-郑州市初三一模数学试卷及答案

合集下载

河南省郑州市中考一模数学模拟试卷及答案

河南省郑州市中考一模数学模拟试卷及答案

郑州九年级一模模拟测试数学试题一选择题(每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确)1.-5的绝对值是 ( ) A. 15-B. 15C. 5-D. 52.下列四个交通标志中,轴对称图形是( )3.不等式组: 2011x x +≥⎧⎨-<⎩的解集在数轴上表示正确的是( )4.某校有21名学生参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分 B 。

平均分 C.极差 D.中位数5.一个几何体的三视图如图所示,则这个几何体摆放的位置是( )6.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根, 则该三角形的周长为( )A. 14B. 12C. 14 或12D.以上都不对7.如图,线段AB 是⊙O 的直径,弦C D ⊥AB ,∠CAB =20°, 则∠AOD 等于( ) A. 160° B. 150° C. 140° D .120°C主视图左视图俯视图8.如图,在正方形ABCD 中,AB=3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 从A 点出发沿折线AD →DC →CB 以每秒3cm 的速度运动,到达B 时运动同时停止,设△AMN 的面积为y (cm 2),运动时间为x(秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )二、填空题(每小题3分,共21分)9.计算:09(21)+-=______________10.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M ,如果∠ADF =100°,那么∠BMD 为_____________度11.如图,A 、B 两点在双曲线4y x=上,分别经过A 、B 两点向坐标轴作垂线,已知S 阴影=1,则12S S +=__________________12.如图,经过点B (-2,0)的直线y kx b =+与直线42y x =+相交于点A (-1,-2),则不等式4x+2<kx+b<0的解集为__________________13.三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车,则两人同坐3号车的概率是______14.如图,在R t △ABC 中,∠ABC=90°,AB=3,AC=5,点E 在BC 上,将△ABC 沿AE 折叠,使点B 落在AC 边上的点B ′处,则BE 的长为___________15.如图,正方形ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE=30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q ,若PQ=AE ,则AP 等于___________cm.A C MEB ′A B三、解答题(本题共8个小题,共75分)16.(8分)请你化简22236911211x x xx x x x+++÷+--++,再取恰当x的值代入求值。

郑州市初三中考数学一模模拟试题【含答案】

郑州市初三中考数学一模模拟试题【含答案】

郑州市初三中考数学一模模拟试题【含答案】一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学数学一模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。

河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】

河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】

河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列不等式的变形中,不正确的是()A .若a b >,则11a b +>+B .若a b ->-,则a b <C .若13x y -<,则3x y >-D .若3x a ->,则13x a >-2、(4分)已知:在直角坐标系中,点A ,B 的坐标分别是(1,0),(0,3),将线段AB 平移,平移后点A 的对应点A ′的坐标是(2,﹣1),那么点B 的对应点B ′的坐标是()A .(2,1)B .(2,3)C .(2,2)D .(1,2)3、(4分)将抛物线y =x 2向右平移2个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式为()A .y =(x ﹣2)2+3B .y =(x ﹣2)2﹣3C .y =(x +2)2+3D .y =(x +2)2﹣34、(4分)在平面直角坐标系中,点P (﹣3,4)关于y 轴对称点的坐标为()A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4)5、(4分)若分式3y x y -的值为5,则x、y 扩大2倍后,这个分式的值为()A .52B .5C .10D .256、(4分)一个六边形ABCDEF 纸片上剪去一个角∠BGD 后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=()A .60°B .70°C .80°D .90°7、(4分)如图1,在▱ABCD 中,对角线AC ,BD 相交于点0,添加下列条件后,能使▱ABCD 成为矩形的是()A .AB=AD B .AC=BD C .BD 平分∠ABC D .AC ⊥BD 8、(4分)下列方程中,属于一元二次方程的是()A .213x x -=B .2 4x =C .2310x y ++=D .31x x +=二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知1x ,2x 是关于x 的方程()()222220x m x m m --+-=的两根,且满足()121221x x x x ⋅++=-,那么m 的值为________.10、(4分)已知正n 边形的一个外角是45°,则n =____________11、(4分)化简:()2--=.12、(4分)如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为米.13、(4分)已知圆锥的侧面积为6兀,侧面展开图的圆心角为60º,则该圆锥的母线长是________。

九年级郑州一模试卷数学【含答案】

九年级郑州一模试卷数学【含答案】

九年级郑州一模试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。

A. y = x²B. y = |x|C. y = x³D. y = x² + 13. 已知等差数列{an}中,a1=3,公差d=2,则a10=()。

A. 21B. 19C. 17D. 154. 下列方程中,属于一元二次方程的是()。

A. x + y = 1B. x² + y = 1C. x² + x + 1 = 0D. x³ + x² + x + 1 = 05. 在直角坐标系中,点P(2, -3)关于y轴的对称点是()。

A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, 3)二、判断题(每题1分,共5分)1. 任何两个奇函数的和一定是偶函数。

()2. 一元二次方程的解一定是实数。

()3. 对角线互相垂直的四边形一定是菱形。

()4. 两个等差数列的对应项相加得到的新数列一定是等差数列。

()5. 任何两个正数的算术平均数大于它们的几何平均数。

()三、填空题(每题1分,共5分)1. 已知等差数列{an}中,a1=1,公差d=3,则a5=______。

2. 若一个三角形的两边长分别为3和4,则第三边的长度范围是______。

3. 两个相同的正数相乘,结果为______。

4. 一元二次方程ax² + bx + c = 0(a≠0)的判别式是______。

5. 若直角三角形的两条直角边长分别为3和4,则斜边长为______。

四、简答题(每题2分,共10分)1. 请简述等差数列和等比数列的定义。

2. 请解释一元二次方程的根的判别式。

3. 请说明三角形的面积公式。

4. 请解释函数的单调性。

5. 请简述直角坐标系中点的坐标表示方法。

2023年河南省郑州市中考数学一模试卷及答案解析

2023年河南省郑州市中考数学一模试卷及答案解析

2023年河南省郑州市中考数学一模试卷一、选择题(每题3分,共30分,下列各小题均有四个答案,其中只有一是正确的)1.(3分)在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km记做“+2km”,那么向西走1km应记做()A.﹣2km B.﹣1km C.1km D.+2km2.(3分)星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度.1纳=1×10﹣9秒,那么20纳秒用科学记数法表示为()A.2×10﹣8秒B.2×10﹣9秒C.20×10﹣9秒D.2×10﹣10秒3.(3分)如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变4.(3分)把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为()A.15°B.20°C.25°D.30°5.(3分)下列调查中,最适宜采用普查的是()A.调查郑州市中学生每天做作业的时间B.调查某批次新能源汽车的电池使用寿命C.调查全市各大超市蔬菜农药残留量D.调查运载火箭的零部件的质量6.(3分)如图,五线谱由五条等距离的平行横线组成,同一条直线上的三个点A,B,C 都在横线上,若线段AB=6,则线段BC的长是()A.4B.3C.2D.17.(3分)若关于x的方程x2+ax+1=0有两个相等的实数根,则a值可以是()A.2B.1C.0D.﹣18.(3分)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为()A.6B.9C.12D.159.(3分)已知点(﹣3,y1)、(﹣1,y2)、(1,y3)在下列某一函数图象上,且y3<y1<y2,那么这个函数是()A.y=3x B.y=3x2C.y=D.y=﹣10.(3分)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为()A.m(cosα﹣sinα)B.m(sinα﹣cosα)C.m(cosα﹣tanα)D.﹣二、填空题(每题3分,共15分)11.(3分)数学具有广泛的应用性.请写出一个将基本事实“两点之间,线段最短”应用于生活的例子:.12.(3分)不等式组的解集是.13.(3分)甲乙两人参加社会实践活动,随机选择“做社区志愿者”和“做交通引导员”两项中的一项,那么两人同时选择“做社区志愿者”的概率是.14.(3分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,m),C(3,m+6),反比例函数y=(x>0)的图象同时经过点B与点D,则k的值为.15.(3分)如图,△ABC与△BDE均为等腰直角三角形,点A,B,E在同一直线上,BD ⊥AE,垂足为点B,点C在BD上,AB=2,BE=5.将△ABC沿BE方向平移,当这两个三角形重叠部分的面积等于△ABC面积的一半时,△ABC平移的距离为.三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算:;(2)化简:.17.(9分)家务劳动是劳动教育的一个重要方面.某校为了了解七年级学生参加家务劳动的情况,随机调查七年级男、女生各18名,得到他们上周末进行家务劳动的时间(单位:分钟)如下:男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105;女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72.统计数据,得到家务劳动时间x(分钟)的频数分布表时间x0≤x≤3030<x≤6060<x≤9090<x≤120男生人数(频数)2574女生人数(频数)1593整理并分析数据,得到以下统计量.统计量平均数中位数众数方差男生66.768.570617.3女生69.770.569和88547.2根据以上信息,回答下列问题:(1)该年级共360名学生,且男、女生人数基本相同,则该年级上周末进行家务劳动的时间超过90分钟的学生约有多少人?(2)政教处老师认为上周末该校七年级女生比男生进行家务劳动的时间长,你同意吗?请说明理由.18.(9分)如图1,在△ABC中,AB=AC,点D,E在BC上,且BD=CE,连接AD,AE.(1)判断AD与AE的数量关系,并说明理由;(2)如图2,过点B作BF∥AC,交AD的延长线于点F.若∠DAE=∠C=α,请直接写出图2中所有顶角为α的等腰三角形.19.(9分)如果一个正整数能够表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.例如:因为4=22﹣02,12=42﹣22,20=62﹣42,故4,12,20都是神秘数.(1)写出一个除4,12,20之外的“神秘数”:;(2)设两个连续偶数为2k和2k+2(k为非负整数),则由这两个连续偶数构造的“神秘数”能够被4整除吗?为什么?(3)两个相邻的“神秘数”之差是否为定值?若为定值,求出此定值;若不是定值,请说明理由.20.(9分)学校需购买测温枪与消毒液,若购买5个测温枪与1瓶消毒液需440元,若购买1个测温枪与3瓶消毒液需200元.(1)求测温枪和消毒液的单价;(2)学校计划购买两种物资共60件,并要求测温枪的数量不少于消毒液数量的,设计最省钱的购买方案,并说明理由.21.(9分)如图,点O在△ABC的边AB上,⊙O与边AC相切于点E,与边BC,AB分别交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,AC=4时,求⊙O半径的长.22.(10分)原地正面掷实心球是中招体育考试项目之一.受测者站在起掷线后,被掷出的实心球进行斜抛运动,实心球着陆点到起掷线的距离即为此项目成绩.实心球的运动轨迹可看作抛物线的一部分,如图,建立平面直角坐标系,实心球从出手到着陆的过程中,竖直高度y(m)与水平距离x(m)近似满足函数关系y=ax2+bx+c(a<0).小明使用内置传感器的智能实心球进行掷实心球训练.(1)第一次训练时,智能实心球回传的水平距离x(m)与竖直高度y(m)的几组对应数据如下:水平距离x/m01234567竖直高度y/m 1.8 2.3 2.6 2.7 2.6 2.3 1.8 1.1则:①抛物线顶点的坐标是,顶点坐标的实际意义是;②求y与x近似满足的函数关系式,并直接写出本次训练的成绩.(2)第二次训练时,y与x近似满足函数关系y=﹣0.09x2+0.72x+1.8,则第二次训练成绩与第一次相比是否有提高?为什么?(3)实心球的抛物线轨迹是影响成绩的重要因素,可以通过多种方法调整实心球的轨迹.小明掷实心球的出手高度不变,即抛物线y=ax2+bx+c(a<0)中c的值不变,要提高成绩应使a,b的值做怎样的调整?23.(10分)在正方形ABCD中,E是BC边上一点(点E不与点B,C重合),AE⊥EF,垂足为点E,EF与正方形的外角∠DCG的平分线交于点F.(1)如图1,若点E是BC的中点,猜想AE与EF的数量关系是;证明此猜想时,可取AB的中点P,连接EP.根据此图形易证△AEP≌△EFC.则判断△AEP≌△EFC 的依据是.(2)点E在BC边上运动.①如图2,(1)中的猜想是否仍然成立?请说明理由.②如图3,连接AF,DF,若正方形ABCD的边长为1,直接写出△AFD的周长c的取值范围.2023年河南省郑州市中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共30分,下列各小题均有四个答案,其中只有一是正确的)1.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若把向东走2km记做“+2km”,那么向西走1km应记做﹣1km.故选:B.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示20纳秒为20×1×10﹣9秒=2×10﹣8秒.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】分别得到将正方体变化前后的三视图,依此即可作出判断.【解答】解:正方体移走前的主视图正方形的个数为1,2,1;正方体移走后的主视图正方形的个数为1,2,1;不发生改变.正方体移走前的左视图正方形的个数为2,1,1;正方体移走后的左视图正方形的个数为2,1;发生改变.正方体移走前的俯视图正方形的个数为3,1,1;正方体移走后的俯视图正方形的个数为:2,1,2;发生改变.故选:B.【点评】此题主要考查了三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.4.【分析】利用平行线的性质求出∠3可得结论.【解答】解:如图,∵a∥b,∴∠1=∠3=25°,∵∠2+∠3=45°,∴∠2=45°﹣∠3=20°,故选:B.【点评】本题考查平行线的性质,等腰直角三角形的性质等知识,解题的关键是利用平行线的性质求出∠3.5.【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A、调查郑州市中学生每天做作业的时间,适宜采用抽样调查,故A不符合题意;B、调查某批次新能源汽车的电池使用寿命,适宜采用抽样调查,故B不符合题意;C、调查全市各大超市蔬菜农药残留量,适宜采用抽样调查,故C不符合题意;D、调查运载火箭的零部件的质量,适宜采用普查,故D符合题意;故选:D.【点评】本题考查了全面调查与抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.6.【分析】过点A作平行横线的垂线,交点B所在的平行横线于D,交点C所在的平行横线于E,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A作平行横线的垂线,交点B所在的平行横线于D,交点C所在的平行横线于E,则,即=2,解得:BC=3,故选:B.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.【分析】根据方程的系数结合根的判别式Δ=0,即可得出关于a的方程,解之即可得出a的值,再对照四个选项即可得出结论.【解答】解:∵关于x的一元二次方程x2+ax+1=0有两个相等的实数根,∴Δ=a2﹣4×1×1=0,∴a=±2.故选:A.【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.8.【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为4×3=12.【解答】解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=4,∴AD=4,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为4×3=12,故选:C.【点评】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.【分析】根据所学知识可判断每个选项中对应的函数的增减性,进而判断y3,y1,y2之间的关系,再判断即可.【解答】解:A.y=3x,因为3>0,所以y随x的增大而增大,所以y1<y2<y3,不符合题意;B.y=3x2,当x=1和x=﹣1时,y相等,即y3=y2,故不符合题意;C.y=,当x<0时,y随x的增大而减小,x>0时,y随x的增大而减小,所以y2<y1<y3,不符合题意;D.y=﹣,当x<0时,y随x的增大而增大,x>0时,y随x的增大而增大,所以y3<y1<y2,符合题意;故选:D.【点评】本题主要考查一次函数的性质,反比例函数的性质及二次函数的性质,掌握相关函数的性质是解题关键,也可直接代入各个选项中的函数解析中,再判断y的大小.10.【分析】过点C作水平地面的平行线,交AB的延长线于D,根据正弦的定义求出BD,根据余弦的定义求出CD,根据等腰直角三角形的性质求出AD,计算即可.【解答】解:过点C作水平地面的平行线,交AB的延长线于D,则∠BCD=α,在Rt△BCD中,BC=m,∠BCD=α,则BD=BC•sin∠BCD=m sinα,CD=BC•cos∠BCD=m cosα,在Rt△ACD中,∠ACD=45°,则AD=CD=m cosα,∴AB=AD﹣BD=m cosα﹣m sinα=m(cosα﹣sinα),故选:A.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.二、填空题(每题3分,共15分)11.【分析】利用线段的性质,即可解答.【解答】解:数学具有广泛的应用性.请写出一个将基本事实“两点之间,线段最短”应用于生活的例子:把弯曲的公路改直,就能缩短路程,故答案为:把弯曲的公路改直,就能缩短路程(答案不唯一).【点评】本题考查了线段的性质,熟练掌握线段的性质是解题的关键.12.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:由﹣2x<6得:x>﹣3,由x﹣2<0得x<2,故该不等式组的解集是﹣3<x<2,故答案为:﹣3<x<2.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.13.【分析】画树状图,展示所有4种等可能的结果数,找出符合条件的结果数,然后根据概率公式求解即可.【解答】解:把“做社区志愿者”和“做交通引导员”分别记为A、B,画树状图如下:共有4种等可能的结果,其中两人同时选择“做社区志愿者”的结果有1种,∴两人同时选择“做社区志愿者”的概率为,故答案为:.【点评】本题考查了树状图法求概率,树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.【分析】设B、D两点的坐标分别为(1,y)、(x,2),再根据点B与点D在反比例函数数y=(x>0)的图象上求出m的值,进而可得出k的值.【解答】解:∵四边形ABCD是矩形,顶点A的坐标为(1,m),C(3,m+6),∴设B、D两点的坐标分别为(1,m+6)、(3,m),∵点B与点D在反比例函数y=(x>0)的图象上,∴k=m+6=3m,∴m=3,∴k=3×3=9.故答案是:9.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.15.【分析】根据平移的性质和等腰直角三角形的性质解答即可.【解答】解:∵△ABC与△BDE均为等腰直角三角形,∴AB=BC=2,DB=BE=5,∴△ABC的面积=,当这两个三角形重叠部分的面积等于△ABC面积的一半时,∴△A'BE的面积=,∴A'B=,∴AA'=AB﹣A'B=2﹣,即平移的距离为2﹣,当当点B平移到与点E重合时,也满足,此时平移的距离为:5,故答案为:2﹣或5.【点评】此题考查等腰直角三角形的性质,关键是根据等腰直角三角形的面积公式解答.三、解答题(本大题共8个小题,满分75分)16.【分析】(1)根据算术平方根、负整数指数幂、零指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)=3﹣3+1=1;(2)==.【点评】本题考查分式的混合运算、实数的运算,熟练掌握运算法则是解答本题的关键.17.【分析】(1)用总人数乘以家务劳动时间超过90分钟人数所占比例即可得出答案;(2)根据平均数、中位数的意义求解即可.【解答】解:(1)180×+180×=70(人),答:该年级上周末进行家务劳动的时间超过90分钟的学生约有70人;(2)同意,因为女生劳动时间的平均数、中位数均大于男生,所以上周末该校七年级女生比男生进行家务劳动的时间长.【点评】本题考查中位数、众数、平均数,理解平均数、中位数、众数的意义和计算方法是正确解答的前提.18.【分析】(1)由“SAS”可证△ABD≌△ACE,可得AD=AE;(2)分别求出各个角的度数,即可求解.【解答】解:(1)AD=AE,理由如下:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED=90°﹣,∴∠DAC=180°﹣∠C﹣∠ADC=90°﹣,∴∠DAC=∠ADE,∴AC=CD,∴BE=CD=AC=AB,∵BF∥AC,∴∠FBD=∠C=α,∠F=∠CAD=90°﹣,∴∠BDF=90°﹣=∠F,∴BD=BF,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.19.【分析】(1)根据新定义求解;(2)根据新定义证明;(3)根据(2)中的结论进行证明.【解答】解:(1)∵82﹣62=28,∴28是神秘数,故答案为28;(2)这两个连续偶数构造的“神秘数”能够被4整除,理由:∵(2k+2)2﹣(2k)2=(4k+2)•2=4(2k+1),∴这两个连续偶数构造的“神秘数”能够被4整除;(3)两个相邻的“神秘数”之差为定值,理由:因为:4[2(k+1)+1]﹣4(2k+1)=8,所以两个相邻的“神秘数”之差是定值.【点评】本题考查了因式分解的应用,理解新定义是解题的关键.20.【分析】(1)设测温枪的单价为x元,消毒液的单价为y元,根据“若购买5个测温枪与1瓶消毒液需440元,若购买1个测温枪与3瓶消毒液需200元”,即可得出关于x,y 的二元一次方程组,解之即可得出结论;(2)最省钱的购买方案为:购买测温枪12个,消毒液48瓶,设购买测温枪m个,则购买消毒液(60﹣m)瓶,根据购买测温枪的数量不少于消毒液数量的,即可得出关于m 的一元一次不等式,解之即可得出m的取值范围,设学校购买两种物资共需w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决【解答】解:(1)设测温枪的单价为x元,消毒液的单价为y元,依题意得:,解得:.答:测温枪的单价为80元,消毒液的单价为40元.(2)最省钱的购买方案为:购买测温枪12个,消毒液48瓶,理由如下:设购买测温枪m个,则购买消毒液(60﹣m)瓶,依题意得:m≥(60﹣m),解得:m≥12.设学校购买两种物资共需w元,则w=80m+40(60﹣m)=40m+2400.∵40>0,∴w随m的增大而增大,∴当m=12时,w取得最小值,此时60﹣m=48,∴最省钱的购买方案为:购买测温枪12个,消毒液48瓶.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.21.【分析】(1)连接OE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,根据相似三角形的性质得到=,即=,从而可求出r的值,根据线段的和差即可得解.【解答】(1)证明:连接OE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)解:在△ABC,∠C=90°,BC=3,AC=4,∴AB==5,设⊙O的半径为r,则AO=5﹣r,∵OE⊥AC,∴△AEO∽△ACB,∴=,即=,∴r=.【点评】本题考查了切线的判定与性质,相似三角形的判定与性质,解方程等知识,综合程度较高,根据题意证出OE∥BC是解题的关键.22.【分析】(1)①根据表格中数据找到顶点坐标,再根据实心球的轨迹写出顶点的实际意义;②设出抛物线的解析式为y=a(x﹣3)2+2.7,再把(0,1.8)代入解析式求出a即可;再令y=0,求出x即可;(2)令y=﹣0.09x2+0.72x+1.8中的y=0,解方程求出x的值与②中的x比较即可;(3)根据c的值不变,﹣越大,着陆点越远,得出结论.【解答】解:(1)①由表格中数据可知,当x=2和x=4时,y的值相同,∴x=3是抛物线对称轴,∴顶点坐标为(3,2.7),∵顶点是抛物线的最高点,∴顶点的实际意义为:实心球抛出后在距抛出点水平距离为3米时到达的最大垂直高度为2.7米;故答案为:(3,2.7),实心球抛出后在距抛出点水平距离为3米时到达的最大垂直高度为2.7米;②设抛物线解析式为y=a(x﹣3)2+2.7,把(0,1.8)代入解析式得:9a+2.7=1.8,解得a=﹣0.1,∴y与x近似满足的函数关系式为y=﹣0.1(x﹣3)2+2.7,令y=0,则﹣0.1(x﹣3)2+2.7=0,解得x1=3+3,x2=3﹣3(舍去),∴x=3+3,∴本次成绩为(3+3)米;(2)令y=0,则﹣0.09x2+0.72x+1.8=0,解得x=10或x=﹣2(舍去),∵10>3+3,∴第二次训练成绩比第一次训练成绩有提高;(3)∵着陆点越远,成绩越好,∴x=﹣越大,着陆点越远,∴b变大,a变大.【点评】本题主要考查了二次函数的应用,待定系数法求函数关系式,解题的关键是读懂题意,列出函数关系式.23.【分析】(1)取AB的中点P,连接EP.先证AP=EC,再证∠APE=∠ECF,∠BAE=∠CEF,然后由ASA证△AEP≌△EFC,即可得出结论;(2)①在AB上取一点P,使BP=BE,连接PE,证△AEP≌△EFC(ASA),即可得出结论;②过D作DH⊥CF交DG于点H,连接FH、AH,证△DCH是等腰直角三角形,则点H与D关于CF对称,得DF=HF,AF+DF=AF+FH,当A、F、H三点共线时,AF+FH 即AF+DF最短,此时AF+DF=AH,BH=BC+CH=2,再由勾股定理得AH=,此时c=AD+AF+DF=1+;当DF=FH与CD相等时,即A、D、F三点共线,此时AD+AF+DF =1+2+1=4,则c<AD+AF+DF=4;即可得出结论.【解答】解:(1)如图1,取AB的中点P,连接EP.则AP=BP=AB,∵点E是BC的中点,∴BE=CE=BC,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∴AP=EC,∠BAE+∠AEB=90°,BP=BE,∠DCG=90°,∴△BPE是等腰直角三角形,∴∠BPE=45°,∴∠APE=180°﹣∠BPE=180°﹣45°=135°,∵CF平分∠DCG,∴∠DCF=∠GCF=45°,∴∠ECF=180°﹣∠GCF=180°﹣45°=135°,∴∠APE=∠ECF,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠CEF,在△AEP和△EFC中,,∴△AEP≌△EFC(ASA),∴AE=EF,故答案为:AE=EF,ASA;(2)①成立,理由如下:如图2,在AB上取一点P,使BP=BE,连接PE,则AP=EC,由(1)得:∠PAE=∠CEF,∵BP=BE,∠B=90°,∴△BPE是等腰直角三角形,∴∠BPE=45°,∴∠APE=180°﹣∠BPE=180°﹣45°=135°,∴∠APE=∠ECF,在△AEP和△EFC中,,∴△AEP≌△EFC(ASA),∴AE=EF;②如图3,过D作DH⊥CF交DG于点H,连接FH、AH,∵∠DCF=45°,∴∠CDH=45°,∴△DCH是等腰直角三角形,∴点H与D关于CF对称,∴DF=HF,∴AF+DF=AF+FH,当A、F、H三点共线时,AF+FH即AF+DF最短,此时AF+DF=AH,BH=BC+CH=2,在Rt△ABH中,由勾股定理得:AH===,此时c=AD+AF+DF=1+;当DF=FH与CD相等时,即A、D、F三点共线,此时AD+AF+DF=1+2+1=4,则c<AD+AF+DF=4;∴△AFD的周长c的取值范围是1+≤c<4.【点评】本题是四边形综合题目,考查了正方形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质以及勾股定理等知识,本题综合性强,熟练掌握正方形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型。

郑州市初三中考数学一模模拟试卷【含答案】

郑州市初三中考数学一模模拟试卷【含答案】

郑州市初三中考数学一模模拟试卷【含答案】一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;的面积;(2)当BE所在的直线将△OEF的面积分为3:1时,求S△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2, 在Rt △ACO 中,AO =,∴sin ∠OAB =.故答案为:.15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm , ∴△OBC 是等边三角形, ∴∠BOC =60°, ∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°. ∴∠A =30°或150°. 故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2, ∴AP =PE =x ,PD =AD ﹣AP =2﹣x , ∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x故答案为:y ═﹣x 2+3x . 三.解答题 17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.∴S1=()2,S2=()2,S3=()2,…,S n=()2,∵,∴S=,∴S=1+,∴S=1+1﹣+1+﹣+…+1+,∴S=n+1﹣=.六、(本大题共2小题,每小题10分,共20分)24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.【解答】(1)解:∵∠BP A=90°,P A=PB,∴∠P AB=45°,∵∠BAO=45°,∴∠P AO=90°,∴四边形OAPB是正方形,∴P点的坐标为:(a,a).(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,∵∠BPE+∠EP A=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EP A,∵∠PFB=∠PEA,BP=AP,∴△PBF≌△P AE,∴PE=PF,∴点P都在∠AOB的平分线上.(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE =α.在直角△APE中,∠AEP=90°,P A=,∴PE=P A•cosα=•cosα,又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),∴0°≤α<45°,∴<h≤.25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.。

河南省郑州市中考一模数学考试卷(解析版)(初三)中考模拟.doc

河南省郑州市中考一模数学考试卷(解析版)(初三)中考模拟.doc

河南省郑州市中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【答案】B.【解析】试题分析:根据中心对称图形的概念可得第2个、第4个图形是中心对称图形,共2个.故选B.考点:中心对称图形.【题文】解一元二次方程x2﹣8x﹣5=0,用配方法可变形为()A.(x+4)2=11 B.(x﹣4)2=11 C.(x+4)2=21 D.(x﹣4)2=21【答案】D.【解析】试题分析:移项得x2﹣8x=5,两边都加上一次项系数一半的平方可得x2﹣8x+16=5+16,即(x﹣4)2=21,故选D.考点:解一元二次方程-配方法.【题文】如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个 B.1个 C.2个 D.3个【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF 相似的三角形有2个.故选C.考点:相似三角形的判定;平行四边形的性质.评卷人得分【题文】如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm【答案】C.【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm,则重物上升了3πcm,故选C.考点:旋转的性质.【题文】下列说法正确的是()A.投掷一枚均匀的硬币,正面朝上的概率是B.投掷一枚图钉,钉尖朝上、朝下的概率一样C.投掷一枚均匀的骰子,每一种点数出现的概率都是,所以每投6次,一定会出现一次“l点”D.投掷一枚均匀的骰子前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大【答案】A.【解析】试题分析:选项A、投掷一枚均匀的硬币,正、背面朝上的几率相等,都是,故本选项正确;选项B、投掷一枚图钉,钉尖朝上、朝下的概率不一样,故本选项错误;选项C、根据概率的定义,可知本选项错误;选项D、投掷结果出现6点的概率一定,不会受主观原因改变,故本选项错误;故选A.考点:概率的意义.【题文】如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.【答案】D.试题分析:选项A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;选项D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.故选D.考点:相似三角形的判定.【题文】如图,⊙O的半径为2,点O到直线l距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A. B. C.2 D.3【答案】A.【解析】试题分析:过点O作直线l的垂线,垂足为P,过P作⊙O的切线PQ,切点为Q,连接OQ,此时PQ为最小,∴OP=3,OQ=2,∵PQ切⊙O于点Q,∴∠OQP=90°,由勾股定理得:PQ= =,则PQ的最小值为,故选A.考点:切线的性质.【题文】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A. 1B. 2C. 3D. 4【解析】试题分析:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a >0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等l【答案】<.【解析】试题分析:由题意,得比例函数的图象上,且x1<x2<0,则yl<y2,考点:反比例函数图象上点的坐标特征.【题文】将抛物线y=x2﹣4x﹣4向左平移4个单位,再向上平移3个单位,得到抛物线的函数表达式是.【答案】y=(x+2)2﹣5.【解析】试题分析:由“左加右减”的原则可知,将抛物线y=x2﹣4x﹣4向左平移4个单位所得直线的解析式为:y=(x﹣2+4)2﹣8=(x+2)2﹣8;由“上加下减”的原则可知,将抛物线y=(x+2)2﹣8向上平移3个单位所得抛物线的解析式为:y=(x+2)2﹣5.考点:二次函数图象与几何变换.【题文】如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.【答案】.【解析】试题分析:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:.考点:列表法与树状图法.【题文】如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 m.【答案】3m.【解析】试题分析:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,解得:AB=3m,答:路灯的高为3m.考点:中心投影.【题文】如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.【答案】.【解析】试题分析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=,在RT△AOC中,∵OA=1,OC=,∴cos∠AOC= =,AC= =∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB﹣S△AOB=﹣××=,S阴影=S半圆﹣2S弓形ABM=π×12﹣2()=.考点:扇形面积的计算;翻折变换(折叠问题).【题文】如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC边上一动点,连结AD,将△ACD沿AD 折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为_____.【答案】.【解析】试题分析:如图1所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=1.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).【题文】先化简,再求值:(a﹣)÷(),其中a满足a2﹣3a+2=0.【答案】原式=a,由a2﹣3a+2=0,得a=1或a=2,当a=1时,a﹣1=0,使得原分式无意义,当a=2,原式=2.【解析】试题分析:先化简题目中的式子,然后根据a2﹣3a+2=0可得a的值,注意a的值要使得原分式有意义,本题得以解决.试题解析:(a﹣)÷()====a,由a2﹣3a+2=0,得a=1或a=2,∵当a=1时,a﹣1=0,使得原分式无意义,∴a=2,原式=2.考点:分式的化简求值.【题文】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【答案】(1) AC=4;(2)详见解析.【解析】试题分析:(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OC∥A D ,由于AD⊥CD,那么OC⊥CD,由此得证.试题解析:(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.考点:切线的判定.【题文】杜甫实验学校准备在操场边建一个面积为600平方米的长方形劳动实践基地.(1)求实践基地的长y(米)关于宽x(米)的函数表达式;(2)由于受场地限制,实践基地的宽不能超过20米,请结合实际画出函数的图象;(3)当实践基地的宽是l5米时,实践基地的长是多少米?【答案】(1) y=;(2)图见解析;(3)当实践基地的宽是15米时,实践基地的长为40米.【解析】试题分析:(1)根据矩形的面积=长×宽,列出y与x的函数表达式即可;(2)根据自变量的取值范围作出图象即可;(3)把x=15代入计算求出y的值,即可得到结果.试题解析:(1)由长方形面积为2000平方米,得到xy=600,即y=;(2)图象如图所示:(3)当x=15(米)时,y= =40(米),则当实践基地的宽是15米时,实践基地的长为40米.考点:反比例函数的应用.【题文】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【答案】(1)图见解析,A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)+3.【解析】试题分析:(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.试题解析:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC=,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC= +×3×2= +3.考点:作图-旋转变换;扇形面积的计算.【题文】阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【答案】(1)详见解析;(2) .【解析】试题分析:(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.试题解析:(1)(a,b)对应的表格为:ab1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)4(4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴P(△≥0)=.考点:列表法与树状图法;根的判别式.【题文】巩义长寿山景区门票价格为50元,在今年红叶节期问,为吸引游客,推出了如下优惠活动:如果人数不超过25人,门票按原价销售,如果人数超过25人,每超过1人,所购买的门票均降低1元,但人均门票不低于35元,某单位组织员工去长寿山看红叶,共支付门票费用1350元,请问该单位这次共有多少名员工去长寿山看红叶?【答案】该单位这次共有30名员工去长寿山看红叶.【解析】试题分析:设该单位这次共有x名员工去长寿山看红叶,根据每超过1人,人均旅游费用降低1元,且共支付给旅行社旅游费用1350元,可列出方程求解,根据人均旅游费用不得低于35元,判断解是否合理.试题解析:设该单位这次共有x名员工去长寿山看红叶,则人均费用是[50﹣(x﹣25)]元由题意得[50﹣(x﹣25)]x=1350,整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均门票价格为50﹣(x﹣25)=30<35,不合题意,应舍去.当x=30时,人均旅游费用为50﹣(x﹣25)=45>35,符合题意.答:该单位这次共有30名员工去长寿山看红叶.考点:一元二次方程的应用.【题文】如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM 交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若 =2,求的值;(3)若=n,当n为何值时,MN∥BE?【答案】(1)详见解析;(2)3;(3)n=4.【解析】试题分析:(1)如图1,易证△BMF≌△ECF,则有BM=EC,然后根据E为CD的中点及AB=DC就可得到AM=EC ;(2)如图2,设MB=a,易证△ECF∽△BMF,根据相似三角形的性质可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易证△AMN∽△BCM,根据相似三角形的性质即可得到AN= a,从而可得ND=AD﹣AN=a,就可求出的值;(3)如图3,设MB=a,同(2)可得BC=2a,CE=na.由MN∥BE,MN⊥MC可得∠EFC=∠HMC=90°,从而可证到△MBC∽△BCE,然后根据相l∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,∴△ECF∽△BMF,∴=2,∴EC=2a,∴AB=CD=2CE=4a,AM=AB﹣MB=3a.∵=2,∴BC=AD=2a.∵MN⊥MC,∴∠CMN=90°,∴∠AMN+∠BMC=90°.∵∠A=90°,∴∠ANM+∠AMN=90°,∴∠BMC=∠ANM,∴△AMN∽△BCM,∴,∴,∴AN=a,ND=AD﹣AN=2a﹣a=a,∴=3;(3)当=n时,如图3,设MB=a,同(2)可得BC=2a,CE=na.∵MN∥BE,MN⊥MC,∴∠EFC=∠HMC=90°,∴∠FCB+∠FBC=90°.∵∠MBC=90°,∴∠BMC+∠FCB=90°,∴∠BMC=∠FBC.∵∠MBC=∠BCE=90°,∴△MBC∽△BCE,∴,∴,∴n=4.考点:相似形综合题;全等三角形的判定与性质;矩形的性质.【题文】如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y= x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛l试题解析:(1)∵a=>0,∴抛物线顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为:m;(2)由(1)可知,对称轴为x=4,则BD=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为:2.1m;(3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴抛物线F2的顶点坐标为:(m+4,k),∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,把C(8,3)代入得:(8﹣m﹣4)2+k=3,解得:k=﹣(4﹣m)2+3,∴k=﹣(m﹣8)2+3,∴k是关于m的二次函数,又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大,∴当k=2时,﹣(m﹣8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=2.5时,﹣(m﹣8)2+3=2.5,解得:m1=8﹣2,m2=8+2(不符合题意,舍去),∴m的取值范围是:4≤m≤8﹣2.考点:二次函数的应用.。

郑州市2020-2021学年九年级一模数学试题卷及答案

郑州市2020-2021学年九年级一模数学试题卷及答案

EDF A BCED ABC 郑州市2020-2021学年九年级一模考试数学试题卷(时间:100分钟 满分:120分)一、选择题(每小题 3 分,共 30 分) 1. 下列各数中,比-2 小的数是( )A .0B .53C .|-6|D .-42. 如图所示的几何体,该几何体的左视图是( )A .B .C .D .3. 人民日报讯:2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.已知1纳米=10-9米,则22纳米用科学记数法可表示为( )A .2.2×108米B .2.2×10-8米C .0.22×10-7米D .2.2×10-9米4. 平面内将一副直角三角板(∠A =∠FDE =90°,∠F =45°,∠C =60°,点D 在边AB 上) 按图中所示位置摆放, 两条斜边 EF ,BC 互相平行,则∠BDE 等于( ) A .20° B .15° C .12° D .10°5. 下列调查方式合适的是()A .为了解小学生保护水资源的意识,采用抽样调查的方式B .为了解某款新型笔记本电脑的使用寿命,采用普查的方式C .对“长征五号”遥五运载火箭零部件的检查,采用抽样调查的方式D .为了解全国中学生的视力状况,采用普查的方式 6. 下列计算正确的是( )A .(-3ab 2)2=6a 2b 4B .-6a 3b ÷3ab =-2a 2bC .(a 2)3-(-a 3)2=0D .(a +1)2=a 2+17. 口罩是一种卫生用品,正确佩戴口罩能阻挡有害的气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2020年某厂家口罩产量由2月份的125万只增加到4月份的180万只.设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .125(1+x)2=180B .125(1-x)2=180C .180(1+x)2=125D .180(1-x)2=125 8.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6.尺规作图:①作∠ACB 的平分线,交斜边AB 于点D ;②过点 D 作 B C 的垂线, 垂足为点 E .则 D E 的长是( ) A .2.5 B .2 C .3 D .1259.如图,在平面直角坐标系中,直线 y =x 与反比例函数y=1x(x >0)的图象交于点A ,将直线 y =x 沿 y 轴向上平移 k 个单位长度,交 y 轴于点 B ,交反 比例函数图象于点 C .若 O A =3BC ,则 k 的值为( ) A .2 B .32C .3D .83y D10.如图,在平面直角坐标系中,将边长为 a 的正方形 O ABC 绕点 O 顺时针旋转 45°后 得到正方形 O A 1B 1C 1,依此方式连续旋转 2021次得到正方形 O A 2021B 2021C 2021,那么点 A 2021的坐标是( ) A .) B .,) C .,) D .) 二、填空题(每小题3分,共15分)11.的整数是 .12.如图是三个完全相同的正方形,假设可以随意在图中取点, 那么这个点取在阴影部分的概率是 . 13.不等式组23060x x -⎧⎨+⎩>< 的解集是 .14.如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴上滑动, 顶点 B 在x 轴的正半轴上滑动,点 E 为 A B 的中点,AB =24,BC =5当 O D 最大时,直线 O D 的表达式为 .15.如图,平面直角坐标系中,点A (0,2),B (4,0),将△ABO 沿着垂直于x 轴的 直线 CD 折叠(点C 在 x 轴上,点D 在AB 上,点D 不与A ,B 重合),点B 的对应点为点E ,则当△ADE 为直角三角形时,BDC ADE S S的值是 .三、解答题(本大题共8个小题,满分75分)16.(8分)⑴化简:22121a a a a a --+÷; ⑵把⑴中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当a >1时,B 的值与A 的值相比变大了还是变小了?试说明理由.17.(9分)某校为了培养学生的劳动观念和能力,鼓励学生积极承担家务劳动.政教处想了解七年级学生周末参与家务劳动的情况,在七年级随机抽取了18名男生和18名女生,对他们周末参与家务劳动的时间进行调查,并收集到以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105; 女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72. 整理数据,得到如下统计表:分析数据:根据以上数据,得到以下各种统计量.时)⑴请将上面的表格补充完整:a= ,b= ,c= ;⑵根据以上信息,政教处老师认为:从时长来看,七年级女生周末参与家务劳动的情况比男生好.你是否同意老师的判断?请结合两种统计量分析并说明理由. 18.(9分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在 BD 上,且BE =DF . ⑴求证:△ABE ≌△CDF ;⑵不添加辅助线,请你补充一个条件,使得四边形AECF 是菱形,并给予证明.19.(9分)工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间t(时)甲组加工零件的数量为y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示. ⑴求y 乙与t 之间的函数关系式,并写出t 的取值范围;⑵求a 的值,并说明a 的实际意义;⑶甲组加工多长时间时,甲、乙两组加工零件的总数为480个.20(9 分)手机软件 Smart Measure(智能测量)是一款非常有创意且实用性很高的数码测距工具.它可以利用手机上的摄像头和距离传感器来测量目标的距离、高度、宽度、角度和面积.测量过程非常简单:如图1,图 2,打开软件后先将手机摄像头对准物体的底部按测量键,保持相同姿势,再把手机相机镜头对准测量物体的顶端按测量键,最后按下“大树键”即可测量出物体的高度.智能软件的运行离不开数学原理.如图3,测量者AB 使用Smart Measure 测量一棵大树CD 的高,软件显示AC =8m ,AD =10m ,∠CAD =53°,请你根据数学知识求出大树 C D 的 高.(结果可保留根号) (为了计算方便,约定sin53°≈45,cos°53≈35,tan53°≈45)21.(10分)已知关于 x 的二次函数 y =kx 2+(k -1)x -1(k 为常数且 k ≠0). ⑴无论 k 取何值,此函数图象一定经过 y 轴上一点,该点的坐标为 . ⑵试说明:无论k 取何值,此函数图象一定经过点(-1,0);⑶原函数是否存在最小值-1?若存在,请求出此时k 的值;若不存在,请说明理由.图1图2备用图A BCEDABC E DA BCOP 22.(10分)某校数学建模小组进行了以下两项活动: 【活动一】参照学习函数的过程与经验,探索函数y=1x x(x >0)的图象与性质. 列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,如图 1所示:⑴连线:观察图1所描点的分布,用一条光滑曲线将各点顺次连接起来,请作出函数图象; ⑵分析:已知点(x 1,y 1),(x 2,y 2)在函数图象上,结合表格和函数图象填空: 若 0<x 1<x 2≤1,则 y 1 y 2;若 1<x 1<x 2,则 y 1 y 2;若 x 1·x 2=1,则 y 1 y 2. (填“>”,“=”或“<”) 【活动二】建模小组需要搭建一个无盖的长方体模型,如图2所示,其深为1米,底面积为1平方米.已知底面造价为1百元/平方米,侧面造价为 0.5百元/平方米.设底面一边的长为x (米),模型总造价为y (百元), ⑶求出y 与x 的函数关系式;(4)若预算不超过6.2百元,请直接写出x 的取值范围.23.(11 分)如图1,在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,点D ,E 分别为AC ,BC 的中点,△CDE 绕点C 顺时针旋转,设旋转角为α(0°≤α≤360°),记直线AD 与直线BE 的交点为点P .⑴如图1,当α=0°时,AD 与BE 的数量关系为 ,AD 与BE 的位置关系为 . ⑵当0°<α≤360°时,上述结论是否成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由. ⑶△CDE 绕点C 顺时针旋转一周,请直接写出运动过程中点P 运动轨迹的长度和点P 到直线BC 距离的最大值.2020—2021学年上期期末考试九年级数学参考答案一、选择题1. D2. B3. B4. B5. A6. C7. A8. D9. D 10. C 二、填空题 11.2; 12. 51; 13. x <-2; 14. y =5x ; 15.65103或 . 三、解答题16.解:(1)221=(1)1a a aa a a -⋅=--原式.…………………………………………………4分 (2)B 的值与A 的值相比变小了.理由如下:…………………………………………5分1,.1a a A B a a+==- 21(1)(1)1.1(1)(1)a a a a a B A a a a a a a ++--∴-=-==----……………………………………7分∵a >1,∴B -A <0.∴B <A .………………………………………………………………………………………8分 17.解:(1)5,7,68.5; …………………………………………………………………6分 (2)同意老师的判断.理由如下:比较统计量可知,女生的平均数较大,女生的中位数较大,女生的方差较小. 以上分析说明,女生周末参与家务劳动的时间更多,且数据的稳定性更好. 所以从时长来看,七年级女生周末参与家务劳动的情况比男生好.(取两个统计量分析即可) … …9分18. (1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD . ABE CDF ∴∠=∠.又BE DF =,ABE CDF ∴∆≅∆. ………………………………………………………………………5分(2)补充的条件是:AC BD ⊥.(答案不唯一) ……………………………………6分 证明:四边形ABCD 是平行四边形, OA OC ∴=,OB OD =.BE DF =,OE OF ∴=. ∴四边形AECF 是平行四边形.又AC BD⊥,∴四边形AECF是菱形.…………………………………………………………………9分(其他解法参照给分)19.解:(1)设y乙与t之间的函数关系式为y乙=kt+b.把(5,0),(8,360)分别代入,得解得∴y乙与时间t之间的函数关系式为:y乙=120t﹣600;…………………………………3分t的取值范围是5≤t≤8;…………………………………………………………………4分(2)当0≤t≤3时,由图象知,甲前3小时加工120个,故甲的工作效率为每小时加工零件40个.甲组共加工8-1=7(时),a=40×7=280(个).∴a的实际意义是:从甲组开始工作起,8小时时,甲组加工零件的总量为280件;…………………………6分(3)由题意可知,当4≤t≤8时,由于工作效率没变,∴y甲=120+40(t﹣4)=40t﹣40.当y甲+y乙=480时,480=120t﹣600+40t﹣40,解得t=7.答:甲组加工多长7小时,甲、乙两组加工零件的总数为480个.…………………9分20.解:如图,过点D作DH⊥AC于H.………………………………1分在Rt△ADH中,在Rt△ADH中,cos∠CAD,Arraysin∠CAD,∴AH=AD•cos53°≈106(m),DH=AD•sin53°≈108(m).…………5分∵AC=8m,∴CH=AC﹣AH=2(m). …………………………………………………………6分∴CD 2(m).……………………9分21.解:(1)(0,1)-;…………………………………………………………………………2分 (2)将1x =-代入,得2(1)(1)(1)10y k k =-+---=,故不论k 取何值,此函数图象一定经过点(1,0)-; ………………………………………6分 (3)24(1)14k k k---=-,解得:121k k ==, 0k >,开口向上,符合题意.∴当1k =时,函数存在最小值1-.…………………………………………………………10分22.解:(1)函数图象图略;(注意:图象要光滑,两边出头)………………………1分 (2)①>,②<,③=;……………………………………………………………………4分 (3)由题意,得211(2)0.51(0)y x x x x x=++⨯=++>.…………………………………7分(4)15≤x ≤5. ……………………………………………………10分 23.解:(1)BE AD BE AD ⊥=,3. ……………………………………………………………2分 (2)依然成立. 理由如下: ………………………………………………………………3分由题意,可得CD CACE CB=. 由旋转的性质,可得ACD BCE ∠=∠,∴CAD CBE △△.………………………………………6分∴AD CD CABE CE CB==,CAD CBE ∠=∠.∴AD =.…………………………………………………………………………………8分 又∵∠DAC +∠AOP =∠EBC +∠BOC =90°. ∴∠APO =90°.∴AD ⊥BE . ……………………………………………………………………………………9分(3)2π3………………………………………………………………………………11分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016—2017学年度郑州市上期期末考试
九年级数学 参考答案
一、选择题(每小题3分,共30分)
1. A 2.C 3.B 4.B 5.D 6.A 7.D 8.B 9.C 10.A 二、填空题 (每小题3分, 共15分)
11.1 12.6cm(未带单位不扣分) 13.12 14. 32 15.22
9
或7724 三、解答题 (本大题共8个小题,满分75分)
17.(1)证明:∵四边形ABC D是菱形,∴ND ∥A M.
∴.,AME DNE EAM NDE ∠=∠∠=∠………………2分 又∵点E是AD 中点,∴DE=AE . ∴.AME NDE ∆≅∆
∴ND=AM .………………4分
∴四边形AMD N是平行四边形.………………5分 (本题证法不唯一,只要对即给分) (2)①10;②20.………………9分
分所以原式分所以所以时原分式无意义,但是分的解为
因为分
)(原式解8 (10)
7
2-62167.....................6,336....................
3,60)3)(6(4......................221)
1)(1(3
)3(21:.16212
=⨯+=
=≠====---+=-+-⨯-+=
x x x x x x x x x x x x x x
18.解:(1)200;……………………………………2分
(2)条形统计图补充为(如图
):4……………
ﻫ分
(3)36;………………6分
(4)3000×
2100200
20
3090=++个.……8分
所以,该社区学习时间不少于1小时的家庭约有2100个.……9分
19.解:(1)∵关于x 的一元二次方程x2+2x ﹣(m﹣2)=0有实数根, ∴△=b 2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0.…………………………3分 解得m ≥1;…………………………………………5分
(2)因为方程有一个根为x =1,代入原方程得1+2﹣(m ﹣2)=0,得m =5.………………6分
所以原方程为x 2+2x﹣3=0,解得3,121-==x x . 所以此方程的另一个根为x =-3.………………9分 (本题解法不唯一,只要对即给分)
20.解:如图,在Rt △B DC 中,由si n15°=
BD
CD
.………………2分 得BD =

15sin CD
.
所以BD =25
.06
=24.……3分
在Rt △ADC 中,
由si n5°=
AD CD
.……………5分 得AD =︒5sin CD =08
.06
=75.…………6分
∴A D-BD =75-24=51,∴51×4000=204000.
∴设计优化后修建匝道AD的投资将增加204000元. ………………………………9分
21.解:(1)设小明爸爸的商店购进甲种型号口罩x 袋,乙种型号口罩y袋,则


⎧=+=+.270065,
120003020y x y x ……………3分 解得⎩⎨
⎧==.
200,
300y x
∴该商店购进甲种型号口罩300袋,乙种型号口罩200袋. …………5分 (2)设每袋乙种型号的口罩最多打m 折,则
300×5+400(0.1m ×36-30)≥2460. ……………………………………7分 解得m ≥9. ……………………………………9分
∴每袋乙种型号的口罩最多打9折. ……………………………………10分 22.解:(1)如图,∵B P⊥AG , ∴∠AF B=90°. ∴∠ABF +∠B AF =90°. ∵∠BAF +∠DAG =90°,
∴∠AB F=∠DA G.∵∠BAP =∠ADG =90°,AB =D A, ∴△AB P≌△DAG .……………………4分 ∴A G=BP .…………………………5分 (2)∵△ABP ≌△DAG ,∴AP =DG . ∵AP =
21AD, ∴DG =21AD =2
1
AB . ∵AB ∥CD , ∴△DGE ∽△BAE .……………………6分

21==AB DG BE DE .…………………………………………8分 (3)18
1.………………………………10分
23.解:(1)l:y=﹣2x +4,当x =0时,y =4,所以B (0,4).当y =0时,x =2,所以A (2,0).……………1分
由题意知,点D (-4,0).……………2分
∴将点A、D 坐标分别代入抛物线h 的表达式,得:⎩⎨⎧+-=++=.44160,4240b a b a 解得⎪⎩⎪
⎨⎧-=-=.
1,21b a
∴抛物线h 的表示式为:y =﹣2
1x 2
﹣x +4;…………………4分 (2)直线CD 解析式为:.221
+=
x y …………………5分 可设点M 坐标为)221,(+m m ,则点N的坐标为).42
1,(2
+--m m m ……6分
则线段M N长度y 可表示为:y =)22
1
(4212+-+--m m m ,整理得:
.825)23(212232122++-=+--=m m m y
当23-=m 时,线段MN 最大值为:8
25
.………………………8分
(3)∵抛物线h:y =﹣21x 2﹣x+4的顶点E 的坐标为(-1,2
9
).
则分别是满足题意的点P 有三个,分别是)32
5
,32(1
++-P 、 )325,32(2---p 、)2
7
,21(3--P .………………………11分
【解法提示】当点G落在y 轴上时,构造直角三角形全等可得)32
5
,
32(1++-P 、)32
5
,32(2---p .
当点F 落在y轴上时,构造直角三角形全等可得:)27,21(3--P 、)2
7,21(4+-P (因4P 不在第二象限,故舍去).

备用图
第23题图
E P E
F
G
F
G
E。

相关文档
最新文档