=()()22214k k k -+-+⎡⎤⎣⎦=2244144k k k k ++-- =10>∴方程有两个不相等的实数根; ………………… 2分; (2)∵方程有一个根为5,∴2255(21)0k k k -+++=, 29200k k -+=∴14k =,25k = ………………… 5分. 25.(1)30m =; ………………… 1分;(2)画图正确 ………………… 4分; (3)积极的建议 ………………… 5分.26.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE ⊥PD ,交PD的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ; (2)连结OC ,如果PD=ABC=60︒,求OC 的长. (1)证明:连结OD . ∵OA =OD ,∴DAO ADO ∠=∠,∵PD 切⊙O 于点D ,∴PD ⊥OD ,∵BE ⊥PD ,∴OD ∥BE , …………………∴E ADO ∠=∠,∴E DAO ∠=∠,………………… 2分;∴AB =BE .(2)解:∵OD ∥BE ,∠ABC=60︒, ∴60DOP ABC ∠=∠=︒,∵ PD ⊥OD ,∴tan DPDOP OD∠=,∴OD= ∴2OD =, ∴4OP =, ∴6PB =, ∴sin PCABC PB∠=, ∴26PC =, ∴PC =∴DC = ………………… 4分;截至2016∴222DC OD OC +=,∴22227OC =+=,∴OC =. ………………… 5分;27. 解:(1)根据题意得:1413m n m n +=-⎧⎨+=-⎩解得:43m n =-⎧⎨=⎩二次函数的表达式为243y x x =-+. ………………… 2分; 顶点坐标为(2,-1) ………………… 3分; (2)39b <<. ………………… 5分; (3)∵()1,P x c 和点()2,Q x c 在函数243y x x =-+的图象上,∴PQ ∥x 轴,∵二次函数243y x x =-+的对称轴是直线2x =, 又∵12x x <,2PQ a =.∴12x a =-,22x a =+. ………………… 6分;∴()()2212612261x ax a a a a a -++=--+++=5. ………………… 7分. 28.证明:(1)∵AD BC ⊥,45ABC ∠=︒∴45BAD ∠=︒∴AD BD =,………………… 1分; ∵DF 平分ADB ∠ ∴12∠=∠, 在△ADF 和△BDF 中 ∵=,1=2,=,AD BD DF DF ⎧⎪∠∠⎨⎪⎩, ∴△ADF ≌△BDF . ∴AF BF =.∴FAB FBA ∠=∠. ………………… 2分; 或用“三线合一”(2) 补全图形 ………………… 3分;图1数量关系是:GD AE BE +=. ………………… 4分;过点D 作DH DE ⊥交BE 于点H ∴90ADE ADH ∠+∠=︒, ∵AD BC ⊥,∴90BDH ADH ∠+∠=︒, ∴ADE BDH ∠=∠,∵AD BC ⊥,BE AC ⊥,AKE BKD ∠=∠, ∴DAE DBH ∠=∠, 在△ADE 和△BDH 中∵=,=,DAE DBH AD BD ADE BDH ∠=∠⎧⎪⎨⎪∠∠⎩, ∴△ADE ≌△BDH .∴DE DH =,AE BH =, ………………… 5分; ∵DH DE ⊥,∴45DEH DHE ∠=∠=︒, ∵BE AC ⊥, ∴45DEC ∠=︒,∵点G 与点D 关于直线AC 对称, ∴AC 垂直平分GD ,∴GD ∥BE ,45GEC DEC ∠=∠=︒, ∴90GED EDH ∠=∠=︒,∴GE ∥DH ,………………… 6分;∴四边形GEHD 是平行四边形∴GD EH =,………………… 7分. ∴GD AE BE +=.或过点D 作DH DE ⊥交AC 的延长线于点H. 29. (1)当⊙P 的半径为4时,①P 1(0,3-),P 2(3); ………………… 2分; ②如果点P在直线13y x =-+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标; 解:由题意可知:B(2)、D0)发现直线1y x =+经过点B 、D. ………………… 3分;∴直线1y x =+与y 轴的交点E 为(0,1), ∵矩形ABCD 且OC =OD.∴点E 到矩形ABCD 四个顶点距离相等. ∴PE =4,△BFE ≌△DOE∴BF =ODOE =EF =1,图2图2∴2222214ED EO OD =+=+=,∴2ED =,………………… 4分;∴EB =ED =2,当点P 在x 轴下方时,可证△DNP ≌△DOE ,∴DN =OD OE =PN =1,∴点P 的坐标为(-1);………………… 5分; 当点P 在x 轴上方时,可证△EPM ∽△EBF ,∴PM =2BF =ME =2EF =2,∴点P 的坐标为(-,3). ………………… 6分;(2)11m <<m ≠1. ………………… 8分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通州区2015年初三模拟考试数学试卷2015年4月一、选择题(每题只有一个正确答案,共10个小题,每小题3分,共30分) 1.2-的绝对值是( )A .2±B .2C .12D .12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320万人次.数据1320万用科学计数法表示正确的是( ) A .113210⨯万 B .213.210⨯万 C .31.3210⨯万D .41.3210⨯万3.某几何体的三视图如图所示,这个几何体是( )A .圆柱B .三棱柱 C.长方体D .圆锥4.下列等式一定成立的是(). A .22a a a ⋅=B .22=÷a aC .22423a a a +=D .()33a a -=-5.如图,点A 、D 在射线AE 上,直线AB ∥CD ,∠CDE =140°,那么∠A 的度数为() A .140° B .60° C .50°D .40° 6.一个多边形的每一个内角均为108°,那么这个多边形是( ) A .七边形B .六边形C .五边形D .四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是()A .85,90B .85, 87.5C .90,85D .95,908.物理某一实验的电路图如图所示,其中K 1,K 2,K 3 为电路开关,L 1 ,L 2为能正常发光的灯泡.任意闭合开关K 1,K 2,K 3中的两个,那么能让两盏灯泡同时..发光的概率为( ) A .31B .32 C .21D .619.如图,AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,那么sin ∠ABD 的值是()A .43B .34C .35D .4510.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB = y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则△ABC 的面积为()ADAA .4B .6C .12D .14二、填空题:(每题3分,共18分)11.分解因式:2a 2-4a +2=________________.12.使得分式321x 有意义的x 的取值范围是____________. 13.燃灯佛舍利塔(简称燃灯塔)是通州八景之一,该塔始建于南北朝北周宇文时期,距今已有1300多年历史.燃灯塔距运河300米,是通州的象征.某同学想利用相似三角形的有关知识来求燃灯塔的高度.他先测量出燃灯塔落在地面上的影长为12米,然后在同一时刻立一根高2米的标杆,测得标杆影长为0.5米,那么燃灯塔高度为___________米.14.生物学研究表明在8—17岁期间,男女生身高增长速度规律呈现如下图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是________岁,在_______岁时男生女生的身高增长速度是一样的.15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 在 AB 上的点D 处,折痕交OA 于点C ,则 AD 的长等于___________.16.如图,在平面直角坐标系xOy 中,四边形ABOC 是正方形,点A 的坐标为(1,1). ¼1AA 是以点B 为圆心,BA 为半径的圆弧;¼12A A 是以点O 为圆心,1OA 为半径的圆弧,¼23A A 是以点C 为圆心,2CA 为半径的圆弧,¼34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述做法得到的曲线12345AA A A A A ……称为“正方形的渐开线”,那么点5A 的坐标是___________, 点2015A 的坐标是___________.三、解答题(每题5分,共25分)17.如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作如图(1)AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D . 求证:AC =OD .18()1201512tan 6012-⎛⎫--︒-- ⎪⎝⎭19.解不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩,并把不等式组的解集在数轴上表示出来.20.已知:2450x x +-=,求代数式22(1)(1)(2)x x x +---的值.21.如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x 的图象交于A (m ,3),B (-3,n )两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式6x >kx +b 的解集.四、解答题(每题5分,共25分)22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.23.已知菱形ABCD 的对角线AC 与BD 相交于点E ,点F 在BC 的延长线上,且CF=BC ,连接DF ,点G 是DF 中点,连接CG .求证:四边形 ECGD 是矩形.通州区2013年至2014年三期 自行车投放数量统计图(单位:辆) 通州区2013年至2014年三期所投放的 自行车租赁点百分比统计图24.为倡导“1公里步行、3公里单车、5公里汽车(地铁、轻轨)”出行模式,2013年5月环保公共自行车正式“驶入”通州,通州区分三期投放白绿环保公共自行车.第一期投放租赁点以八通线通州北苑、梨园站为中心,共投放21个租赁点。

截止到2014年年底,全区公共自行车总数已达到10000辆.以下是根据相关数据绘制的通州区内分三期投放环保公共自行车的数量统计图(如图①),以及投放的租赁点统计图(如图②);图①图②根据以上信息解答下列问题:(1)补全条形统计图和扇形统计图;(2)请根据以上信息计算,通州区2014年底第三期投入使用的公共自行车租赁点有多少个?(3)另有调查数据显示:地铁站周边的公共自行车站点的车桩日使用率较高,居住区和办公区附近站点的车桩日使用率较低,如果按全区站点的车桩日平均取车4人次/车桩,每人次骑行距离约3km ,折算成驾车出行每10km 消耗汽油1升,按照“消耗1升汽油=排0.63kg 碳”来计算,2014年底全区约有8000个车桩.根据以上数据,请计算公共自行车租赁这一项通州区一天大约减少碳排放_______________kg25.如图,△ABC 内接于⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC ,交AC 于点E ,交PC 于点F ,连接AF . (1)求证:AF 是⊙O 的切线;(2)已知⊙O 的半径为4,AF=3,求线段AC 的长.26.(1)请你根据下面画图要求,在图①中完成画图操作并填空.如图①,△ABC 中,∠BAC =30°,∠ACB =90°,∠P AM =∠A . 操作:(1)延长BC .(2)将∠P AM 绕点A 逆时针方向旋转60°后,射线AM 交BC 的延长线于点D . (3)过点D 作DQ//AB .(4)∠P AM 旋转后,射线AP 交DQ 于点G . (5)连结BG .O F PECAB结论:ABAG=__________. (2)如图②,△ABC 中,AB =AC =1,∠BAC =36°,进行如下操作:将△ABC 绕点A 按逆时针方向旋转α度角,并使各边长变为原来的n 倍(n >1),得到△''AB C .当点B 、C 、'B 在同一条直线上,且四边形''ABB C 为平行四边形时(如图③),求α和n 的值.五、解答题(第27题、28题每题7分,第29题8分,共22分)27.二次函数2(0)y ax bx c a =++≠的图象与一次函数1y x b =+k 的图象交于)10(,A 、B 两点,(1,0)C 为二次函数图象的顶点.(1)求二次函数2(0)y ax bx c a =++≠的表达式;(2)在所给的平面直角坐标系中画出二次函数2(0)y ax bx c a =++≠的图象和一次函数1y x b =+k 的图象;(3)把(1)中的二次函数2(0)y ax bx c a =++≠的图象平移后得到新的二次函数22(0,)y ax bx c m a m =+++≠为常数的图象,.定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为1y 或2y ,如果1y ≠2y ,函数f 的函数值等于1y 、2y 中的较小值;如果1y =2y ,函数f 的函数值等于1y (或2y ).”当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.x28.在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF =AE ,连接BE 、EF .(1)如图1,当E 是线段AC 的中点时,易证BE =EF .(2)如图2,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论:_____.(填“成立”或“不成立”)(3)如图3,当点E 是线段AC 延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.29.如图,在平面直角坐标系中,已知点A (2,3)、B (6,3),连结AB .若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D 719(,)55,是否线段AB 的“邻近点”____________(填“是”或“否”);(2)若点H (m ,n )在一次函数1-=x y 的图象上,且是线段AB 的“邻近点”,求m 的取值范围. (3)若一次函数y x b =+的图象上至少存在一个邻近点,直接写出b 的取值范围.图1 图2 图32015年通州区初三数学中考模拟试卷答案2015.4一、选择题:(每题3分,共30分)1. B2. C3. C4. D.5. D.6. C.7. B.8.A9. D 10. B二、填空题:(每题3分,共18分)11. 2(a-1)2;12.12x≠;13.48m;14. 13,11;15. 5π;16.(6,0),(-2015,1).三、解答题:(每题5分,共25分)17.解:证明:∵∠AOB=900,∴∠AOC+∠BOD=90°,………..(1分)∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,………………..(2分)∴∠A+∠AOC=900,∴∠A=∠BOD…………………………..(3分)又∵OA=OB,∴△AOC≌△OBD.………………………………………..(4分)∴AC=OD.………………………………………..(5分)18. 解:()120151122tan6012-⎛⎫+--︒--⎪⎝⎭=232231--+…………………………………….(4分)=1-.................................................................(5分)19. 解:51342133x xx->-⎧⎪⎨-≥-⎪⎩由①得:23->x…………………………………………..(1分)由②得:1≤x………………………………………..(2分)∴不等式组的解集为:123≤<-x………………….(3分) ……………………..(5分)20.解:原式=()()222-1--44x x x+…………………………………2分= 222-2-+4-4x x x=2+4-6x x. ……………………………………………………3分∵2450x x+-=245x x∴+=. ………………………………………………………4分∴原式=2+4-61x x=-. …………………………………………5分21.解:(1)点在的图象上………………………………..(1分)-221o.………………………………..(2分)点在的图象上…………………………………..(3分)解得.……………………………………..(4分)(2)…………………………..(5分)四、(每题5分,共25分)22. 解:设原计划平均每天铺设排污管道x米,依题意得2%)101(22002200=+-xx………………………………..(2分)解这个方程得:x=100(米)…………………………..(3分)经检验,x=100是这个分式方程的解,………………..(4分)∴这个方程的解是x=100答:原计划平均每天修绿道100米.………………..(5分)23.证明:(1) CF=BC,∴C点是BF中点……………………..(1分)点G是DF中点∴CG是△DBF中位线∴CG//BD, CG=BD12……..(2分)四边形A BCD是菱形∴AC⊥BD,DE=BD12,…………………………………..(3分)∴∠DEC=90°,CG= DE………………………………..(4分)CG//BD,∴四边形ECGD是矩形.………………………………..(5分)24.(1)………………………………………..(2分)(2)(个)答:通州区2014年底第三期投入使用的公共自行车站点有198个.EAB FG………………………………………..(3分) (3)604863.0)800043(101=⨯⨯⨯(kg)答:通州区一天大约为北京减少碳排放6048kg. ……..(5分) 25.(1)证明:连接OC ,…………………..(1分)∵AB 是⊙O 直径,∴∠BCA =90°∵OF ∥BC ∴∠AEO =90°, ∴OF ⊥AC ,∵OC =OA , ∴∠COF =∠AOF , ∴△OCF ≌△OAF ∴∠OAF =∠OCF∵PC 是切线∴∠OCF =90°,……………………..(2分) ∴FA ⊥OA ,∴AF 是⊙O 的切线……………………..(3分) (2)∵⊙O 的半径为4,AF =3,FA ⊥OA ,∴OF5 ∵FA ⊥OA ,OF ⊥AC ,∴AF ·OA = OF ·EA ,……………………………..(4分) ∴3×4= 5×EA ,解得AE =125,AC =2AE =245………………………………………..(5分)26.(1)…………………………..(1分)21=AG AB ………………………………………………..(2分)(2)根据题意得,''36C AB CAB ∠=∠=︒,AB’= nABα=∠'CAC∵四边形ABB 'C '为平行四边形,∴1''===AC AB C B ,'AC ∥'BB , ∴'''36C AB AB B ∠=∠=︒,, ∵AB =AC ,∠BAC =36°, ∴72ABC ACB ∠=∠=︒, ∴''72CAC B AB α=∠=∠=︒,……………………………..(3分) ∵∠BAC =36°, ∴'36B AC ∠=︒,∴''36B AC AB C ∠=∠=︒,AB C EPFO 图②p∴1'==C B AC∵B B ∠=∠,'36BAC AB B ∠=∠=︒, ∴△ABC ∽△'B BA , ∴'AB BCBB AB=, ∴解得251'+=BB (舍负),…………………..(4分)∵1n >,∴12n +=.………………………………………..(5分)五、(27、28题7分,29题8分,共22分) 27.解:(1)设抛物线解析式为2)1(-=x a y , 由抛物线过点)10(,A ,可得122+-=x x y ………..(2分) (2)如图:………………………………………..(5分)(3)-4<m <0………………………………………..(7分)28.(2)结论:成立.………………………..(1分) (3)结论:成立. ………………………..(2分)证明:过点E 作EG ∥BC 交AB 延长线于点G ,……………..(3分) ∵四边形ABCD 为菱形, ∴AB =BC ,又∵∠ABC =60°,∴△ABC 是等边三角形, ∴AB =AC ,∠ACB =60°, …………………………..(4分) 又∵EG ∥BC ,∴∠AGE =∠ABC =60°, 又∵∠BAC =60°,∴△AGE 是等边三角形, ∴AG =AE=GE ,∴BG =CE , …………………………..(5分) 又∵CF =AE ,∴GE =CF , ………………………………………..(6分) 又∵∠BGE =∠ECF =60°,1。

相关文档
最新文档