高考数学真题平面向量的概念与运算【学生试卷】

合集下载

高考数学一轮复习 第六章 平面向量与复数 第1节 平面向量的概念及线性运算练习-人教版高三全册数学试

高考数学一轮复习 第六章 平面向量与复数 第1节 平面向量的概念及线性运算练习-人教版高三全册数学试

第1节 平面向量的概念及线性运算[A 级 基础巩固]1.(多选题)已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的是()A .①B .②C .③D .④解析:由题知结果为零向量的是①④. 答案:AD2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是()A .a =2bB .a ∥bC .a =-13b D .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a 与b 共线且方向相反,因此当向量a 与向量b 共线且方向相反时,能使a |a |+b|b |=0成立.观察选项,C 项中a ,b 共线且方向相反. 答案:C3.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是() A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D解析:因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.答案:B4.在△ABC 中,G 为重心,记AB →=a ,AC →=b ,则CG →=() A.13a -23b B.13a +23b C.23a -13b D.23a +13b 解析:因为G 为△ABC 的重心,所以AG →=13(AB →+AC →)=13a +13b ,所以CG →=CA →+AG →=-b +13a +13b =13a -23b .答案:A5.设a 是非零向量,λ是非零实数,下列结论中正确的是() A .a 与λa 的方向相反B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|·a解析:对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.答案:B6.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则() A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上. 答案:B7.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .4解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.答案:B8.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值X 围是()A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析:设CO →=yBC →,因为AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),所以y ∈⎝ ⎛⎭⎪⎫0,13, 因为AO →=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0. 答案:D9.如图所示,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析:根据正六边形的性质和相等向量的定义,易知与向量OA →相等的向量有CB →,DO →,EF →,共3个.答案:310.(2020·武邑中学质检)在锐角△ABC 中,CM →=3 MB →,AM →=xAB →+yAC →(x ,y ∈R),则xy=________.解析:由题设可得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14.故xy =3.答案:311.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为λa +b 与a +2b 平行,所以λa +b =t (a +2b ), 即λa +b =ta +2tb ,所以⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:1212.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,因为DE →=λ1AB →+λ2AC →, 所以λ1=-16,λ2=23,因此λ1+λ2=12.答案:12[B 级 能力提升]13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于()A.58B.14 C .1 D.516解析:DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58.答案:A14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值X 围是()A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0) 解析:设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线, 所以λm +μm=1,即λ+μ=m , 所以λ+μ>1. 答案:B15.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△ABC 与△AOC 的面积之比为________.解析:取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,所以OB →=-OD →,所以O 是AC 边上的中线BD 的中点, 所以S △ABC =2S △OAC ,所以△ABC 与△AOC 面积之比为2∶1. 答案:2∶1[C 级 素养升华]16.(多选题)(2020·某某四校联考)如图所示,在△ABC 中,点D 在边BC 上,且CD =2DB ,点E 在边AD 上,且AD =3AE ,则()A.CE →=29AB →+89AC →B.CE →=29AB →-89AC →C.CE →=13AD →+AC →D.CE →=13AD →-AC →解析:因为CE →=CA →+AE →,AE →=13AD →,AD →=AB →+BD →,BD →=13BC →,BC →=BA →+AC →,所以CE →=13AD →-AC →,BD →=13(BA →+AC →),所以AD →=AB →+BD →=AB →+13BA →+13AC →, 所以AE →=13(AB →+13BA →+13AC →),所以CE →=CA →+13AB →+19BA →+19AC →=13AB →+19BA →+CA →+19AC →=29AB →-89AC →. 答案:BD素养培育直观想象——共线向量定理的推广(自主阅读)共线定理:已知PA →,PB →为平面内两个不共线的向量,设PC →=xPA →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.推广形式:如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xPA →+yPB →(x ,y ∈R).当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λPA →+μPB →(λ,μ∈R),则λ+μ=1.由△PAB 与△PED 相似,知必存在一个常数m ∈R ,使得PC →=mPF →,则PC →=mPF →=mλPA →+mμPB →.又PC →=xPA →+yPB →(x ,y ∈R), 所以x +y =mλ+mμ=m . 以上过程可逆.因此得到结论:PC →=xPA →+yPB →, 则x +y =m (定值),反之亦成立.[典例1] 如图,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R),则α+β的取值X 围是________.解析:当P 在△CDE 内时,直线EC 是最近的平行线,过D 点的平行线是最远的,所以α+β∈⎣⎢⎡⎦⎥⎤AN AM ,AD AM =[3,4].答案:[3,4][典例2] 如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值X 围是________.解析:由点D 是圆O 外的一点,可设BD →=λBA →(λ>1),则OD →=OB →+BD →=OB →+λBA →=λOA →+(1-λ)OB →.因为C 、O 、D 三点共线,令OD →=-μOC →(μ>1).所以OC →=-λμOA →-1-λμOB →(λ>1,μ>1).因为OC →=mOA →+nOB →,所以m =-λμ,n =-1-λμ,所以m +n =-λμ-1-λμ=-1μ∈(-1,0).答案:(-1,0)。

高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题

高考数学    平面向量的概念及线性运算、平面向量基本定理及坐标表示    高考真题

专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。

十年高考理科数学真题 专题五 平面向量 十三 平面向量的概念与运算及答案【优质】

十年高考理科数学真题 专题五  平面向量 十三 平面向量的概念与运算及答案【优质】

专题五 平面向量第十三讲 平面向量的概念与运算2019年1.(2019全国Ⅱ理3)已知AB u u u r=(2,3),AC u u u r =(3,t ),BC u u u r =1,则AB BC ⋅u u u r u u u r =A .-3B .-2C .2D .32.(2019全国Ⅲ理13)已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,<>=a c ___________.2010-2018年一、选择题1.(2018全国卷Ⅰ)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r2.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .04.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.(2016年山东)已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为A .4B .–4C .94D .–946.(2016年天津)已知ΔABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC ⋅u u u r u u u r的值为A .85-B .81 C .41 D .8117.(2016年全国II )已知向量(1,)(3,2)m =-,=a b ,且()+⊥a b b ,则m = A .8-B .6-C .6D .88.(2016年全国III )已知向量1(2BA =uu v ,1),2BC =uu u v 则ABC ∠= A .30oB .45oC .60oD .120o9.(2015重庆)若非零向量a ,b 满足=a ,且()(32)-⊥+ab a b ,则a 与b 的夹角为 A .4π B .2πC .34πD .π10.(2015陕西)对任意向量,a b ,下列关系式中不恒成立的是A .||||||⋅≤a b a bB .||||||||--≤a b a bC .22()||+=+a b a b D .22()()+-=-a b a b a b11.(2015安徽)ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ=u u u ra ,2ΑC =+u u u ra b ,则下列结论正确的是A .1=bB .⊥a bC .1⋅=a bD .()4ΒC -⊥u u u ra b12.(2014新课标1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA .B . AD 21C . BC 21D .13.(2014新课标2)设向量a ,b 满足|+a b |-a b ⋅=a bA .1B .2C .3D .514.(2014山东)已知向量(3,)m ==a b . 若向量,a b 的夹角为6π,则实数m =A .B C .0D .15.(2014安徽)设,a b 为非零向量,2=b a ,两组向量1234,,,x x x x u r u u r u u r u u r 和1234,,,y y y y u u r u u r u u r u u r均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r所有可能取值中的最小值为24a ,则a 与b 的夹角为 A .23π B .3π C .6πD .0 16.(2014福建)在下列向量组中,可以把向量()3,2=a 表示出来的是A .12(0,0),(1,2)==e eB .12(1,2),(5,2)=-=-e eC .12(3,5),(6,10)==e e D .12(2,3),(2,3)=-=-e e17.(2014浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,||t +b a 是最小值为1A .若θ确定,则||a 唯一确定B .若θ确定,则||b 唯一确定C .若||a 确定,则θ唯一确定D .若||b 确定,则θ唯一确定18.(2014重庆)已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =A .92-B .0C .3D .15219.(2013福建)在四边形ABCD 中,)2,4(),2,1(-==BD AC ,则该四边形的面积为A .5B .52C .5D .1020.(2013浙江)设ABC ∆,0P 是边AB 上一定点,满足014PB AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅u u u r u u u r u u u r u u u r ≥.则A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =21.(2013辽宁)已知点(1,3)A ,(4,1)B -,则与向量AB u u u r同方向的单位向量为A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭, D .4355⎛⎫- ⎪⎝⎭, 22.(2013湖北)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB u u u r在CD u u u r 方向上的投影为A B C . D . 23.(2013湖南)已知,a b 是单位向量,0⋅a b =.若向量c 满足1--=c a b ,则c 的最大值为A 1BC 1D 224.(2013重庆)在平面上,12AB AB ⊥u u u r u u u u r ,121OB OB ==u u u r u u u u r ,12AP AB AB =+u u u r u u u r u u u u r.若12OP <u u u r ,则OA u u u r的取值范围是A .⎛ ⎝⎦B . ⎝⎦C . ⎝D .⎝ 25.(2013广东)设a 是已知的平面向量且0≠a ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ; 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1B .2C .3D .426.(2012陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos2θ等于A .2 B .12C .0D .-1 27.(2012浙江)设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a bC .若||||||+=-a b a b ,则存在实数λ,使得λ=b aD .若存在实数λ,使得λ=b a ,则||||||+=-a b a b28.(2011广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c ,则λ=A .14B .12C .1D .229.(2011辽宁)已知向量(2,1)=a ,(1,)k =-b ,(2)0⋅-=a a b ,则=kA .12-B .6-C .6D .1230.(2010辽宁)平面上O ,A ,B 三点不共线,设OA=u u u r a ,OB =u u u rb ,则△OAB 的面积等于A .222|||()|-⋅a b a bB .222|||()|+⋅a b a bC .2221|||()2|-⋅a b a b D .2221|||()2|+⋅a b a b 31.(2010山东)定义平面向量之间的一种运算“e ”如下:对任意的(,)m n =a ,(,)p q =b ,令mq np =-e a b ,下面说法错误的是 A .若a 与b 共线,则0=e a b B .=e e a b b aC .对任意的R λ∈,有()()λλ=e e a b a bD .2222()()||||+•=e a b a b a b 二、填空题32.(2018全国卷Ⅲ)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若(2)+∥c a b ,则λ= .33.(2017新课标Ⅰ)已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b = . 34.(2017浙江)已知向量a ,b 满足||1=a ,||2=b ,则||||++-a b a b 的最小值是 ,最大值是 .35.(2017山东)已知1e ,2e 是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60o ,则实数λ的值是 .36.(2017江苏)如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC u u u r 的模分别为1,1,2,OAu u u r与OC u u u r 的夹角为α,且tan 7α=,OB uuu r 与OC u u u r 的夹角为45o.若OC u u u r =m OA u u u r +n OBuuu r (m ,n ∈R ),则m n += .37.(2016全国I)设向量(,1)m =a ,(1,2)=b ,且222||||||+=+a b a b ,则m = . 38.(2015江苏)已知向量(2,1)=a ,(1,2)=-b ,若(9,8)m n +=-a b (,m n ∈R ),则m n - 的值为___.39.(2015湖北)已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r .40.(2015新课标Ⅰ)设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ___. 41.(2015浙江)已知12,e e 是空间单位向量,1212⋅=e e ,若空间向量b 满足12⋅=b e ,252⋅=b e ,且对于任意,x y R ∈,12010200()()1(,)x y x y x y R -+-+=∈≥b e e b e e ,则0x =____,0y =_____,=b _____.42.(2014新课标Ⅰ)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+u u u r u u u r u u u r,则AB u u u r 与AC u u u r的夹角为 . 43.(2014山东)在ABC V 中,已知tan AB AC A ⋅=uu u r uuu r ,当6A π=时,ABC V 的面积为 .44.(2014安徽)已知两个不相等的非零向量a ,b ,两组向量12345,,,,x x x x x u r u u r u u r u u r u u r和12345,,,,y y y y y u u r u u r u u r u u r u u r 均由2个a 和3个b 排列而成.记112233S x y x y x y =⋅+⋅+⋅u r u u r u u r u u r u u r u u r4455x y x y +⋅+⋅u u r u u r u u r u u r,min S 表示S 所有可能取值中的最小值.则下列命题正确的是____(写出所有正确命题的编号). ①S 有5个不同的值. ②若⊥a b 则min S 与||a 无关. ③若∥a b 则min S 与||b 无关. ④若||4||>b a ,则0min >S .⑤若||2||=b a ,2min 8||S =a ,则a 与b 的夹角为4π. 45.(2014北京)已知向量a 、b 满足1=a ,(2,1)=b ,且0λ+=a b (R λ∈),则λ=__.46.(2014陕西)设20πθ<<,向量()sin 2cos θθ=,a ,()cos 1θ,b ,若∥a b ,则=θtan _______.47.(2014四川)平面向量(1,2)=a ,(4,2)=b ,m =+c a b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =____________.48.(2013新课标Ⅰ)已知两个单位向量a ,b 的夹角为60o,(1)=+-c ta t b ,若0⋅=b c ,则t =_____.49.(2013新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=u u u r u u u r . 50.(2013山东)已知向量AB u u u r 与AC u u u r 的夹角120o ,且|AB u u u r |=3,|AC u u u r |=2,若AP AB AC λ=+u u u r u u u r u u u r ,且AP BC ⊥u u u r u u u r,则实数λ的值为_____.51.(2013浙江)设1e ,2e 为单位向量,非零向量12x y =+b e e ,,x y ∈R ,若1e ,2e 的夹角为6π,则||||x b 的最大值等于________.52.(2013天津)在平行四边形ABCD 中,AD = 1,60BAD ︒∠=,E 为CD 的中点.若·1AC BE =u u u r u u u r, 则AB 的长为 .53.(2013北京)向量a ,b ,c 在正方形网格中的位置如图所示,若λμ=+c a b (λ,μ∈R ),则λμ= .54.(2013北京)已知向量a ,b 夹角为o45,且||1=a ,|2|10-=a b ||=b.55.(2012湖北)已知向量a =(1,0),b =(1,1),则(Ⅰ)与2+a b 同向的单位向量的坐标表示为____________; (Ⅱ)向量3-b a 与向量a 夹角的余弦值为____________。

高考数学一轮总复习 专题5.1 平面向量的概念及线性运算练习(含解析)理

高考数学一轮总复习 专题5.1 平面向量的概念及线性运算练习(含解析)理

专题5.1 平面向量的概念及线性运算真题回放1.【2017年高考新课标Ⅱ卷文4题】设非零向量a ,b 满足+=-b b a a 则 ( ) A.a ⊥b B. =b a C. a ∥b D. >b a 【答案】A2.【2016年高考山东理8题】已知非零向量m ,n 满足4|m |=3|n |,cos ,m n =13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4(C )94(D )–94【答案】B【考点】平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从n ⊥(t m +n )出发,转化成为平面向量的数量积的计算.本题能较好地考查考生转化与化归思想、基本运算能力等.3.【2016年高考北京理4题】设,a b 是向量,则“||||=a b ”是“||||+=-a b a b ”的 (A ) 充分而不必要条件 (B )必要而不充分条件(C ) 充分必要条件 (D )既不充分也不必要条件 【答案】D【考点】充要条件,向量运算【名师点睛】由向量数量积的定义||||cos θ⋅=⋅⋅a b a b (θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法. 考点分析融会贯通题型一 平面向量的概念典例1 (2016-2017年河北武邑中学高二文周考)点C 在线段AB上,且,则ACuuu r 等于( )【答案】D【解析】因为点C 在线段AB 上,所以AC uuu r 等于 D.考点:向量的相等. 解题技巧与方法总结平面向量的概念问题需要牢牢抓住平行向量(共线向量)、相等向量、相反向量的概念及特征,需要注意平行向量可以包含两个向量重合的情况,这点需要与直线平行加以区别【变式训练1】(2016-2017学年河北武邑中学高一上学期月考)下列说法正确的是( ) A .零向量没有方向 B .单位向量都相等 C .任何向量的模都是正实数 D .共线向量又叫平行向量 【答案】D考点:向量的概念.【变式训练2】设a r是非零向量,λ是非零实数,下列结论中正确的是( )A .a r 与λa r的方向相反 B .a r 与2λa r 的方向相同 C .|-λa r |≥| a r|D .|-λa r |≥| λ|·a r【答案】B【解析】对于A ,当λ>0时,a r 与λa r 的方向相同,当λ<0时,a r 与λa r的方向相反,B 正确;对于C ,|-λa r |=|-λ|| a r |,由于|-λ|的大小不确定,故|-λa r |与| a r|的大小关系不确定;对于D ,|λ| a r 是向量,而|-λa r|表示长度,两者不能比较大小.【变式训练3】(2015-2016学年江西上饶铅山县一中高一下学期期中)下列关系式正确的是 ( )A. 0AB BA +=uu u r uu r rB. a b ⋅r r是一个向量 C. AB AC BC -=uu u r uuu r uu u r D. 00AB ⋅=uu u r r【答案】D 【解析】试题分析:A 相反向量的和为零向量,所以A 不正确;B 两向量的数量积是一个实数,所以B 不正确;C 根据向量的减法的三角形法则,得CB AC =-AB ,故C 不正确;D 零与任何向量的数量积等等于零向量,故D 正确.考点:平面向量的线性运算;向量的数量积的定义及其性质.1.向量:既有大小又有方向的量叫作向量.向量的大小叫向量的长度(或模).2.几个特殊的向量(1)零向量:长度为零的向量,记作0,其方向是任意的. (2)单位向量:长度等于1个单位长度的向量.(3)平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线.(4)相等向量:长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.典例2 (青海省平安县第一高级中学2015~2016课后练习)设向量,a b rr 不平行,向量a b λ+r r 与2a b +r r平行,则实数λ=___________【答案】12考点:向量平行的条件 解题技巧与方法总结(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量,a b r r共线是指存在不全为零的实数12,λλ,使120a b λλ+=r r r 成立;若120a b λλ+=r r r ,当且仅当12λλ==0时成立,则向量,a b r r不共线.【变式训练1】(青海省平安县第一高级中学2015~2016课后练习)已知向量i r 与j r不共线,且,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线,则实数,m n 满足的条件是( )A. 1m n +=B. 1m n +=-C. 1mn =D. 1mn =-【解析】法一:Q ,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线且,,A B D 三点共线所以存在非零实数λ,使AB AD λ=uu u r uuu r即()i m j ni j λ+=+r r r rQ i r 与j r不共线所以1n m λλ=⎧⎨=⎩1n m λλ⎧=⎪⇒⎨⎪=⎩∴1mn =法二:由题可得, AB CD uu u r uu u rP∴AB AD λ=uu u r uuu r∴11m n = ∴1mn =考点:向量共线定理【变式训练2】已知(1,0),(2,1)a b ==r r(1) 当k 为何值时,ka b -r r 与2a b +r r共线?(2) 若23AB a b =+uu u r r r ,BC a mb =+uu u r r r,且,,A B C 三点共线,求m 的值【答案】1-232(2)Q ,,A B C 三点共线AB BC ∴u u u r u u u rP故存在实数λ,使得AB BC λ=uu u r uu u r()23a b a mb λ+=+r r r r∴2λ=,32m =考点:向量的运算法则、共线定理 知识链接:平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线. 两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =λa . 题型二 向量的线性运算 命题点1 简单的向量线性运算典例 (吉林省吉林大学附属中学2017届高三第五次摸底考试数学(理))在梯形ABCD 中,3AB DC =uu u r uuu r ,则BC uu u r等于( )【答案】D解题技巧与方法总结(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系;④化简结果.【变式训练1】(河南省商丘市九校2016-2017学年高一下学期期中)如图12,e e u r u r为互相垂直的单位向量,向量a b c ++r r r可表示为( )A. 1223e e +u r u rB. 1232e e +u r u rC. 1232e e -u r u rD. 1233e e --u r u r【答案】B【解析】 1212122,2,2a e e b e e c e e =+=-=+u r u r u r u r u r u r r r r ,故 1232a b c e e ++=+u r u rr r r .知识链接:平面向量的基本定理如果12,e e u r u r是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数21,λλ使:1122a e e λλ=+r u r u r 其中不共线的向量12,e e u r u r叫做表示这一平面内所有向量的一组基底【变式训练2】(北京市东城区2017届高三5月综合练习(二模)数学理)设,a b rr 是非零向量,则“,a b rr 共线”是“ )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B命题点2 向量线性运算运用典例 (山东省淄博市临淄中学2016-2017学年高二上学期期末考试数学(理)试题)如图在空间四边形 OABC 中,点M 在OA 上,且 2OM MA = , N 为BC 中点,则MN uuu r等于( )A.121232OA OB OC -+uu ruu u r uuu r B.211322OA OB OC -++uu r uuu r uuu r C.111222OA OB OC +-uu ruu u r uuu r D.221332OA OB OC+-uu ruu u r uuu r【答案】B【名师点睛】进行向量的运算时,要尽可能转化到平行四边形或三角形中,选用从同一点出发的基本量或首尾相接的向量,运用向量的加减运算及数乘来求解,充分利用相等的向量,相反的向量和线段的比例关系,把未知向量转化为与已知向量有直接关系的向量来解决 【变式训练1】如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12b B.12a -bC .a +12b D.12a +b【答案】D【解析】连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【变式训练2】如图所示,设P 、Q 为△ABC 内的两点,且=+,=+,则△ABP与△ABQ 的面积之比为 .【答案】知识链接:1.向量加法:求两个向量和的运算叫做向量的加法,例AB BC AC +=uu u r uu u r uuu r(1)0+0a a a =+=r r r r r;(2)向量加法满足交换律与结合律;2.向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则. 向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”. 3.向量的减法 :向量a r 加上b r 的相反向量叫做a r 与b r的差,记作:()a b a b -=+-r r r r 求两个向量差的运算,叫做向量的减法4.作图法:a b -r r 可以表示为从b r 的终点指向a r 的终点的向量(a r 、b r有共同起点)命题点3 向量线性运算求参数值或取值范围典例 1(黑龙江省齐齐哈尔市第一中学校2016-2017学年高一3月月考数学(理)试题)已知在ABC ∆中,点在边上,且2,CD DB CD r AB sAC ==+u u u r u u u r u u u r u u u r u u u r,则的值为( ) A. 0 B. D. 3- 【答案】A【解析】分析试题由已知可得:()22223333CD CB AB AC AB AC ==-=-uu u r uu r uu u r uuu r uuu r uuu r ,所以=点睛:向量的线性运算,注意理解加法的三角形法则和平行四边形法则以及减法法则的运用. 【变式训练1】(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【答案】12【变式训练2】在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为 ( )A. 12B. 13C. 14D .1【答案】A【解析】∵M 为BC 上任意一点,∴可设AM →=x AB →+y AC →(x +y =1).∵N 为AM 的中点,∴AN →=12AM →=12x AB →+12y AC →=λ AB →+μ AC →,∴λ+μ=12(x +y )=12.知识链接:三点共线的性质定理:(1)若平面上三点A 、B 、C 共线,则AB →=λBC →.(2)若平面上三点A 、B 、C 共线,O 为不同于A 、B 、C 的任意一点,则OC →=λOA →+μOB →,且λ+μ=1.典例2【2014届广东省东莞市高三第二次模拟考试】如图所示,A 、B 、C 是圆O 上的三点,CO 的延长线与线段AB 交于圆内一点D ,若OC =uuu r xOA yOB +uu r uu u r,则 ( )A.01x y <+<B.1x y +>C.1x y +<-D.10x y -<+<【答案】C【变式训练】(2014北京东城高三期末)在直角梯形ABCD 中,90,30,2,A B A BB C ∠=︒∠=︒==,点E 在线段CD 上,若AE AD AB μ=+uu u r uuu r uu u r,则实数μ的取值范围是 .【答案】102⎡⎤⎢⎥⎣⎦, 【解析】由题意可求得1,AD CD ==2AB DC =uu u r uuu r.因为点E 在线段CD 上,所以DE DC λ=uuu r uuu r(01λ≤≤).因为AE AD DE =+uu u r uuu r uuu r ,又AE AD AB μ=+uu u r uuu r uu u r =2AD DC μ+u u u r u u u r =2AD DE μλ+uuur uuu r ,所以2μλ=1,即μ=2λ.因为0≤λ≤1,所以0≤μ≤12.知识交汇例1 如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.【答案】3【交汇技巧】本题将向量的共线定理与三角形重心的性质进行结合,三角形重心是三条边中线的交点,另外本题还结合了方程思想,通过消去λ得到m ,n 之间的关系例2 已知点O 为△ABC 外接圆的圆心,且0OA OB CO ++=uu r uu u r uu u r r,则△ABC 的内角A 等于( )A .30°B .60°C .90°D .120°【答案】A【解析】 由0OA OB CO ++=uu r uu u r uu u r r 得OA OB OC +=uu r uu u r uuu r,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知四边形OACB 为菱形,且∠CAO =60°,故A =30°.【交汇技巧】三角形外接圆的圆心是三角形三条边垂直平分线的交点,到三个顶点距离相等,结合0OA OB CO ++=uu r uu u r uu u r r可得四边形OACB 为平行四边形的条件,得出四边形OACB 为菱形,从而求出角A 的大小 练习检测1.【山东省淄博实验中学2015届高三第一学期第一次诊断考试试题,文10】在ABC ∆中,点,M N 分别是,AB AC 上,且32,5AM MB AN AC ==uuu r uuu r uuu r uuu r,线段CM 与BM 相交于点P ,且,AB a AC b ==u u u r r u u u r r,则AP uu u r 用a r 和b r 表示为( )A .4193AP a b =+uu u r r rB .4293AP a b =+uu u r r rC . 2493AP a b =+uu u r r rD .4377AP a b =+uu u r r r【答案】A2.(江西省南昌市重点学校2016-2017学年高一4月检测)已知ABC ∆的边BC 上有一点D 满足3BD DC =uu u r uuu r ,则AD uuu r可表示为( )A. 23AD AB AC =-+uuu r uu u r uuu rB.【答案】C【解析】如图所示,3.(2015届北京市156中学高三上学期期中考试理科)如图,向量b a -等于( )(A )2124e e -- (B )2142e e --(C )213e e - (D )213e e - 【答案】C点评:12,e e u r u r 是两个单位向量,从图上将,a b r r用单位向量表示出来4.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则 ( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上 【答案】B【解析】因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B. 5.(2016-2017学年天津市静海县第一中学高二上学期期末五校联考理)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,AB a BC b AA c ===uu u r r uu u r r uuu r r,则BM uuu r 可表示为( )A. 1122a b c -++r r rB. 1122a b c ++r r rC. 1122a b c --+r r rD. 1122a b c -+r r r【答案】A【解析】()111222BN BA BC a b =+=-+uuu r uu r uu u r r r Q1122BM BN NM a b c ∴=+=-++uuu r uuu r uuur r r r,故本题正确答案为A6.(江西省赣州市十四县(市)2017届高三下学期期中联考(理))如图,平行四边形ABCD的两条对角线相交于点O ,点E , F 分别在边AB , AD 上,直线EF 交AC 于点K , AK AO λ=uuu r,则λ等于( )【答案】C7.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.8.设点O 在ABC V 内部,且有40OA OB OC ++=uu r uu u r uuu r r,求△ABC 的面积与△OBC 的面积之比.【答案】S △ABC ∶S △OBC =3∶2.【解析】取BC 的中点D,连接OD,则+=2,4++=0,∴4=-(+)=-2,∴=-.∴O 、A 、D 三点共线,且||=2||,∴O 是中线AD 上靠近A 点的一个三等分点, ∴S △ABC ∶S △OBC =3∶2.9.在任意四边形ABCD 中,E 是AD 的中点,F 是BC 中点,求证:()1=+2EF AB DC uu u r uu u r uuu r法二:连接EB EC uu r uu u r , 则=+EC ED DC uu u r uu u r uuu r()()11==+++=22EF EC EB ED DC EA AB +uu u r uu u r uu r uu u r uuu r uu r uu u r ()1+2AB DC uuu r uuu r。

高三数学平面向量的概念及几何运算试题答案及解析

高三数学平面向量的概念及几何运算试题答案及解析

高三数学平面向量的概念及几何运算试题答案及解析1.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在平面向量集上也可以定义一个称“序”的关系,记为“”.定义如下:对于任意两个向量当且仅当“”或“”.按上述定义的关系“”,给出如下四个命题:①若;②若,则;③若,则对于任意;④对于任意向量.其中真命题的序号为__________.【答案】①②③【解析】①因为由定义,,所以故①为真命题;②设由得:,或由得,或,以下分四种情况讨论:第一:若,则,所以第二:若,则,所以第三:若,则,所以第四:若,则,所以,且所以所以②是真命题③设,则由得:“”或“”所以或“且”所以是真命题.④设,显然满足,但=,所以,所以命题是假命题.综上答案应填①②③.【考点】1、新定义;2、不等式的性质;3、向量的概念与运算.2.在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.【答案】2【解析】由平行四边行的性质知,AC与BD互相平分,又+==2所以λ=23.在四边形中,,,则四边形的面积为()A.B.C.2D.【答案】A【解析】由,可知四边形为平行四边形,且,因为,所以可知平行四边形ABCD的角平分线BD平分∠ABC,四边形为菱形,其边长为,且对角线对于边长的倍,即,则,即,所以三角形的面积为,所以四边形的面积为,选A 4.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()A.B.C.D.【答案】A【解析】=(3,-4),则与同方向的单位向量为=(3,-4)=.故选A.5.直线的一个法向量可以是【答案】【解析】已知直线的一般式方程为,因此其一个法向量为.【考点】直线的法向量.6.已知向量=(cos α,sin α),将向量绕坐标原点O逆时针旋转θ角得到向量 (0°<θ<90°),则下列说法不正确的为( )A.|+|=|-|B.||+||>|-|C.(+)⊥(-)D.、在+方向上的投影相等【答案】A【解析】由题意可知以,所在线段为一组邻边,+,-所在线段为对角线可构成边长为1的菱形,所以B,C, D正确,A错误.7.在梯形ABCD中,AB∥CD,且|AB|=λ|DC|,设=a,=b,则=()A.λa+b B.a+λbC.a+b D.a+b【答案】C【解析】=+=b+=b+a.故选C.8.已知非零向量a,b满足向量a+b与向量a-b的夹角为,那么下列结论中一定成立的是() A.a=b B.|a|=|b|C.a⊥b D.a∥b【答案】B【解析】由条件得(a+b)·(a-b)=a2-b2=0,故可得|a|=|b|.9.已知向量a,b满足|a|=|b|=2,a·b=0,若向量c与a-b共线,则|a+c|的最小值为()A.1B.C.D.2【解析】由于c与a-b共线,且a-b≠0所以设c=λ(a-b)(λ∈R),于是a+c=a+λ(a-b)=(λ+1)a-λb,所以|a+c|===,因此当λ=-时,|a+c|取最小值.10.设a,b是不共线的两个向量,其夹角是θ,若函数f(x)=(xa+b)·(a-xb)(x∈R)在(0,+∞)上有最大值,则()A.|a|<|b|,且θ是钝角B.|a|<|b|,且θ是锐角C.|a|>|b|,且θ是钝角D.|a|>|b|,且θ是锐角【答案】D【解析】f(x)=-a·bx2+(a2-b2)x+a·b,若函数f(x)在(0,+∞)上有最大值,则可知函数为二次函数,且图象的开口向下,且对称轴在y轴右侧,即所以a,b的夹角为锐角,且|a|>|b|.【误区警示】解答本题时容易因看不懂题意,不能将函数问题转化为向量问题而导致错解或无法解题.11.已知向量a,b满足|a|=2,|b|=1,且(a+b)⊥,则a与b的夹角为().A.B.C.D.【答案】A【解析】因为(a+b)⊥,所以(a+b)·=a2-b2-a·b=0.又因为|a|=2,|b|=1,所以4--a·b=0.所以a·b=1.又a·b=|a||b|cos〈a,b〉=1,所以cos〈a,b〉=.又a与b的夹角的取值范围是[0,π],所以a与b的夹角为.12.设a,b是两个非零向量,下列选项正确的是().A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|【答案】C【解析】对于A,可得cos〈a,b〉=-1,因此a⊥b不成立;对于B,满足a⊥b时,|a+b|=|a|-|b|不成立;对于C,可得cos〈a,b〉=-1,因此成立,而D显然不一定成立.13.已知O,A,M,B为平面上不同的四点,且=λ+(1-λ) ,λ∈(1,2),则().A.点M在线段AB上B.点B在线段AM上C.点A在线段BM上D.O,A,M,B四点共线【解析】根据题意知=λ+-λ=λ(-)+,则-=λ(-),即=λ.由λ∈(1,2)可以判断出点M在线段AB的延长线上,即点B在线段AM上.14.如图,在底角为的等腰梯形中,已知,分别为,的中点.设,.(1)试用,表示,;(2)若,试求的值.【答案】(1),;(2).【解析】(1) 利用平面向量的加法和减法的运算法则进行计算,用已知量表示未知量,注意向量的方向的变化;(2)要求,就要找到向量,的模及其数量积,先求出向量的模,再根据向量的性质进行计算.试题解析:(1)因为,,,分别为,的中点,所以; 3分. 6分(2),, ,所以, 8分那么. 12分【考点】1、平面向量的模及数量积;2、平面向量的加减混合运算.15.如图,为直线外一点,若,,,,,,,中任意相邻两点的距离相等,设,,用,表示,其结果为 .【答案】【解析】设的中点为A,则A也是,…的中点,由向量的中点公式可得,同理可得,故.【考点】平面向量的加法法则,中点公式.16.在边长为1的正三角形ABC中,=x,=y,x>0,y>0,且x+y=1,则·的最大值为_____________【答案】【解析】由题意,·="(" + )( + )∵=x,=y,∴·="("+ )( + )="(" + )( +y)=∵x>0,y>0,且x+y=1∴xy≤, ∴=当且仅当x=y=时,取等号∴当x=y=时,·的最大值为.【考点】向量的运算,不等式的性质.17.已知向量,,若与共线.则等于()A.B.C.D.4【答案】A【解析】因为与共线,所以【考点】本小题主要考查向量的共线的坐标运算.点评:向量的共线与垂直是两种重要的位置关系,它们的坐标运算要熟练掌握.18.若为所在平面内一点,且满足,,则ABC的形状为A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C【解析】,点M在底边BC的中垂线上,又,所以点M在底边BC的中线上,因而底边BC的中线与垂直平分线重合,所以ABC的形状为等腰三角形.19.已知单位向量满足,则夹角为()A.B.C.D.【答案】C【解析】因为单位向量满足,则夹角为,选C20.定义平面向量之间的一种运算“⊙”如下:对任意向量a b令a⊙b,则下列说法错误的是A.对任意的a⊙b a⊙(b)B.a⊙b b⊙aC.a⊙b a b a bD.若a与b共线,则a⊙b【答案】B【解析】若a与b共线,则有a⊙b=mq-np=0,故D正确因为b⊙a="pn-mq," a⊙b=mq-np=0,故选项B不正确,选B21.已知,若,则【答案】【解析】略22.在平行四边形ABCD中,AC为一条对角线,_____【答案】(-3,-5)【解析】略23.已知点A(1,2)、B(3,4),则向量坐标为____ .【答案】(2,2)【解析】略24.设平面向量,若,则实数的值为 ( )A.B.C.D.【答案】B【解析】故选B25.若向量则等于()A.B.C.D.【答案】B【解析】本题考查平面向量的基本定理,向量的坐标运算和向量相等的概念.设则,根据向量相等概念得:解得故选B26.若向量,满足,,,则与的夹角是。

考点30平面向量的概念及线性运算(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

考点30平面向量的概念及线性运算(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

考点30平面向量的概念及线性运算(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.【知识点】1.向量的有关概念(1)向量:既有大小又有 的量叫做向量,向量的大小称为向量的.(2)零向量:长度为的向量,记作.(3)单位向量:长度等于 长度的向量.(4)平行向量:方向相同或 的非零向量,也叫做共线向量,规定:零向量与任意向量.(5)相等向量:长度相等且方向 的向量.(6)相反向量:长度相等且方向 的向量.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b = ;结合律:(a +b )+c =________减法a -b =a +(-b )数乘|λa |=,当λ>0时,λa 的方向与a 的方向;当λ<0时,λa 的方向与a 的方向 ;当λ=0时,λa =λ(μa )= ;(λ+μ)a = ;λ(a +b )=3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使 .常用结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—→ +A 2A 3—→ +A 3A 4—→ +…+A n -1A n ———→ =A 1A n —→,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF → =12(OA → +OB → ).3.若A ,B ,C 是平面内不共线的三点,则PA → +PB → +PC → =0⇔P 为△ABC 的重心,AP → =13(AB → +AC → ).4.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.【核心题型】题型一 平面向量的基本概念平行向量有关概念的四个关注点(1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.(4)a|a |是与a 同方向的单位向量.【例题1】(2024·湖南永州·三模)在ABC V 中,120ACB Ð=o,3AC uuu r =,4BC =uuu r,0DC DB ×=uuu r uuu r,则AB AD +uuu r uuu r 的最小值为( )A .2B .4C .1D 2【变式1】(2023·北京大兴·三模)设a r ,b r 是非零向量,“a a bb =r r rr ”是“a b =r r”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【变式2】(2022·江苏·三模)已知向量()6,2a =r ,与a r共线且方向相反的单位向量b =r.【变式3】(2022·上海虹口·二模)已知向量a r ,b r满足2a =r ,1b =r ,a +r ,则a b -=r r.题型二 平面向量的线性运算平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义.(2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值.命题点1 向量加、减法的几何意义【例题2】(2024·福建福州·三模)已知线段AB 是圆O 的一条长为2的弦,则AO AB ×=uuu r uuu r( )A .1B .2C .3D .4【变式1】(2024·河南三门峡·模拟预测)在ABC V 中,3,4AN NC BP PN ==uuu r uuu r uuu r uuu r ,则AP =uuu r ( )A .1355AB CA+uuur uuu r B .3455AB CA-uuur uuu r C .3155AB CA-uuur uuu r D .1355AB CA-uuur uuu r 【变式2】(2023·四川乐山·一模)已知正六边形ABCDEF 边长为2,MN 是正六边形ABCDEF 的外接圆的一条动弦,2MN =,P 为正六边形ABCDEF 边上的动点,则PM PN ×uuuu r uuu r的最小值为 .【变式3】(2023·上海金山·二模)已知a r 、b r 、c r 、d ur 都是平面向量,且|||2||5|1a a b a c =-=-=r r r r r ,若,4a d p =r u r ,则||||b dcd -+-r u r r u r的最小值为.命题点2 向量的线性运算【例题3】(2023·河北·模拟预测)在平行四边形ABCD 中,已知24==A D A B ,且4AB BC ×=-uuu r uuu r ,则向量AB uuu r与AC uuu r 的夹角的余弦值为( )A .12-B .0C .12D 【变式1】(2024·安徽·模拟预测)已知O 为等边ABC V 的中心,若3,2OA a AB b ==uuu r uuu r r r,则AC =uuu r.(用,a b r r 表示)【变式2】(2024·黑龙江哈尔滨·二模)已知不共线的三个单位向量,,a b c r r r 满足0,a b c a l ++=r r r r r 与b r 的夹角为π3,则实数l =.【变式3】(2024·江苏扬州·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若()()3a b c a b c +++-=,且ABC V (1)求角C ;(2)若2AD DB =uuu r uuu r,求CD 的最小值.命题点3 根据向量线性运算求参数【例题4】(2024·江苏·二模)已知非零向量π(cos 2,sin())4a a a =+r ,π(sin(4b a =+r ,若//a b r r ,则sin 2a =( )A .1-B C .45D .35【变式1】(2024·浙江杭州·三模)已知不共线的平面向量a r ,b r满足()()2a b a b l l ++∥r r r r ,则正数l =( )A .1B C D .2【变式2】(2024·上海·三模)设平面向量()sin ,1a q =r ,(cos b q =r ,若a r ,b r 不能组成平面上的一个基底,则tan q = .【变式3】(2023·四川南充·一模)在ABC V 中,设角A ,B ,C 的对边分别为a ,b ,c .已知向量),sin m A A =r,()1,1n =-r ,且m n ∥r r.(1)求角A 的大小;(2)若a =sin sin 0a B c A -=,求ABC V 的面积.题型三 共线定理及其应用利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.(2)若a 与b 不共线且λa =μb ,则λ=μ=0.(3)若OA → =λOB → +μOC → (λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.【例题5】(2024·全国·模拟预测)已知平面上点O ,A ,B 满足2OA OB ==uuu r uuu r ,且||OA OB OA +=uuu r uuu r uuu r ,点C 满足OC OB -=uuu r uuu rP 满足()1OP tOA t OC =+-uuu r uuu r uuu r ,则OP uuu r 的最小值为( )A B C .1D .1【变式1】(2024·浙江·模拟预测)已知向量1e u r ,2e u ur 是平面上两个不共线的单位向量,且122AB e e =+u r uuu r u u r ,1232BC e e =-+uuur u r u u r ,1236DA e e =-uuu r u r u u r ,则( )A .、、ABC 三点共线B .A BD 、、三点共线C .A C D 、、三点共线D .B C D 、、三点共线【变式2】(2024·上海松江·二模)已知正三角形ABC 的边长为2,点D 满足CD mCA nCB =+uuu r uuu r uuu r,且0m >,0n >,21m n +=,则||CD uuu r 的取值范围是 .【变式3】(2022·江苏盐城·模拟预测)如图,已知正方形ABCD 的边长为2,过中心O 的直线l 与两边AB ,CD 分别交于点M ,N .(1)若Q 是BC 的中点,求QM QN ×uuuu r uuu r的取值范围;(2)若P 是平面上一点,且满足2(1)OP OB OC l l =+-uuu r uuu r uuu r ,求PM PN ×uuuu r uuu r的最小值.【课后强化】【基础保分练】一、单选题1.(2024·全国·模拟预测)已知平面向量a r ,b r ,则“//a b rr ”是“存在R l Î,使得a b l =r r ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件2.(2023·贵州黔东南·三模)在△ABC 中,已知4AB =,M 为线段AB 的中点,3CM =,若2CN NM=uuu r uuuu r,则NA NB ×=uuu r uuu r ( )A .92-B .3-C .D .3.(2024·广东深圳·模拟预测)已知点()2,6A ,()2,3B --,()0,1C ,7,62D æöç÷èø,则与向量2AB CD +uuu r uuu r同方向的单位向量为( )A .B .C .D .43,55æö-ç÷èø4.(2024·山西朔州·一模)已知)2,a b ==r r,且a b ^r r ,则2a b -=r r ( )A .B .C .4D .二、多选题5.(2024·辽宁·二模)ABC V 的重心为点G ,点O ,P 是ABC V 所在平面内两个不同的点,满足OP OA OB OC =++uuu r uuu r uuu r uuu r,则( )A .,,O P G 三点共线B .2OP OG =uuu r uuu rC .2OP AP BP CP =++uuu r uuu r uuu r uuu rD .点P 在ABC V 的内部6.(2024·浙江宁波·二模)若平面向量,,a b c r r r 满足1,1,3a b c ===r r r 且a c b c ×=×r r r r ,则( )A .a b c ++r r r的最小值为2B .a b c ++r r r的最大值为5C .a b c -+r r r 的最小值为2D .a b c -+r r r的最大值为三、填空题7.(2023·重庆·一模)在PAB V 中,4,3AB APB p=Ð=,点Q 满足2()QP AQ BQ =+uuu r uuu r uuu r ,则QA QB×uuu r uuu r的最大值为.8.(2023·云南大理·模拟预测)若a b =r r ,8a b +=r r ,6a b -=r r ,则a r 在b r上投影向量的模为.9.(2023·陕西西安·模拟预测)若平面四边形ABCD 满足0AB CD +=uuu r uuu r r,()0AB AD AC -×=uuu r uuu r uuu r ,则该四边形一定是 .四、解答题10.(2024·山西朔州·一模)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,向量()(),,sin sin ,sin sin m a b c n A C A B =+=--r r ,且//m n r r .(1)求B ;(2)求222b a c+的最小值.11.(2024·四川·模拟预测)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos 2cos B a bC c-=.(1)求角C ;(2)若4AB AC +=uuu r uuu r,求ABC V 面积的最大值.【综合提升练】一、单选题1.(2023·四川南充·一模)已知正方形ABCD 的边长为1,则AB BC CA +-=uuu r uuu r uuu r ( )A .0B C .D .42.(2024·全国·模拟预测)已知向量()4,a m =r ,()2,2b m =-r ,则“4m =”是“a r 与b r共线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024·安徽马鞍山·三模)已知平面向量1e u r ,2e u u r 不共线,12(21)2a k e e =-+r u r u u r ,12b e e =-r u r ur ,且//a b r r,则k =( )A .12-B .0C .1D .324.(2024·四川遂宁·模拟预测)在ABC V 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB y AC x y =+>>uuu r uuu r uuu r ,则12x y+的最小值为( )A .3B .4C .8D .95.(2023·四川南充·一模)已知正方形ABCD 的边长为1,则AB BC CA +-=uuu r uuu r uuu r ( )A .0B C .2D .6.(23-24高三下·山东菏泽·阶段练习)已知向量a r ,b r,满足a b a b ==-r r r r ,则()·a a b +=r r r ( )A .212a r B .212b rC .()212a b +r r D .()212a b -r r7.(23-24高三上·全国·阶段练习)设平面向量(1,3)a =r ,||2b =r ,且||a b -=rr ,则()()2·a b a b +-r rr r =( )A .1B .14C D8.(2024·上海杨浦·二模)平面上的向量a r 、b r 满足:3a =r,4b =r ,a b ^r r .定义该平面上的向量集合{|||||,}A x x a x b x a x b =+<+×>×r rr r r r r r r .给出如下两个结论:①对任意c A Îr ,存在该平面的向量d A Îu r ,满足0.5c d -=rr ②对任意c A Îr ,存在该平面向量d A Ïu r ,满足0.5c d -=rr 则下面判断正确的为( )A .①正确,②错误B .①错误,②正确C .①正确,②正确D .①错误,②错误二、多选题9.(2023·海南海口·模拟预测)下列命题为真命题的是( )A .一组数据22 ,20 ,17 ,15,13,11,9,8,8,7 的第90百分位数是21B .若等差数列{}n a 满足x y p q a a a a +=+(x 、y 、p 、*N )q Î,则x y p q +=+C .非零平面向量a r 、b r 、c r 满足//a b r r ,//b c r r,则//a cr r D .在ABC V 中,“AB AC >”与“cos cos C B <”互为充要条件10.(2024·全国·模拟预测)设,a b r r是两个非零向量,下列命题正确的是( )A .若0a b ×=r r,则//a b r r B .若a b a b ×=×r r r r ,则//a br r C .若a b ^r r,则()2a b a b×=×r r r r D .若a b a b +=-r r r r ,则a b^r r11.(2022·辽宁·模拟预测)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O 的半径为2,点P 是圆O 内的定点,且OP =,弦AC 、BD 均过点P ,则下列说法正确的是( )A .PA PC ×uu u r uuu r为定值B .OA OC ×uuu r uuu r的取值范围是[]2,0-C .当AC BD ^时,AB CD ×uuu r uuu r为定值D .AC BD ×uuu r uuu r 的最大值为12三、填空题12.(2024·天津·一模)已知平行四边形ABCD 的面积为23πBAD Ð=,且2BE EC =uuu r uuu r .若F 为线段DE 上的动点,且56AF AB AD l =+uuu r uuu r uuu r,则实数l 的值为 ;AF uuu r 的最小值为 .13.(2023·河南·模拟预测)已知向量()1cos ,sin e a a =u r ,()2cos ,sin e b b =u u r ,()0,1m =u r ,若12e e m +=u r u u r u r ,则12e e ×=u r u u r.14.(2024·青海西宁·二模)若向量,a b r r 不共线,且()()//xa b a yb ++r r r r,则xy 的值为 .四、解答题15.(2024·吉林延边·一模)已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,sin sin sin A B c aC b a +-=-.(1)求B ;(2)若点D 在AC 上,且2AD BD DC ==,求ac.16.(2024·浙江温州·模拟预测)ABC V 的角,,A B C 对应边是 a ,b ,c ,三角形的重心是 O .已知3,4,5OA OB OC ===.(1)求 a 的长.(2)求ABC V 的面积.17.(2023·湖南·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,,a b c ABC V 的面积为πsin 3A A æö-ç÷èø.(1)求C 的大小.(2)点D 满足AD CA =uuu r uuu r.若c =,a b .18.(2023·四川成都·三模)在锐角ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且6a =,()2sin 2sin()A C b B C +++=(1)求角B 的大小;(2)若3AC DC =uuu r uuu r ,BD =c 的值.19.(2024·山东青岛·一模)已知O 为坐标原点,点W 为O e :224x y +=和M e 的公共点,0OM OW ×=uuuu r uuuu r ,M e 与直线20x +=相切,记动点M 的轨迹为C .(1)求C 的方程;(2)若0n m >>,直线1:0l x y m --=与C 交于点A ,B ,直线2:0l x y n --=与C 交于点A ¢,B ¢,点A ,A ¢在第一象限,记直线AA ¢与BB ¢的交点为G ,直线AB ¢与BA ¢的交点为H ,线段AB 的中点为E .①证明:G ,E ,H 三点共线;②若()217m n ++=,过点H 作1l 的平行线,分别交线段AA ¢,BB ¢于点T ,T ¢,求四边形GTET ¢面积的最大值.【拓展冲刺练】一、单选题1.(2024·黑龙江·模拟预测)已知在梯形ABCD 中,//AB CD 且满足2AB DC =uuu r uuur,E 为AC 中点,F 为线段AB 上靠近点B 的三等分点,设AB a =uuu r r ,AD b uuu r r =,则EF =uuu r ( ).A .2132a b -r r B .3146a b -r r C .51122a b -r r D .1126a b -r r 2.(2024·北京西城·二模)已知向量a r ,b r 满足()4,3a =r ,()210,5a b -=-r r ,则( )A .0a b +=r r r B .0a b ×=r r C .a b >r r D .a br r ∥3.(2024·全国·二模)点,O P 是ABC V 所在平面内两个不同的点,满足OP OA OB OC =++uuu r uuu r uuu r uuu r ,则直线OP 经过ABC V 的( )A .重心B .外心C .内心D .垂心4.(2024·浙江宁波·模拟预测)已知ABC V 是边长为1的正三角形,1,3AN NC P =uuu r uuu r 是BN 上一点且29AP mAB AC =+uuu r uuu r uuu r ,则AP AB ×=uuu r uuu r ( )A .29B .19C .23D .1二、多选题5.(2024·福建厦门·三模)已知等边ABC V 的边长为4,点D ,E 满足2BD DA =uuu r uuu r ,BE EC =uuu r uuu r ,AE 与CD 交于点O ,则( )A .2133CD CA CB =+uuu r uuu r uuu r B .8BO BC ×=uuu r uuu rC .2CO OD =uuu r uuu r D .||OA OB OC ++=uuu r uuu r uuu r 6.(2024·安徽淮北·一模)如图,边长为2的正六边形ABCDEF ,点P 是DEF V 内部(包括边界)的动点,AP xAB y AD =+uuu r uuu r uuu r ,x ,y ÎR .( )A .0AD BE CF -+=uuu r uuu r uuu r rB .存在点P ,使x y=C .若34y =,则点P 的轨迹长度为2D .AP AB ×uuu r uuu r 的最小值为2-三、填空题7.(2024·山西太原·三模)赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了 “勾股圆方图”,亦称“赵爽弦图” (以直角三角形的斜边为边得到的正方形). 类比 “赵爽弦图”,构造如图所示的图形,它是由三个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,且DF AF =,点P 在AB 上,2BP AP =,点Q 在DEF V 内 (含边界)一点,若PQ PD PA l =+uuu r uuu r uuu r ,则l 的最大值为 .8.(2022·辽宁鞍山·模拟预测)点P 在椭圆2214x y +=上,P 不在坐标轴上,()2,0A ,()2,1C ,()10,1B ,()20,1B -,直线1B P 与2x =交于点T ,直线2B P 与x 轴交于点S ,设OS OA l ®®=,AT AC m ®®=,则l m +的值为 .9.(2023·四川乐山·一模)已知正方形ABCD 边长为MN 是正方形ABCD 的外接圆的一条动弦,2MN =,P 为正方形ABCD 边上的动点,则MP PN ×uuu r uuu r 的最大值为 .四、解答题10.(2023·江西·模拟预测)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知M为BC 边的中点,()2a ab AM CB -×=uuuu r uuu r .(1)求角C 的大小;(2)若ABC V 的面积为ABC V 周长的最小值.11.(2023·河北·模拟预测)如图,D 为ABC V 内部一点,DE BC ^于E ,AB AD =.请从下面①②③中选取两个作为条件,证明另一个成立.①3CE EB =uuu r uuu r ;②())sin sin sin B C B C +=-;③2AD DE AE DE AD AD DE +=×.。

高考数学平面向量及其应用习题及答案百度文库

一、多选题1.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=-⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60°2.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( ) A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭3.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 4.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<5.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解6.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ<7.ABC 中,4a =,5b =,面积S =c =( )A BC D .8.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆ 9.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=10.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 11.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±12.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-13.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量14.题目文件丢失!15.题目文件丢失!二、平面向量及其应用选择题16.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( ) A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦17.若向量123,,OP OP OP ,满足条件1230OP OP OP ++=,1231OP OP OP ===,则123PP P ∆的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .不能确定18.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23πB .43π C .6π D .3π 19.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心20.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( )A .2B .4CD .21.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=22.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4323.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.在ABC 中,若A B >,则下列结论错误的是( )A .sin sin AB >B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <26.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )A .1233AB AC -+ B .2133AB AC - C .1233AB AC -D .2133AB AC -+ 27.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +28.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 29.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .430.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )A .1-B .12-C .2-D .32-31.已知ABC 中,1,3,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°32.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( )A .132B .13C .223+ D .2333.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A 3B .22C 31- D .212- 34.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰直角三角形35.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:5【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵,,与的夹角为锐角, ∴ ,且(时与的夹角为0), 所以且,故A 错误; 对于B 解析:ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0),所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a ab a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.2.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩, 解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.3.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin c C A a ==而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.4.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解;当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.5.ABC 【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】对于,因为为锐角且,所以三角解析:ABC 【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解. 【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且3sin 423 3.92c B b c =⨯==<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 3sin 4233c B b ==>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且3sin 4232c B b ==>=,所以三角形ABC 无解,故D 正确. 故选:ABC. 【点睛】本题考查了判断三角形解的个数的方法,属于基础题.6.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.7.AB 【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】中,因为,,面积, 所以,所以,解得或,当时,由余弦定理得:, 解得,当时,由余弦定理得:, 解得 所以或解析:AB【分析】在ABC 中,根据4a =,5b =,由1sin 2ABCSab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABCS=所以1sin 2ABCSab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB 【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.8.ACD 【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为所以可设:(其中),解得: 所以,所以A 正确;由上可知:边最大,所以三角形中角最大, 又 ,所以角为解析:ACD 【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以2R =,解得:7R =,所以D 正确. 故选:ACD. 【点睛】本题考查了正弦定理和与余弦定理,属于基础题.9.ABD 【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项. 【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确, ,所以D 正确. 故选:ABD解析:ABD 【分析】首先理解aa表示与向量a 同方向的单位向量,然后分别判断选项.【详解】a a 表示与向量a 同方向的单位向量,所以1aa=正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,aa a=不正确,cos 0a a aa a a a a a a⋅==⨯=,所以D 正确. 故选:ABD 【点睛】 本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解aa表示与向量a 同方向的单位向量.10.ABD 【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD 【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误. 【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确;对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=,ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-, 可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确. 故选:ABD . 【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.11.ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反解析:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确; 当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.12.AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.13.AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.14.无 15.无二、平面向量及其应用选择题16.B 【分析】根据方程有实根得到24cos 0a a b θ∆=-≥,利用向量模长关系可求得1cos 2θ≤,根据向量夹角所处的范围可求得结果. 【详解】关于x 的方程20x a x a b ++⋅=有实根 240a a b ∴∆=-⋅≥设a 与b 的夹角为θ,则24cos 0a a b θ-≥ 又20a b =≠ 24cos 0b b θ∴-≥ 1cos 2θ∴≤又[]0,θπ∈ ,3πθπ⎡⎤∴∈⎢⎥⎣⎦本题正确选项:B 【点睛】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果. 17.C 【分析】根据三角形外心、重心的概念,以及外心、重心的向量表示,可得结果. 【详解】由123||||||1OP OP OP ===,可知点O 是123PP P ∆的外心, 又1230OP OP OP ++=,可知点O 是123PP P ∆的重心, 所以点O 既是123PP P ∆的外心,又是123PP P ∆的重心, 故可判断该三角形为等边三角形, 故选:C 【点睛】本题考查的是三角形外心、重心的向量表示,掌握三角形的四心:重心,外心,内心,垂心,以及熟悉它们的向量表示,对解题有事半功倍的作用,属基础题. 18.A根据题意得出tan tan tan A B Ca b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长. 【详解】0a OA b OB c OC ⋅+⋅+⋅=,a bOC OA OB c c∴=--,同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c Cb Bc C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 19.B 【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心. 【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅, 则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-= 即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=, 即有,,PA CB PB CA PC AB ⊥⊥⊥, 则点P 为三角形ABC 的垂心. 故选:B.本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 20.A 【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积. 【详解】 由正弦定理可知2sin sin sin a b cr A B C===已知sin cos sin a b cA B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC ,即等腰直角三角形的斜边长为所以122ABCS=⨯=. 故选:A 【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 21.C 【分析】 取,a b 夹角为3π,计算排除ABD ,得到答案. 【详解】 取,a b 夹角为3π,则0a b -≠,12a b ⋅=,排除ABD ,易知1a b ==. 故选:C . 【点睛】本题考查了单位向量,意在考查学生的推断能力. 22.A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C . 【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 23.C 【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=,即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒, 故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目. 24.C 【解析】 【分析】取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得. 【详解】解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心0DW BC ∴⋅=()()22113323AG AD AB AC AB AC ∴==⨯+=+()12AW AD DW AB AC DW =+=++ ()()()115326AW AG AB AC AB AC DW AB AC DW +=++++=++ ()()()5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦()56AB A BC C =⋅+ ()()56C AC AB AB A =⋅+- ()()222242105566AC AB =-=-= 故选:C【点睛】本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题. 25.C 【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD . 【详解】设ABC 三边,,a b c 所对的角分别为,,A B C , 由A B >,则,a b >∴sin sin 0A B >>,A 正确; 由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =, 当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C . 【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题.26.A【分析】作出图形,利用AB 、AC 表示AO ,然后利用平面向量减法的三角形法则可得出OC AC AO =-可得出结果.【详解】如下图所示:D 为BC 的中点,则()1122AD AB BD AB BC AB AC AB =+=+=+-1122AB AC =+, 2AO OD =,211333AO AD AB AC ∴==+, 11123333OC AC AO AC AB AC AB AC ⎛⎫∴=-=-+=-+ ⎪⎝⎭, 故选:A.【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.27.D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 28.D【详解】 ()22cos 32cos 23212sin(2)16f x x x x x x π=+=+=++,当12x π=时,sin(2)sin 163x ππ+=≠±,∴f (x )不关于直线12x π=对称; 当512x π=时,2sin(2)116x π++= ,∴f (x )关于点5(,1)12π对称; f (x )得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈- ,∴f (x )在(,0)3π-上是增函数. 本题选择D 选项. 29.D 【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案. 【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC =-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF=-(DC +CA )+BE +CF=-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D.【点睛】 本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.30.B【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量BD ,BM ,然后结合平面向量的运算法则即可求得最终结果.【详解】如图所示,因为点D 在线段BC 上,所以存在t R ∈,使得()BD tBC t AC AB ==-, 因为M 是线段AD 的中点,所以: ()()()111112222BM BA BD AB t AC t AB t AB t AC =+=-+-=-++, 又BM AB AC λμ=+,所以()112t λ=-+,12t μ=, 所以12λμ+=-. 故选:B.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.31.D【分析】由正弦定理可得,3sin 2B =,根据b a >,可得B 角的大小. 【详解】由正弦定理可得,sin 3sin b A B a ==, 又0,,π<<>∴>B b a B A ,60︒∴=B 或120B =.故选:D【点睛】本题考查了正弦定理的应用,考查了运算求解能力和逻辑推理能力,属于基础题目. 32.B【分析】由题意可得2b a c =+,平方后整理得22242a c b ac +=-,利用三角形面积可求得ac 的值,代入余弦定理可求得b 的值.【详解】解:∵a ,b ,c 成等差数列,∴2b a c =+,平方得22242a c b ac +=-,①又ABC 的面积为32,且30B ∠=︒, 由11sin sin 3022ABC S ac B ac ==⋅︒△1342ac ==,解得6ac =, 代入①式可得222412a c b +=-, 由余弦定理得222cos 2a c b B ac+-=,2224123122612b b b ---===⨯,解得24b =+,∴1b =+故选:B .【点睛】本题考查等差数列的性质和三角形的面积公式,涉及余弦定理的应用,属于中档题. 33.C【分析】易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案.【详解】45CBD ∠=︒,30ACB ∴∠=︒,在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,解得BC =-,在BCD 中,由正弦定理,得sin sin BC CD BDC CBD =∠∠50sin 45=︒,sin BDC ∴∠=sin(90)θ+︒=cos θ∴= 故选:C .【点睛】该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键.34.A【分析】利用余弦定理化角为边,得出c b ABC =, 是等腰三角形.【详解】ABC ∆中,c cos 2a B c =,由余弦定理得,2222a c b cosB ac+-= , ∴22222a a c b c ac+-= 220c b ∴-= ,∴c b ABC =,是等腰三角形.【点睛】本题考查余弦定理的应用问题,是基础题.35.A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.。

(名师导学)高考数学总复习 同步测试卷(八)平面向量、复数的概念及运算 理(含解析)新人教A版-新人

同步测试卷理科数学(八) 【p 299】 (平面向量、复数的概念及运算) 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.复数1+51-2i(i 是虚数单位)的模等于( )A .4B .5C .22D .2【解析】1+51-2i =1+5(1+2i )(1-2i )(1+2i )=1+1+2i =2+2i ,则它的模等于22+22=2 2. 【答案】C2.已知向量a =()1,m ,b =()m ,1,则“m =1”是“a∥b ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】当m =1时,a =b 可以推出a∥b ;当a∥b 时,1m =m1m 2=1,m =±1,不能推出m =1.所以,“m =1”是“a∥b ”成立的充分不必要条件.【答案】A3.在复平面上,复数z 1,z 2对应的点关于直线y =x 对称,且z 1z 2=4i ,则复数z 1的模长为( )A .2 B. 3 C. 2 D .1【解析】设z 1=a +b i ,则z 2=b +a i ,由z 1z 2=4i ,可知a 2+b 2=4,所以||z 1=a 2+b2=2.【答案】A4.如图,已知AB →=a, AC →=b, DC →=3BD →,AE →=2EC →,则DE →=( )A.34b -13aB.512a -34bC.34a -13bD.512b -34a 【解析】由平面向量的三角形法则可知:DE →=DC →+CE →=34BC →+⎝ ⎛⎭⎪⎫-13AC →=34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b . 【答案】D5.已知不共线向量a ,b ,|a |=|b |=|a -b |,则a +b 与a 的夹角是( ) A.π12 B.π6 C.π4 D.π3【解析】法一:根据|a |=|b |,有|a |2=|b |2,又由|b |=|a -b |,得|b |2=|a |2-2a ·b +|b |2,∴a ·b =12|a |2.而|a +b |2=|a |2+2a ·b +|b |2=3|a |2,∴|a +b |=3|a |.设a 与a +b 的夹角为θ,则cos θ=a ·(a +b )|a ||a +b |=|a |2+12|a |2|a |·3|a |=32,∴θ=π6.法二:根据向量加法的几何意义,在平面内任取一点O ,作OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB .∵|a |=|b |,即|OA →|=|OB →|,∴OACB 为菱形,OC 平分∠AOB ,这时OC →=a +b ,BA →=a -b .而|a |=|b |=|a -b |,即|OA →|=|OB →|=|BA →|.∴△AOB 为正三角形,则∠AOB =60°,于是∠AOC =30°,即a 与a +b 的夹角为π6.【答案】B6.△ABC 是底边边长为22的等腰直角三角形,P 是以直角顶点C 为圆心,半径为1的圆上任意一点,若m ≤AP →·BP →≤n ,则n -m 的最小值为( )A .42B .2 2C .2D .4【解析】如图所示,建立直角坐标系,则:A (-2,0),B (2,0),P (cos θ,2+sin θ),由平面向量的性质可得:AP →=(cos θ+2,sin θ+2),BP →=(cos θ-2,sin θ+2),由平面向量的数量积:AP →·BP →=cos 2θ-2+sin 2θ+22sin θ+2=1+22sin θ,据此有:m max =1-22,n min =1+22,(n -m )min =4 2.【答案】A二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.已知复数z 满足()2-i z =-3+4i ,则z 的共轭复数是________.【解析】因为z =-3+4i 2-i =()-3+4i ()2+i 5=-10+5i5=-2+i ,所以z 的共轭复数是-2-i .【答案】-2-i8.设x ,y ∈R ,向量a =(x ,2),b =(1,y ),c =(2,-6),且a ⊥c ,b ∥c ,则||a +b =__________.【解析】a ⊥c 2x -12=0x =6a =(6,2),b ∥c-6-2y =0y =-3b =(1,-3)||a +b 2=a 2+2a ·b +b 2=40+10=50||a +b =52.【答案】5 29.若向量OA →=(1,-3),|OA →|=|OB →|,OA → ·OB →=0,则 |AB →|=________. 【解析】法一:设OB →=(x ,y ),由|OA →|=|OB →|知,x 2+y 2=10,又OA → ·OB →=x -3y =0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.则|AB →|=2 5.法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,所以|AB →|=2 5. 【答案】2 510.已知△ABC ,其中顶点坐标分别为A ()-1,1,B ()1,2,C ()-2,-1,点D 为边BC 的中点,则向量AD →在向量AB →方向上的投影为__________.【解析】因为AB →=()2,1,AC →=(-1,-2),AD →=12()AB →+AC →=⎝ ⎛⎭⎪⎫12,-12,故AB→·AD →=2×12-12=12,由于||AB →=5,所以向量AD →在向量AB →方向上的投影为AB →·AD →||AB→=12×15=510. 【答案】510三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 11.(16分)已知平面上三点A ,B ,C ,BC →=(2-k ,3),AC →=(2,4). (1)若三点A ,B ,C 不能构成三角形,某某数k 应满足的条件;(2)若△ABC 中角A 为直角,求k 的值.【解析】(1)由三点A ,B ,C 不能构成三角形,得A ,B ,C 在同一直线上,即向量BC →与AC →平行,∴4(2-k)-2×3=0,解得k =12.(2)∵BC →=(2-k ,3),∴CB →=(k -2,-3), ∴AB →=AC →+CB →=(k ,1).当A 是直角时,AB →⊥AC →,即AB →·AC →=0, ∴2k +4=0,解得k =-2.12.(16分)在△ABC 中,AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM →与→交于点P ,且AP →=xAB →+yAC →(x ,y ∈R ),求x +y 的值. 【解析】(1)在△ABC 中,AM →=34AB →+14AC →,可得3BM →=MC →,即点M 在线段BC 靠近B 点的四等分点.故△ABM 与△ABC 的面积之比为14.(2)因为AM →=34AB →+14AC →,AM →∥AP →,AP →=xAB →+yAC →(x ,y ∈R ),所以x =3y, 因为N 为AB 中点,所以NP →=AP →-AN →=xAB →+yAC →-12AB →=⎝ ⎛⎭⎪⎫x -12AB →+yAC →,CP →=AP →-AC →=xAB →+yAC →-AC →=xAB →+(y -1)AC →,因为NP →∥CP →,所以⎝ ⎛⎭⎪⎫x -12(y -1)=xy ,即2x +y =1,又x =3y ,所以x =37,y =17,所以x +y =47.13.(18分)向量a =(2,2),向量b 与向量a 的夹角为3π4,且a·b =-2.(1)求向量b ;(2)若t =(1,0),且b⊥t ,c =⎝⎛⎭⎪⎫cos A ,2cos 2C 2,其中A ,B ,C 是△ABC 的内角,若A 、B 、C 依次成等差数列,试求|b +c |的取值X 围.【解析】(1)设b =(x ,y ),则a·b =2x +2y =-2,且|b |=a·b|a |cos3π4=1=x 2+y 2,联立方程得⎩⎪⎨⎪⎧2x +2y =-2,x 2+y 2=1,解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴b =(-1,0)或b =(0,-1). (2)∵A ,B ,C 依次成等差数列,∴B =π3.∴b +c =⎝ ⎛⎭⎪⎫cos A ,2cos 2C2-1=(cos A ,cos C ),∴|b +c|2=cos 2A +cos 2C =1+12()cos 2A +cos 2C=1+12⎣⎢⎡⎦⎥⎤cos 2A +cos ⎝ ⎛⎭⎪⎫4π3-2A =1+12⎝ ⎛⎭⎪⎫cos 2A -12cos 2A -32sin 2A=1+12cos ⎝⎛⎭⎪⎫2A +π3.∵A ∈⎝ ⎛⎭⎪⎫0,2π3,∴2A +π3∈⎝ ⎛⎭⎪⎫π3,5π3, ∴-1≤cos ⎝⎛⎭⎪⎫2A +π3<12,∴12≤|b+c|2<54,故22≤|b+c|<52.。

理科数学2010-2019高考真题分类训练13专题五 平面向量第十三讲 平面向量的概念与运算—附解析答案


10.(2015 陕西)对任意向量 a, b ,下列关系式中不恒成立的是
A.| a b |≤| a || b |
B.| a b |≤|| a | | b ||
C. (a b)2 | a b |2
D. (a b)(a b) a2 b2
11.(2015 安徽) ΑΒC 是边长为 2 的等边三角形,已知向量 a , b 满足 ΑΒ 2a ,
⑤若| b
|
2|
a
|,
Smin
8|a
|2
,则 a
与b
的夹角为
4

45.(2014 北京)已知向量 a 、b 满足 a 1,b (2,1) ,且 a b 0 ( R ),则 __.
46.(2014 陕西)设 0 ,向量 a sin 2 ,cos , bcos ,1 ,若 a ∥b ,则
28.(2011 广东)已知向量 a =(1,2),b =(1,0),c =(3,4).若 为实数, (a b)∥c ,
则 =
A. 1 4
B. 1 2
C.1
D.2
29.(2011 辽宁)已知向量 a (2,1) , b (1, k) , a (2a b) 0 ,则 k
A. 12
B. 6
uuv BA
(
1
,
3)
uuuv , BC (
3 , 1), 则 ABC =
22
22
A. 30
B. 45
C. 60
D.120
9.(2015 重庆)若非零向量 a , b 满足 a 2 2 b ,且 (a b) (3a 2b) ,则 a 与 b 的夹 3
角为
A. 4
B. 2
C. 3 4

高考数学真题专题分类汇编专题七 平面向量(学生版)

专题七平面向量与解三角形真题卷题号考点考向2023新课标1卷3 向量的数量积向量数量积的坐标运算17 解三角形正、余弦定理解三角形2023新课标2卷13 向量的数量积利用向量数量积求模长17 解三角形解三角形的综合应用2022新高考1卷3 平面向量的线性运算向量的加减及数乘运算18 解三角形正弦定理变形、三角恒等变形2022新高考2卷4 向量的数量积向量数量积的坐标运算18 解三角形正余弦定理解三角形2021新高考1卷10 向量的坐标运算求向量的模、向量数量积的坐标运算19 解三角形正、余弦定理解三角形2021新高考2卷15 向量的数量积向量数量积的运算18 解三角形正弦定理解三角形、余弦定理判断三角形的形状2020新高考1卷7 向量的数量积求向量数量积的取值范围17 解三角形正、余弦定理解三角形2020新高考2卷3 向量的线性运算向量的加、减法运算17 解三角形正、余弦定理解三角形【2023年真题】1.(2023·新课标I 卷 第3题)已知向量(1,1)a = ,(1,1).b=− 若()()a b a b λµ+⊥+,则( ) A. 1λµ+=B.1λµ+=− C. 1λµ= D. 1λµ=−2. (2023·新课标II 卷 第13题)已知向量a ,b 满足||a b − |||2|a b a b +=− ,则||b = __________ 3. (2023·新课标I 卷 第17题)已知在ABC 中,3A B C +=,2sin()sin .A C B −=(1)求sin A ;(2)设5AB =,求AB 边上的高.4. (2023·新课标II 卷 第17题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 面积为D 为BC 的中点,且 1.AD =(1)若3ADC π∠=,求tan B ;(2)若228b c +=,求b ,.c【2022年真题】5.(2022·新高考I 卷 第3题)在ABC 中,点D 在边AB 上,2.BD DA =记CA m =,CD n =,则CB =( )A. 32m n −B. 23m n −+C. 32m n +D. 23m n +6.(2022·新高考II 卷 第4题)已知向量(3,4)a =,(1,0)b =,c a tb =+,若,,a c b c <>=<>,则实数t =( ) A. 6−B. 5−C. 5D. 67.(2022·新高考I 卷 第18题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 2.1sin 1cos 2A BA B=++(1)若23C π=,求;B (2)求222a b c +的最小值.8.(2022·新高考II 卷 第18题)记ABC 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为1S ,2S ,3S ,且123S S S −+,1sin .3B =(1)求ABC 的面积;(2)若sin sin A C =.b【2021年真题】9.(2021·新高考I 卷 第10题)(多选)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin)P ββ−,3(cos (),sin ())P αβαβ++,(1,0)A ,则( )A. 12||||OP OP =B. 12||||AP AP =C. 312OA OP OP OP ⋅=⋅D. 123OA OP OP OP ⋅=⋅10.(2021·新高考I 卷 第19题 )记ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知2b ac =,点D 在边AC 上,sin sin .BD ABC a C ∠=(1)证明:.BD b =(2)若2AD DC =,求cos .ABC ∠11.(2021·新高考II 卷 第15题)已知向量0a b c ++= ,1,2a b c === ,a b b c c a ⋅+⋅+⋅=__________.12.(2021·新高考II 卷 第18题)在ABC 中,角,,A B C 所对的边长分别为,,,1, 2.a b c b a c a =+=+(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【2020年真题】13.(2020·新高考I 卷 第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 ( ) A. (2,6)−B. (6,2)−C. (2,4)−D. (4,6)−14.(2020·新高考II 卷 第3题)在ABC 中,D 是AB 边上的中点,则CB =( ) A. 2CD CA +B. 2CD CA −C. 2CD CA −D. 2CD CA +15.(2020·新高考I 卷 第17题、II 卷 第17题))在①ac =,②sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A B =,6C π=,__________?注:如果选择多个条件分别解答,按第一个解答计分.【答案解析】1.(2023·新课标I 卷 第3题)解:22()()()()2(1)0a b a b a a b b λµλµλµλµ+⋅+=++⋅+=+= ,所以1;λµ=−故选.D 2. (2023·新课标II 卷 第13题) 解:将原式平方:化简可得:即23b =,故||b =3. (2023·新课标I 卷 第17题)解:(1)3A B C +=,3C C π∴−=,解得.4C π=2sin()sin A C B ∴−=可化为2sin()sin()44A A πππ−=−−,即32sin()sin()44A A ππ−=−,A A A A =,整理得sin 3cos A A =, 将1cos sin 3A A =代入22sin cos 1A A +=,得210sin 19A =,29sin 10A ∴=,sin A =(2)由(1)知sin A =,1cos sin 3A A==4C π=,又sin sin AC AB B C=,sin sin AB BACC ∴== AB ∴边上的高sin 6.h AC A === 4. (2023·新课标II 卷 第17题)解:(1)ABC S =,D 为BC 的中点,ADC S ∴11sin 122AD CD ADC CD ⋅⋅∠=××=,解得2CD =,则 2.BD =过点A 作AE CD ⊥于点E ,则在ADE中,AE =12DE =,∴在Rt AEB 中,52BE BD DE =+=,tan AEB BE==(2) 在ABC 中,1()2AD AB AC =+,222222111||()(||||2)(2cos )444AD AB AC AB AC AB AC c b bc A ∴=+=++⋅=++ ,11(82cos )4bc A ∴=+,即cos 2bc A =−,又1sin 2ABC S bc A ==,sin bc A ∴,sin tan cos bc A Abc A ∴==23A π∴=,sin A =, 4.bc =再将4b c=代入228b c +=,即可解得 2.b c ==【2022年真题】5.(2022·新高考I 卷 第3题)解:2133CD CA CB =+ ,3223.CB CD CA m n =−=−+6.(2022·新高考II 卷 第4题)解:由已知有(3,4)c t =+ ,cos a < ,cos ,c b c >=<> ,, 故9316351t t c c +++=⋅⋅ , 解得 5.t =7.(2022·新高考I 卷 第18题)解:cos sin 2(1)1sin 1cos 2A B A B =++ ,22222cos sin 2sin cos 2212cos 1cos sin 2sin cos 2222A AB B A A A A B −∴=+−++且cos 0B ≠, cos sin 1tansin 222tan cos cos sin 1tan 222A A AB B A A A B −−∴=∴=++,tan()tan 42A B π∴−=,又A ,(0,)B π∈,(,)4244A πππ−∈−,.42AB π∴−=又23C π=,3A B π∴+=,.6B π∴=(2)由正弦定理sin sin sin a b cA B C==,得2222222221cos 2()1cos 242sin sin ()sin sin 4222sin sin ()1cos 2()42422AA A A a b AB A A cC A A ππππ−−−+−+++===+−−+−21cos 21sin 2sin sin 11sin 1sin A A A A A A−+−−+=++,(0,)(0,)2(0,)42A A AB ππππ∈⇒∈ −=∈ ,令1sin (1,2)t A =+∈, 则22(1)(1)1425t t y t t t −−−+==−+,(1,2)t ∈,425y t t=−+在t ∈时递减,在2)t ∈时递增,因此t =时,min5.y =− 8.(2022·新高考II 卷 第18题) 解:(1) 边长为a2,222123)S S S a b c ∴−+=−+=cos 1ac B =,由1sin 3B =得:cos B =1cos ac B ∴==,故111sin 223ABC S ac B ===(2)由正弦定理得:229.sin sin sin sin sin 4b a c ac B A C A C ===,故31sin .22b B = 9.(2021·新高考I 卷 第10题)(多选) 解:根据题意,依次分析选项:对于A 、12||||1OP OP ==,A 正确;对于B、1||AP ==,,B 不正确;对于C 、3cos ()OA OP αβ⋅=+, 12cos cos sin sin cos ()OP OP αβαβαβ⋅=−=+ ,C 正确; 对于D 、1cos OA OP α⋅=,23cos cos()sin sin ()cos (2)OP OP βαββαβαβ⋅=+−+=+ ,D 不正确; 故选.AC10.(2021·新高考I 卷 第19题 )证明:(1)BDsin sin ABC a C ∠=,sin sin a CBD ABC∴=∠,由正弦定理可知sin sin b a ABC A =∠,得sin sin b AABC a ∠=,2sin sin sin sin a C a C acBD b A b A b a∴===, 又2b ac = ,.BD b ∴=解:(2)2AD DC = ,∴可知3bDC =,则23b AD =,在ABD 中,222222213()39cos 24233b b bc c ADB b b b +−−∠==⋅, 在BCD 中,22222210()39cos 2233bb b a a CDB b b b +−−∠==⋅, ADB CDB π∠=−∠ ,cos cos ADB CDB ∴∠=−∠, 即2222221310994233b bc a b b −−=−,整理得22261130a b c −+=, 又2b ac =,则2261130a ac c −+=,即()()2330a c a c −−=,可得32c a =或3ca =, 当32c a =时,b =, 在ABC 中,由余弦定理可得,当3c a =时,b =,此时b c a <−,不合实际,则舍去, 故:7cos .12ABC ∠=11.(2021·新高考II 卷 第15题) 解:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,9.2a b b c c a ⋅+⋅+⋅=−故答案为:9.2−12.(2021·新高考II 卷 第18题) 解:(1)因为2sin 3sin C A =, 根据正弦定理可知()2223c a a =+=, 则4a =,故5b =,6c =,2221cos 028a b c C ab +−==>,所以C 为锐角,则sin C ,因此,11sin 4522ABC S ab C ==××=(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得,又0a >,则2230a a −−<,即(1)(3)0a a +−<, 解得13a −<<,则03a <<,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故 2.a =13.(2020·新高考I 卷 第7题)解:由投影定义知,当点P 与点F 重合时,AP AB ⋅取最小值当点P 与点C 重合时,AP AB ⋅取最大值故AP AB ⋅的取值范围是(2,6).− 故选.A14.(2020·新高考II 卷 第3题)解:在ABC 中,D 是AB 边上的中点,则CB CD DB CD AD =+=+ ()CD AC CD =++ 2.CD CA −故选:.C 15.(2020·新高考I 卷 第17题、II 卷 第17题)解:sin A B =,由正弦定理得a = ,6C π=,由余弦定理得:222cos 2a b c C ab +−==,c = ; 假设三角形存在,若选①,有ac =,则有ac =,则1, 1.a b c ==故存在满足题意的三角形, 1.c =若选②,有sin 3c A =,则有2221cos 22b c a A bc +−===−,则sin A =,故c =,6,a b ==故存在满足题意的三角形,c =若选③,有c =,由题意有,a a ,则有b c =,这和c =矛盾, 故不存在满足题意的三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学平面向量的概念与运算一、选择题1.(2018全国卷Ⅰ)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB=( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +【答案】2.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】3.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( )A .4B .3C .2D .0【答案】4.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】5.(2016年山东)已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为( ) A .4 B .–4 C .94 D .–94【答案】6.(2016年天津)已知ΔABC 是边长为1的等边三角形,点,D E 分别是边,AB BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ) A .58-B .18C .14D .118【答案】7.(2016年全国II )已知向量(1,)(3,2)m =-,=a b ,且()+⊥a b b ,则m =( )A .8-B .6-C .6D .8【答案】8.(2016年全国III )已知向量1(,22BA = ,31(),22BC = 则ABC ∠=( )A .30B .45C .60D .120【答案】9.(2015重庆)若非零向量a ,b 满足=a ,且()(32)-⊥+ab a b ,则a 与b 的夹角为( ) A .4πB .2π C .34πD .π 【答案】10.(2015陕西)对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||⋅a b a b ≤ B .||||||||--a b a b ≤ C .22()||+=+a b a b D .22()()+-=-a b a b a b 【答案】11.(2015安徽)ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ=a ,2ΑC =+a b ,则下列结论正确的是( ) A .1=b B .⊥a b C .1⋅=a bD .()4ΒC -⊥a b【答案】12.(2014新课标1)设,,D E F 分别为ABC ∆的三边,,BC CA AB 的中点,则EB FC +=( )A .ADB .12AD C .12BC D . BC【答案】13.(2014新课标2)设向量a ,b满足|+a b|-a b ⋅=a b ( )A .1B .2C .3D .5【答案】14.(2014山东)已知向量(3,)m ==a b .若向量,a b 的夹角为6π,则实数m =( )A. BC .0 D.【答案】15.(2014安徽)设,a b 为非零向量,2=b a ,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( )A .23π B .3π C .6π D .0【答案】16.(2014福建)在下列向量组中,可以把向量()3,2=a 表示出来的是( )A .12(0,0),(1,2)==e eB .12(1,2),(5,2)=-=-e eC .12(3,5),(6,10)==e eD .12(2,3),(2,3)=-=-e e【答案】17.(2014浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,||t +b a 是最小值为1( ) A .若θ确定,则||a 唯一确定 B .若θ确定,则||b 唯一确定 C .若||a 确定,则θ唯一确定 D .若||b 确定,则θ唯一确定 【答案】18.(2014重庆)已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( )A .92-B .0C .3D .152【答案】19.(2013福建)在四边形ABCD 中,)2,4(),2,1(-==,则该四边形的面积为( )A .5 B .52C .5D .10【答案】20.(2013浙江)设ABC ∆,0P 是边AB 上一定点,满足014PB AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅≥.则( )A .090=∠ABC B .090=∠BAC C .AC AB = D .BC AC =【答案】21.(2013辽宁)已知点(1,3)A ,(4,1)B -,则与向量AB 同方向的单位向量为( ) A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】 22.(2013湖北)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为( )ABC. D. 【答案】23.(2013湖南)已知,a b 是单位向量,0⋅a b =.若向量c 满足1--=c a b ,则c 的最大值为( )A1 BC1D.2【答案】24.(2013重庆)在平面上,12AB AB ⊥,121OB OB ==,12APAB AB =+.若12OP <,则OA 的取值范围是( )A .⎛ ⎝⎦B .22⎛ ⎝⎦C .2⎛ ⎝D .⎝ 【答案】25.(2013广东)设a 是已知的平面向量且0≠a ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使=+a b c ; ②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+ab c ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ) A .1 B .2C .3D.4【答案】26.(2012陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos2θ等于( )A .2B .12C .0D .-1 【答案】27.(2012浙江)设a ,b 是两个非零向量( ) A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a bC .若||||||+=-a b a b ,则存在实数λ,使得λ=b aD .若存在实数λ,使得λ=b a ,则||||||+=-a b a b【答案】28.(2011广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c ,则λ=( )A .14B .12C .1D .2【答案】29.(2011辽宁)已知向量(2,1)=a,(1,)k =-b ,(2)0⋅-=a a b ,则k =( )A .12-B .6-C .6 D.12【答案】30.(2010辽宁)平面上O ,A ,B 三点不共线,设OA=a ,OB =b ,则△OAB 的面积等于( )AB.222|||()|+⋅a b a bC .2221|||()2|-⋅a b a b D .2221|||()2|+⋅a b a b【答案】31.(2010山东)定义平面向量之间的一种运算“”如下:对任意的(,)m n =a ,(,)p q =b ,令mq np =-a b ,下面说法错误的是( )A .若a 与b 共线,则0=a bB .=ab b aC .对任意的R λ∈,有()()λλ=a b abD .2222()()||||+•=ab a b a b【答案】 二、填空题32.(2018全国卷Ⅲ)已知向量(1,2)=a,(2,2)=-b ,(1,)λ=c .若(2)+∥c a b ,则λ=____. 【答案】33.(2017新课标Ⅰ)已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b =____.【答案】34.(2017浙江)已知向量a ,b 满足||1=a ,||2=b ,则||||++-a b a b 的最小值是____,最大值是____. 【答案】35.(2017山东)已知1e ,2e 是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60,则实数λ的值是____. 【答案】36.(2017江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45.若OC =m OA +n OB (m ,n ∈R ),则m n +=____.【答案】37.(2016全国I )设向量(,1)m =a,(1,2)=b ,且222||||||+=+a b a b ,则m =____.【答案】38.(2015江苏)已知向量(2,1)=a,(1,2)=-b ,若(9,8)m n +=-a b (,m n ∈R ),则m n - 的值为____. 【答案】39.(2015湖北)已知向量OA AB ⊥,||3OA =,则OA OB ⋅=____.【答案】40.(2015新课标Ⅰ)设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ=____. 【答案】41.(2015浙江)已知12,e e 是空间单位向量,1212⋅=e e ,若空间向量b 满足12⋅=b e ,252⋅=b e ,且对于任意,x y R ∈,120102()()x y x y -+-+≥b e e b e e 001(,)x y R =∈,则0x =____,0y =____,=b ____.【答案】42.(2014新课标Ⅰ)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为____. 【答案】 43.(2014山东)在ABC 中,已知tan AB AC A ⋅=,当6A π=时,ABC 的面积为____.【答案】44.(2014安徽)已知两个不相等的非零向量a ,b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记112233Sx y x y x y =⋅+⋅+⋅4455x y x y +⋅+⋅,min S 表示S 所有可能取值中的最小值.则下列命题正确的是____(写出所有正确命题的编号).①S 有5个不同的值. ②若⊥a b 则min S 与||a 无关. ③若a b ∥则min S 与||b 无关.④若||4||>b a ,则0min>S .⑤若||2||=b a ,2min 8||S =a ,则a 与b 的夹角为4π. 【答案】45.(2014北京)已知向量a 、b 满足1=a ,(2,1)=b ,且0λ+=a b (R λ∈),则λ=____.【答案】46.(2014陕西)设02πθ<<,向量()sin 2cos θθ=,a ,()cos 1θ,b ,若a b ∥,则 tan θ=____.【答案】47.(2014四川)平面向量(1,2)=a,(4,2)=b ,m =+c a b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =____. 【答案】48.(2013新课标Ⅰ)已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t=____.【答案】49.(2013新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=____.【答案】50.(2013山东)已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+,且AP BC ⊥,则实数λ的值为____. 【答案】51.(2013浙江)设1e ,2e 为单位向量,非零向量12x y =+b e e ,,x y ∈R ,若1e ,2e 的夹角为6π,则||||x b 的最大值等于____. 【答案】52.(2013天津)在平行四边形ABCD 中,AD = 1,60BAD ︒∠=,E 为CD 的中点.若·1AC BE =, 则AB 的长为____. 【答案】53.(2013北京)向量a ,b ,c 在正方形网格中的位置如图所示,若λμ=+c a b (λ,μ∈R ),则λμ=____.【答案】54.(2013北京)已知向量a ,b 夹角为45o,且||1=a ,|2|10-=a b ||=b ____.【答案】55.(2012湖北)已知向量a =(1,0),b =(1,1),则 (Ⅰ)与2+a b 同向的单位向量的坐标表示为____; (Ⅱ)向量3-b a 与向量a 夹角的余弦值为____. 【答案】56.(2012安徽)若平面向量a ,b 满足:23-a b ≤;则⋅a b 的最小值是____. 【答案】57.(2011浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的 平行四边形的面积为12,则α与β的夹角θ的取值范围是____. 【答案】58.(2011江苏)已知1e ,2e 是夹角为23π的两个单位向量,122=-a e e ,12k =+b e e , 若0⋅=a b ,则k 的值为____. 【答案】59.(2011新课标)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =____.【答案】60.(2011安徽)已知向量,a b 满足()()+2⋅-=-6a b a b ,且1=a ,2=b ,则a 与b 的夹角为____.【答案】61.(2010陕西)已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =____. 【答案】 三、解答题62.(2017江苏)已知向量(cos ,sin )x x =a ,(3,3)=b ,[0,]x π∈.(1)若a b ∥,求x 的值; (2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】。

相关文档
最新文档