2015年郑州九年级一模数学试卷及答案(完整版)
郑州市2015-2016学年九年级第一次质量预测数学试卷含解析

根据平行线判定条件,内错角相等,两直线平行,选 D
【答案】D
5.下列计算正确的 是( )
A.a3÷a 2=a
B.( - 2a2 )3=8a6
C.2a2 +a2 =3a4
D.( a - b )2=a2 - b2
【考点】幂的运算
【试题解析】
同底数幂乘或者除,底数不变,指数相加减,所以选 A
【答案】A
6.在下列调查中,适宜采用普查方式的是( )
河南省郑州市 2015—2016 学年九年级第一次质量预测数学试卷
一.选择题(每小题 3 分,共 24 分)
1.在:-1,0,2, 2 四个数中,最大的数是 ( )
A.-1
B.0
C.2
【考点】实数大小比较
【试题解析】
D. 2
正数比 0 和负数大,所以在 C 和 D 中选, ≈1.414<2,所以选 C
A.了解全国中学生的视力情况
B.了解九(1)班学生鞋子的尺码情况
C.监测一批电灯泡的使用寿命
D.了解郑州电视台《郑州大民生》栏目的收视率
【考点】数据的收集与整理
【试题解析】
采用普查方式,一般是调查对象比较少,而且不是像灯泡一样是损耗的,所以选 B
【答案】B
7.抛物线 y=(x﹣1)2+2 的顶点坐标是( ) A.(-1,2) B.(-1,- 2) C.(1,-2) D.(1,2) 【考点】二次函数的图像及其性质
【试题解析】 根据二次函数的顶点式,二次函数的顶点坐标是(1,2),选 D
【答案】D 8.如图,矩形 ABCD 中,AB=4,AD=6,延长 BC 到点 E,使 CE=2,连接 DE,动点 P 从点 B 出发,以 每秒 2 个单位的速度沿 BC-CD-DA 向终点 A 运动,设点 F 的运动时间为 t 秒,当 t 的值为( )秒时, △ABP 和△DCE 全等。 A.1 B.1 或 3 C.1 或 7 D.3 或 7
2015届中考一模数学试卷及答案

计
c θ
2011 2012 2013 2014 2015 年
(第 24 题图)
C D E A (第 7 题图) (第 8 题图)
· O (第 9 题图)
B
10. 在面积为 60 的□ABCD 中,过点 A 作 AE⊥直线 BC 于点 E,作 AF⊥直线 CD 于点 F,若 AB=10,BC =12,则 CE+CF 的值为…………………………………………( ▲ ) A. 22+11 3 C. 22+11 3或 22-11 3 B. 22-11 3 D. 22+11 3或 2+ 3
二、填空题(本大题共 8 小题,每小题 2 分,共计 16 分.请把答案直接填写在答题卡相应位置 上.) .......
1
11.已知|x|=3,则 x 的值是
▲
. ▲ .
12.函数 y= 3-x中自变量 x 的取值范围是 ▲ .
13.据报载,2014 年我国发展固定宽带接入新用户 25000000 户,将 25000000 用科学记数法可表示为 14.已知扇形的圆心角为 120º,半径为 6cm,则扇形的弧长为 为矩形,只需再加上的一个条件是 ▲ . ▲
22.(本题满分 8 分)在一个不透明的布袋里装有 4 个完全相同的标有数字 1、2、3、4 的小球. 小明从 布袋里随机取出一个小球, 记下数字为 x, 小红从布袋里剩下的小球中随机取出一个, 记下数字为 y. 算由 x、y 确定的点(x,y)在函数 y=-x+5 的图象上的概率. 23.(本题满分 8 分)如图所示,A、B 两个旅游点从 2011 年至 2015 年“清明小长假”期间的旅游人数 变化情况分别用实线和虚线表示,请解答以下问题: (1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年? (2)求 A、B 两个旅游点从 2011 年到 2015 年旅游人数的平均数和方差,并从平均数和方差的角度,用一 句话对这两个旅游点的情况进行评价; (3)A 旅游点现在的门票价格为每人 80 元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数 为 4 万人. A 旅游点决定提高门票价格来控制游客数量. 已知游客数量 y(万人)与门票价格 x(元) x 之间满足函数关系 y=5- . 若要使 A 旅游点的游客人数不超过 4 万人,则门票价格至少应提高多 100 少元?
九年级郑州一模试卷数学【含答案】

九年级郑州一模试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。
A. y = x²B. y = |x|C. y = x³D. y = x² + 13. 已知等差数列{an}中,a1=3,公差d=2,则a10=()。
A. 21B. 19C. 17D. 154. 下列方程中,属于一元二次方程的是()。
A. x + y = 1B. x² + y = 1C. x² + x + 1 = 0D. x³ + x² + x + 1 = 05. 在直角坐标系中,点P(2, -3)关于y轴的对称点是()。
A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, 3)二、判断题(每题1分,共5分)1. 任何两个奇函数的和一定是偶函数。
()2. 一元二次方程的解一定是实数。
()3. 对角线互相垂直的四边形一定是菱形。
()4. 两个等差数列的对应项相加得到的新数列一定是等差数列。
()5. 任何两个正数的算术平均数大于它们的几何平均数。
()三、填空题(每题1分,共5分)1. 已知等差数列{an}中,a1=1,公差d=3,则a5=______。
2. 若一个三角形的两边长分别为3和4,则第三边的长度范围是______。
3. 两个相同的正数相乘,结果为______。
4. 一元二次方程ax² + bx + c = 0(a≠0)的判别式是______。
5. 若直角三角形的两条直角边长分别为3和4,则斜边长为______。
四、简答题(每题2分,共10分)1. 请简述等差数列和等比数列的定义。
2. 请解释一元二次方程的根的判别式。
3. 请说明三角形的面积公式。
4. 请解释函数的单调性。
5. 请简述直角坐标系中点的坐标表示方法。
2015届九年级一模数学试题及答案

一、选择题(每题3分,共24分)1.-8的绝对值是( ▲ ) A .-8 B .8 C .±8D .-182. 下列说法不正确...的是( ▲ ) A .一组邻边相等的矩形是正方形 B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形3、一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是( ▲ ) A .61 B . 21 C . 31D .32 4. 一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的高为L 与这个圆柱的底面半径r 之间的函数关系为( ▲ )A 、正比例函数B 、反比例函数C 、一次函数D 、二次函数5.已知等腰三角形的一边等于3,一边等于6,则它的周长为( ▲ ) A 、12 B 、12或15 C 、15 D 、以上都不对6.如图,几个完全相同的小正方体组成一个几何体,这个几何体的 三视图中面积最大的是( ▲ )A.主视图B.左视图C.俯视图D.主视图和左视图7.函数y=ax 2-2与xa =y (a ≠0)在同一直角坐标系中的图象可能是( ▲ )8、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论: ①240b ac ->;②0abc >;③b=-2a ④930a b c ++<. 其中, 正确结论的个数是 ( ▲ ) (A )1 (B )2 (C )3 (D )4 二.填空题(每题3分,共24分)9.因式分解:ax 2-4ax+4a=_________.10如图,AB 是⊙O 的直径,点C 、D 都在⊙O 上,若∠C=20°,则∠ABD 的度数等于九年级数学第1页(共3页)第(8)题y xO1x =1- 2-11.如图,将矩形纸片ABC (D )折叠,使点(D )与点B 重合,点C 落在点C '处,折痕为EF ,若 20=∠ABE ,那么C EF '∠的度数为 度。
河南省郑州市2015届九年级第一次质量测评(一模)数学试

2015年郑州市九年级第一次质量预测模拟(数学)(答案)一、选择题(每题3分,共24分)题号12345678答案D C B D A B C B二、填空题(每题3分,共21分)题号9101112131415答案485621x-<<-19321或2三、解答题(本大题8分,共75分)16.原式=====,∵x2﹣1≠0,x+3≠0,x﹣1≠0,x+1≠0,∴取x=2,代入得:原式==.17. 解:(1)本次抽样测试的学生人数是:124030%=(人),故答案为:40;(2)根据题意得:360°×640=54°,C级的人数是:40﹣6﹣12﹣8=14(人),如图:(3)根据题意得:3500×840=700(人),(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)=612=12.18. 解:设CD 为x 米. ∵∠ACD=90°,∴在直角△ADC 中,∠DAC=30°,AC=CD ÷tan30°=3x , 在直角△BCD 中,∠DBC=45°,BC=CD=x ,BD=2x 37x x -=又∵2≈1.414,3≈1.732, ∴x=10米,则小明此时所收回的风筝的长度为:AD-BD=2x-2x 所以x=6米19.20. 证明:在正方形ABCD 中,AB=BC ,∠ABC=∠B, 在△ABM 和△B CP 中, AB BC ABC B CP BM =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△BCP (SAS ), ∴AM=BP ,∠BAM=∠CBP , ∵∠BAM+∠AMB=90°, ∴∠CBP+∠AMB=90°, ∴AM ⊥BP ,∵AM 并将线段AM 绕M 顺时针旋转90°得到线段MN , ∴AM ⊥MN ,且AM=MN , ∴MN ∥BP ,∴四边形BMNP 是平行四边形; (2)解:BM=MC .理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°, ∴∠BAM=∠CMQ , 又∵∠B=∠C=90°, ∴△ABM ∽△MCQ , ∴AB MC =AM MQ , ∵△MCQ ∽△AMQ , ∴△AMQ ∽△ABM , ∴AB AM BM MQ =, ∴AB AB MC BM =, ∴BM=MC .21. 根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+.⑵22(60)(120)1807200(90)900W x x x x x =-⋅-+=-+-=--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤, ∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. ⑶由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤. 22. 解析:(2)AE=CD ,AE ⊥CD , ∵∠DBE=∠ABC=90°, ∴∠ABE=∠DBC , 在△AEB 和△CDB 中,∴△AEB ≌△CDB ,∴AE=CD ,∠EAB=∠DCB ,∵∠DCB+∠COB=90°,∠AOK=∠COB , ∴∠KOA+∠AOK=90°, ∴∠AKC=90°, ∴AE ⊥CD ;(3)AE=1kCD ,AE ⊥CD ,∵BC=kAB ,DB=kEB ,∴ABBC=BEBD=1k,∴BE BD AB BC=,∵∠DBE=∠ABC=90°,∴∠ABE=∠DBC,∴△AEB∽△CDB,∴1AE ABCD BC k==,∠EAB=∠DCB,∴AE=1k CD,∵k>1,∴AE≠CD,∵∠DCB+∠COB=90°,∠AOK=∠COB,∴∠KAO+∠AOK=90°,∴∠AKC=90°,∴AE⊥CD.23. 解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0),将C点的横坐标x=2,代入y=x2﹣2x﹣3,得:y=﹣3,∴C(2,﹣3);∴直线AC的函数解析式是:y=﹣x﹣1;(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣12)2+94,∴当12x=时,PE的最大值=94;(3)存在4个这样的点F,分别是:F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).①如图1,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图2,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图3,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中,即可得出G点的坐标为(1±,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为:y=﹣x+h,将G点代入后,可得出直线的解析式为:y=﹣x+7.因此直线GF与x轴的交点F的坐标为:(4+,0);④如图4,同③可求出F的坐标为:(4﹣,0);综合四种情况可得出,存在4个符合条件的F点. .。
2015年初三一模数学试卷及 答 案

2
21.已知关于 x 的一元二次方程 x 2 x 3 m 0 有两个实数根.
2
(1)求 m 的取值范围; (2)若 m 为符合条件的最小整数,求此方程的根. 22.列方程或方程组解应用题: 小辰和小丁从学校出发,到离学校 2 千米的“首钢篮球馆”看篮球比赛.小丁 步行 16 分钟后,小辰骑自行车出发,结果两人同时到达.已知小辰的速度是 小丁速度的 3 倍,求两人的速度. 四、解答题(本题共 20 分,每小题 5 分) 23.如图,菱形 ABCD 中, E , F 分别为 AD ,
2014—2015 学年初三统一练习暨毕业考试
数 学 试 卷
学校
考 生 须 知
班级
姓名
1.本试卷共 7 页,共五道大题,29 道小题.满分 120 分,考试时间 120 分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个 是符合题意的. .. 1. 3 的绝对值是 A. 3 B.
10.在平面直角坐标系 xOy 中,四边形 OABC 是矩形,且 A , C 在坐标轴上,满 足 OA 3 ,OC 1 . 将矩形 OABC 绕原点 O 以每秒 15 的速度逆时针旋 转.设运动时间为 t 秒 0 t 6 ,旋 转过程中矩形在第二象限内的面积为
S 3 3 2
E
A F G B
D
AB 上的点,且 AE AF ,连接 EF 并延
水费为
元.
2015年初三第一次模拟考试数学试卷附答案

2015年初中毕业生升学模拟考试(一)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-3的绝对值是 A .3B .-3C .13D .13-2.一个等腰三角形的两边长分别是3和7,则它的周长为 A .17 B .15 C .13D .13或173.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水 300 000吨.将300 000用科学记数法表示应为A .60.310⨯B .5310⨯C .6310⨯D .43010⨯4.如图1,AB ∥CD ,EF ⊥AB 于点E ,EF 交CD 于点F ,已 知∠1=60°,则∠2的度数为 A .20° B .60° C .30°D .45°CDBAE F1 2 图151的值在A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.如图2是某几何体的三视图,该几何体是A .圆锥B .三棱柱C .圆柱D .三棱锥7.下列计算中,正确的是A .x 2+x 4=x 6B .2x +3y =5xyC .(x 3)2=x 6D .x 6÷x 3=x 29.如图3,△ABC 的顶点都在正方形网格的格点上, 则cos C 的值为 A .12B .C .D .10. 方程23+x =11+x 的解为 A .x =54B .x = -21 C .x =-2D .无解图3ABC图211.某篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和中位数分别是 A .18,19 B .18,19.5C .5,4D .5, 4.512.二次函数()20y ax bx c a =++≠的大致图象如图4所示,关于该二次函数,下列说法错误的是 A .函数有最小值B .对称轴是直线x =21 C .当x <21时,y 随x 的增大而减小 D .当 -1 < x < 2时,y >013.如图5,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半 径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠B =250,则∠ACB 的度数为 A .90° B . 95° C . 100°D . 105°14.如图6是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于 A . 210 B .20 C . 18D . 220图5AB图615.如图7,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =31CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F . 若AB =6,则BF 的长为 A .6B . 7C . 8D . 1016. 已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是图72015年邯郸市初中毕业生升学模拟考试(一)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.分解因式:2x 2-4x +2= .18.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数xk y的 图象上.若点A 的坐标为(-2,-2),则k 的值 为________.19.如下图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π).图9坐标是.6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)已知代数式:A=23+x,B=25624322+-+-÷+-xxxxx.(1)试证明:若A、B均有意义,则它们的值互为相反数;(2)若代数式A、B中的x是满足不等式3(x-3)<6-2x的正整数解,求A-B的值.22.(本小题满分10分)某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布直方图请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?(4)第一组中的A、B、C、D四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A与B名同学能分在同一组的概率.23.(本小题满分11分)在图11-1——图11-4中,菱形ABCD 的边长为3,∠A =60°,点M 是AD 边上一点,且DM =31AD ,点N 是折线AB -BC 上的一个动点. (1)如图11-1,当N 在BC 边上,且MN 过对角线AC 与BD 的交点时,则线段AN 的长度为________.(2)当点N 在AB 边上时,将△AMN 沿MN 翻折得到△A′MN ,如图11-2,①若点A′ 落在AB 边上,则线段AN 的长度为________;②当点A′ 落在对角线AC 上时,如图11-3,求证:四边形AM A′N 是菱形;③当点A′ 落在对角线BD 上时,如图11-4,求NA BA ''的值.图11-1图1224.(本小题满分11分)如图12,在平面直角坐标系中,矩形ABCD 的顶点A 、B 、C 的坐标分别为(0,5)、(0,2)、(4,2),直线l 的解析式为y = kx +5-4k (k > 0).(1)当直线l 经过点B 时,求一次函数的解析式;(2)通过计算说明:不论k 为何值,直线l 总经过点D ; (3)直线l 与y 轴交于点M ,点N 是线段DM 上的一点, 且△NBD 为等腰三角形,试探究:①当函数y = kx +5-4k 为正比例函数时,点N 的个数有 个;②点M 在不同位置时,k 的取值会相应变化,点N 的个数情况可能会改变,请直接写出点N 所有不同的个数情况以及相应的k 的取值范围.25.(本小题满分11分)如图13-1,在△ABC 中,∠ACB =90°,AC =BC =2,以点B 为圆心,以1为半径作圆. 设点P 为⊙B 上一点,线段CP 绕着点C 顺时针旋转90°,得到线段CD ,连接DA ,PD ,PB ,(1)求证:AD =BP ;(2)若DP 与⊙B 相切,则∠CPB 的度数为_________°; (3)如图13-2,当B ,P ,D 三点在同一直线上时,求BD 的长; (4)BD 的最小值为________,此时tan ∠CBP =_________;BD 的最大值为 ,此时tan ∠CPB =_________.备用图BCABCD P图13-2ABC D P图13-126.(本小题满分13分)某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y = -m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a)(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入-经营总成本).①直接写出:甲方式购买和包装x吨农产品所需资金为_________万元;乙方式购买和加工其余农产品所需资金为_________万元;②求出w关于x的函数关系式;③若农产品全部销售该公司共获得了48万元毛利润,求x的值;④若农产品全部售出,该公司的最小利润是多少.①其中甲方式经销农产品x吨,则总经销量p为__________吨(用含x的代数式表示);②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.参考答案及评分标准一、选择题1.A2.A3.B4.C5.D6.B7.C8.B9. D 10.B 11.A 12.D 13.D 14.B 15.C 16.A 二、填空题17. 2(x-1)2 18.4 19.3π 20.(8,-8) 三、解答题21.(1)证明:B =25)2)(2()3(232+--++⨯+-x x x x x x =2522+-+x x ………………………………………… 2分 =23+-x =A - ………………………………………… 4分 ∴A 、B 互为相反数………………………………………… 5分(证明A+B=0均可得分) (2)解:解不等式得x<3, x 为正整数,且x ≠2,∴x=1 ………………………………………………………… 7分则A-B=2x 32+⨯=2132+⨯=2 …………………………………………… 10分22.解:(1)a=12 …………………………………………………… 2分 (2)如图………………………………… 4分(3)估计该校八年级汉字书写优秀的人数为⨯+501212800=352人 ……… 6分 (4)根据题意画树形图如下:B C DB C D A C D A B D A B C ……… 9分 共有12种情况,A 与B 两名同学分在同一组的情况有4种,∴A 与B 两名同学能分在同一组的概率为P (同组)=124=10分 23. (1)13…………………………………………………………………… 2分 (2)① 1 ……………………………………………………………………4分②在菱形ABCD 中AC 平分∠DAB ,∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN 沿MN 翻折得到△A′MN , ∴AC ⊥MN ,AM= A′M ,AN= A′N ,∴∠AMN=∠ANM=60°∴AM=AN∴AM= A′M=AN= A′N∴四边形AM A′N 是菱形 …………………………………… 7分③在菱形ABCD 中,∠A=60°,AB=AD , ∴∠ADB=∠ABD=60°∵ △AMN 沿MN 翻折得到△A′MN , ∴∠NA′M=∠A=60°∵∠BA′M=∠DMA′+∠ADB ∴∠NA′B=∠DMA′ ∴△DMA′∽△BA′N ∴'DM A BA M A N'=' ∵DM=31AD=1,AM=2, ∴A′M=AM =2∴12A B A N '=' ………………………………………………11分 24.解:(1)将点B (0,2)代入y=kx+5-4k 得34k =………………………… 2分(2)由题意可得:点D 坐标为(4,5) 把x=4代入y=kx+5-4k 得y=5∴不论k 为何值,直线l 总经点D ; ……………………………………… 5分 (3)①2…………………………………………………………… 7分②当k≥2时,有3个点当34<k <2时,有2个点, 当k=34时,有0个当0<k <34时,有1个。
2015年河南省中考一模数学试卷(解析版)

2015年河南省中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)a3•a4的结果是()A.a4B.a7C.a6D.a122.(3分)数字,,π,,cos45°,中是无理数的个数有()个.A.1B.2C.3D.43.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.宁夏4.(3分)如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°5.(3分)a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9)B.a2b(a﹣3)(a+3)C.b(a2﹣3)2D.a2b(a﹣3)26.(3分)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.37.(3分)如图所示,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按照这样的方法拼下去,第n个大正方形比第(n﹣1)个大正方形多()几个小正方形?A.2n+1B.2n﹣1C.2n﹣3D.2n+38.(3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)计算:(+1)0﹣2﹣1+﹣6sin60°=.10.(3分)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为.11.(3分)某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是.12.(3分)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是分,众数是分.13.(3分)在平面直角坐标系中,点O为坐标原点,点A的坐标为(1,0).将线段OA绕点O逆时针旋转∠α,当60°≤∠α≤90°,点A的纵坐标y的取值范围是.14.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在直线上的C′处,得到经过点D的折痕DE.则=.15.(3分)在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数的图象经过AO的中点C,且与AB交于点D,则点D的坐标为.三、解答题(共75分)16.(8分)先化简,再求值:÷,其中x=2cos45°+1.17.(9分)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.18.(9分)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有万人到市图书馆阅读,其中商人所占百分比是,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?19.(9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)20.(9分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)22.(10分)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.23.(11分)如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),顶点D的坐标为(﹣1,4).(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,请直接写出点F的坐标.2015年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)a3•a4的结果是()A.a4B.a7C.a6D.a12【解答】解:a3•a4=a3+4=a7.故选:B.2.(3分)数字,,π,,cos45°,中是无理数的个数有()个.A.1B.2C.3D.4【解答】解:=2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选:C.3.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.宁夏【解答】解:﹣8<﹣4<5<6,故选:D.4.(3分)如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.5.(3分)a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9)B.a2b(a﹣3)(a+3)C.b(a2﹣3)2D.a2b(a﹣3)2【解答】解:a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)=a2b(a﹣3)2.故选:D.6.(3分)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3【解答】解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③两函数图象的交点横坐标为3,∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选:D.7.(3分)如图所示,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按照这样的方法拼下去,第n个大正方形比第(n﹣1)个大正方形多()几个小正方形?A.2n+1B.2n﹣1C.2n﹣3D.2n+3【解答】解:∵第一个图形有22=4个正方形组成,第二个图形有32=9个正方形组成,第三个图形有42=16个正方形组成,∴第n个图形有(n+1)2个正方形组成,第(n﹣1)个图形有n2个正方形组成,∴第n个大正方形比第(n﹣1)个大正方形多(n+1)2﹣n2=(2n+1)个小正方形.故选:A.8.(3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.【解答】解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB =4S△CMN=4×6=24,∴S四边形MABN =S△CAB﹣S△CMN=24﹣6=18.故选:C.二、填空题(每小题3分,共21分)9.(3分)计算:(+1)0﹣2﹣1+﹣6sin60°=.【解答】解:原式=1﹣+3﹣6×=1﹣+3﹣3=.故答案为.10.(3分)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为135°.【解答】解:根据旋转的性质可知,∠ACB=∠A′CB′=45°,那么旋转角度的大小为∠ACA′=180°﹣45°=135°;故答案为:135.11.(3分)某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是.【解答】解:P(黄灯亮)==.故答案为:.12.(3分)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是90分,众数是90分.【解答】解:观察折线图可知:成绩为90的最多,所以众数为90;这组学生共10人,中位数是第5、6名的平均分,读图可知:第5、6名的成绩都为90,故中位数90.故答案为:90,90.13.(3分)在平面直角坐标系中,点O为坐标原点,点A的坐标为(1,0).将线段OA绕点O逆时针旋转∠α,当60°≤∠α≤90°,点A的纵坐标y的取值范围是.【解答】解:如图,将线段OA绕点O逆时针旋转∠α,当∠α=60°时,线段OA旋转到OA′的位置,过点A′作A′B⊥x轴于点B,∠BOA′=60°,OA=OA′=1,BA′=OA′•sin60°=,∴此时点A′的纵坐标为,将线段OA绕点O逆时针旋转∠α,当∠α=90°时,线段OA旋转到y轴上,∴此时点A的纵坐标为1,∴将线段OA绕点O逆时针旋转∠α,当60°≤∠α≤90°,点A的纵坐标y的取值范围是.故答案为:.14.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在直线上的C′处,得到经过点D的折痕DE.则=.【解答】解:如图,连接BD,交C′E于点F;∵四边形ABCD为菱形,∴DC∥AB,AB=AD;而∠A=60°,∴△ABD为等边三角形,∠ADC=120°;∴AD=BD,而AP=BP,∴DP⊥AB,∠ADP=30°,∴∠PDC=120°﹣30°=90°;由题意得:∠C′DE=∠CDE=45°,∠ADB=∠C′DB=60°,∠C′=∠C;∴∠C′DF=90°﹣60°=30°;∵四边形ABCD为菱形,∴∠A=∠C,AD=DC=BC(设为λ);∵∠C′=∠C,DC′=DC,∴∠C′=60°,DC′=λ,∴∠DFC′=90°,cos30°=,∴DF=λ,BF=λ(1﹣);在△DCE中,∵∠DEC=180°﹣45°﹣60°=75°,∴∠DEC′=∠DEC=75°,∴∠BEF=180°﹣2×75°=30°,∴BE=2BF=2λ﹣λ,∴CE=λ﹣=()λ,∴=,故答案为+1.15.(3分)在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数的图象经过AO的中点C,且与AB交于点D,则点D的坐标为(8,).【解答】解:∵斜边AO=10,sin∠AOB=,∴sin∠AOB===,∴AB=6,∴OB==8,∴A点坐标为(8,6),而C点为OA的中点,∴C点坐标为(4,3),又∵反比例函数的图象经过点C,∴k=4×3=12,即反比例函数的解析式为y=,∵D点在反比例函数的图象上,且它的横坐标为8,∴当x=8,y==,所以D点坐标为(8,).故答案为(8,).三、解答题(共75分)16.(8分)先化简,再求值:÷,其中x=2cos45°+1.【解答】解:原式=•=x﹣1,当x=2cos45°+1=2×+1=1+时,原式=1+﹣1=.17.(9分)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.【解答】(1)解:有4对全等三角形.分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA;(2)证明:∵OA=OC,∠1=∠2,OE=OF,∴△OCF≌△OAE.∴∠EAO=∠FCO.在平行四边形ABCD中,AB∥CD,∴∠BAO=∠DCO.∴∠EAM=∠NCF.18.(9分)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有16万人到市图书馆阅读,其中商人所占百分比是12.5%,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?【解答】解:(1)4÷25%=16 2÷16×100%=12.5%(2)职工人数约为:28000×=10500人答:估计其中约有10500名职工.19.(9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)【解答】解:根据题意得:PC⊥AB,设PC=x海里.在Rt△APC中,∵tan∠A=,∴AC=.…(3分)在Rt△PCB中,∵tan∠B=,∴BC=.…(5分)∵AC+BC=AB=21×5,∴=21×5,解得x=60.∵sin∠B=,∴PB==60×=100(海里).∴向阳号轮船所处位置B与城市P的距离为100海里.…(9分)20.(9分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.【解答】解:(1)∵y=(x>0,k是常数)的图象经过点A(1,4),∴k=4,∴反比例函数解析式为y=;(2)∵点A(1,4),点B(m,n),∴AC=4﹣n,BC=m﹣1,ON=n,OM=1,∴==﹣1,∵B(m,n)在y=上,∴=n,∴=m﹣1,而=,∴=,∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m﹣1=2,m=3,∴B(3,),设AB所在直线解析式为y=kx+b,∴,解得,∴解析式为y=﹣x+.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y=4500;最大值(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.22.(10分)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.【解答】解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x2+42=[(4﹣x)]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH ≌△BFE (ASA )∴AE =BF .②利用①中结论,易证△AEH 、△BFE 、△CGF 、△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4﹣x .∴y =S 正方形ABCD ﹣4S △AEH =4×4﹣4×x (4﹣x )=2x 2﹣8x +16.∴y =2x 2﹣8x +16(0<x <4)∵y =2x 2﹣8x +16=2(x ﹣2)2+8,∴当x =2时,y 取得最小值8;当x =0时,y =16,∴y 的取值范围为:8≤y <16.23.(11分)如图,抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C (0,3),顶点D 的坐标为(﹣1,4).(1)求抛物线的解析式;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG =2DQ ,请直接写出点F 的坐标.【解答】解:(1)设函数解析式为y =a (x +1)2+4,将C (0,3)代入解析式得,a (0+1)2+4=3,a =﹣1,可得,抛物线解析式为y=﹣x2﹣2x+3;(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=×1×1=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FG=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)﹣(﹣n2﹣2n+3)=4,解得:n=﹣4或n=1.∴F(﹣4,﹣5)或(1,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年九年级第一次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.参考公式:二次函数()0y 2≠++=a c bx ax 图象的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22.一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组数中,互为相反数的两个数是 A .-3和-2 B .5和51 C .-6和6 D .31-和21 2.如图所示的几何体是由一个正方体切去一个小正方体形成的,从正面看到的平面图形为3.黄河农场各用10块面积相同的试验田种植甲、乙两种麦子,收获后对两种麦子产量(单位:吨/亩)的数据统计如下:61.0x =甲,59.0x =乙,01.02=甲S ,002.02=乙S ,则由上述数据推断乙种麦子产量比较稳定的依据是A .乙甲x >xB .22乙甲S S >C .2x 甲甲S >D .2x 乙乙S >4.下列各式计算正确的是 A .2a 3a a 2=+ B .()623b b -=-C .632c c c =⋅ D .()222n m n m -=-5.如图,ABC 中,BE 、CF 分别是么ABC 、ACB 的角平分 线,A =50°,那么BDC 的度数为 A .105° B .115°C .125°D .135°6.第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有3名来自莫斯科国立大学,有5名来自圣彼得堡国立大学,现从这8名志愿者中随机抽取1人,这名志愿者来自莫斯科国立大学的概率是A .41 B .51 C .81 D .837.如图,D 是△ABC 内一点,BD ⊥CD ,AD =12,BD =8,CD =6,E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是 A .14 B .18 C .20 D .228.观察二次函数()0y 2≠++=a c bx ax 的图象,下列四个结论中:①0a 42>-b c ;②b c a 24<+;③0<+c b ;④)1()(≠<-+n a b b an n . 正确结论的个数有A .4个B .3个C .2个D .1个二、填空题(每小题3分,共21分) 9.计算2sin30°=________.10.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为________. 11.请你写出一个大于1而小于5的无理数________. 12.在平面直角坐标系中,直线112+-=x y 与直线3531+=x y 的交点坐标为(4,3),则方程组⎩⎨⎧-=-=+53112y x y x 的解为________.13.冯老师为了响应市政府“绿色出行”的号召,上下班方式由自驾车改为骑自行车.已知冯老师家距学校15 km ,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多h 31.如果设骑自行车的速度为x km/h ,则由题意可列方程为________.14.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB =2,BC =3,则△FCB'与△B'DG 的面积之比为________. 15.在平面直角坐标系中,已知点A (-4,2),B (-2,-2),以原点O 为位似中心,把△ABO 放大为原来的2倍,则点A 的对应点A'的坐标是________.三、解答题(本大题共8个小题,共75分)16.(本题8分)课堂上,王老师出了这样一道题:已知352015-=x ,求代数式⎪⎭⎫⎝⎛+-+÷-+-13111222x x x x x 的值,小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与无关”,解答过程如下:原式=()131)1)(1(1x 2+-++÷-+-x x x x x ………………①=÷+-11x x ………………②=)1(2111-+⨯+-x x x x …………………………③ =21……………………………………④ 当352015-=x ,原式=21.(1)从原式到步骤①,用到的数学知识有:________________; (2)步骤②中的空白处的代数式为:________________;(3)从步骤③到步骤④,用到的数学知识有:________________.17.(本题9分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图和表格.已知A 、B 两组户数直方图的高度比为1:5,请结合图表中相关数据回答下列问题:组别 消费额(元) A 10010<≤x B 200x 100<≤ C 300x 200<≤D 400x 300<≤E400≥x(1)A 组的频数是,本次调查样本的容量是________; (2)补全直方图(需标明C 组频数)________;(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?18.(本题9分)如图1,小颖将一组对边平行的纸条沿EF 折叠,点A 、B 分别落在A'、B ’处,线段FB'与AD 交于点M .(1)如图1,△MEF 的形状是________;(2)如图2,小颖又将纸条的另一部分CFMD 沿MN 折叠,点C 、D 分别落在C'、D'处,且使MD'经过点F ,请你猜想四边形MNFE 的形状,并说明理由;(3)当BFE =________度时,四边形MNFE 是菱形.19.(本题9分)住在郑东新区的小明想知道“中原第一高楼”有多高,他登上了附近的另一个高层酒店的顶层某处,已知小明所处位置距离地面有160米高,测得“中原第一高楼”顶部的仰角为37°,测得“中原第一高楼”底部的俯角为45°,请你用初中数学知识帮助小明解决这个问题.(请你画出示意图,并说明理由.)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0. 75).20.(本题9分)如图,已知反比例函数)0(111<=k xk y 与一次函数)0(1222≠+=k x k y 相交于A 、B 两点,AC 轴于点C .若△OAC 的面积为1,且tan ∠AOC =2. (1)求反比例函数与一次函数的表达式;(2)请直接写出B 点的坐标,并指出当为何值时,反比例函数的值小于一次函数的值.21.(本题10分)某旅馆有客房120间,每间房的日租金为160元,每天都客满,旅馆装修后要提高租金,经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?22.(本题10分)如图①,正方形AEFG 的边长为1,正方形ABCD 的边长为3,且点F 在AD 上.(1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △存在最大值与最小值,请直接写出最大值 ,最小值 .23.(本题11分)已知抛物线)0(2≠++=a c bx ax y 与x 轴交于A 、B 两点,与y 轴交于 点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,OB =2,OC =8,抛物线的对称 轴是直线2-=x .(1)求抛物线的表达式;(2)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作 EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函 数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上,试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此 时点E 的坐标;若不存在,请说明理由.2015年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. C2. A3. B4. C5. B6. D7. D8. C 二、填空题(每小题3分,共21分)9. 1; 10. 8210⨯; 11. 答案不唯一,如π、2等; 12. 43x y =⎧⎨=⎩;13.1515123x x -=; 14. 16:9 ; 15.A '(8-,4)或A '(8,4-). 三、解答题(本大题共8小题,共75分) 16.解:(1)因式分解,通分,分解因式中的完全平方公式和平方差公式,分式的基本性质; (写对一个即可) ……………… 3分 (2)221x x -+(或2(1)1x x -+);………6分 (3)约分(或分式的基本性质). ………………8分17. 解:(1)A 组的频数是: 2 ;调查样本的容量是: 50 ; ……………………… 4分(2)C 组的频数是:50×40%=20,如图.…………………6分(3)∵ 1500×(28%+8%)=540,∴ 全社区捐款不少于300元的户数是540户.…………………9分 18. 解:(1)△MEF 是等腰三角形;…………… 2分 (2)四边形MNFE 为平行四边形,…………… 3分 理由如下:∵AD ∥BC , ∴∠MEF=∠EFB .由折叠知∠MFE=∠EFB , 故∠MEF=∠MFE . ∴ME =MF ,同理NF =MF .…………… 5分 ∴ME =NF . 又∵ME ∥NF ,∴四边形MNFE 为平行四边形.…………… 7分 (3) 60.…………… 9分19.解:如图所示,…………… 2分AB 代表小明所处位置到地面的距离,即160AB =米, CD 代表“中原第一高楼”, ………………… 3分 作AE ⊥CD 于点E.由题意可知,四边形ABDE 是矩形,所以160AB DE ==米. 在Rt △ADE 中,∵tan DEDAE AE∠=,160DE =, ∴160tan 451AE==,∴160AE =.…………… 5分 在R t △AEC 中,∵tan CEAEC AE∠=,160AE =,∴tan 370.75160CE==,∴120CE =,…………… 7分∴120160280CD CE DE =+=+=(米), ∴“中原第一高楼”高280米. ……………9分20.解:(1)∵点A 在11ky x=的图象上,S △ACO =1,∴1212k =⨯=,又∵10k <,∴12k =-. ∴反比例函数的表达式为12y x=-.……………2分 设点A (a ,2a-),0a <, ∵在R t △AOC 中,tan 2ACAOC OC ∠==,∴22a a-=-,∵0a <, ∴1a =-. ∴A (1-,2).∵点A (1-,2)在221y k x =+上,∴221k =-+,∴21k =-. ∴一次函数的表达式为21y x =-+. ……………5分 (2)点B 坐标为(2,1-),……………7分 观察图象可知,当1x <-或02x <<时,反比例函数1y 的值小于一次函数2y 的值. …………… 9分21.设每间客房的日租金提高10x 元,则每天客房出租数会减少6x 间.设装修后客房日租金总收入为y ,……………1分则y =(160+10x )(120-6x ),……………4分即y =-60(x -2)2+19 440. ∵x ≥0,且120-6x >0, ∴0≤x <20.当x =2时,y max =19 440. ……………7分这时每间客房的日租金为160+10×2=180(元). ……………8分装修后比装修前日租金总收入增加19 440-120×160=240(元). ……………9分答:每间客房的日租金提高到180元时,客房日租金的总收入最高;装修后比装修前日租金总收入增加240元. ……………10分22. 解:(1)∵点F 在AD 上, ∴2AF =32DF =∴11932(32)222DBF S DF AB =⨯⨯=-=-△××3.……………3分 (2)连结AF , 由题意易知AF BD ∥,∴92DBF ABD S S ==△△.…………… 6分(3)152;32.…………… 10分 23. 解:(1)∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,2OB =,8OC =,∴点B 的坐标为(2,0),点C 的坐标为(0,8). ……… 2分 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2, ∴由抛物线的对称性可得点A 的坐标为(-6,0). ∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上, ∴c =8,将A (-6,0)、B (2,0) 分别代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧0=36a -6b +80=4a +2b +8 ⎩⎨⎧a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8. ………3分(2)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,由勾股定理得AC =10,∵EF ∥AC , ∴△BEF ∽△BAC . ∴ EF AC =BEAB .即EF 10=8-m8 . ∴EF =40-5m 4.过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45.∴FG EF =45. ∴ FG =45×40-5m 4=8-m . ∴ S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=-12m 2+4m .…………… 7分自变量m 的取值范围是0<m <8. …………… 8分 (3)存在. …………… 9分理由:∵ S =-12m 2+4m =-12(m -4)2+8,且-12<0,∴ 当m =4时,S 有最大值,S 最大值=8.此时,点E 的坐标为(—2,0) …………… 11分。