小学六年级数学小升初之简便计算(一)
六年级下册数学试题-小升初专题复习之 简便计算 通用版含答案

1. 2+4+6+8+……+198+200
2. 1-2+3-4+5-6+…+1991-1992+1993
导学三 :定义新运算
知识点讲解 1 有关数字新定义的题型
例 1. 如果2*3=2+3+4=9,5*4=5+6+7+8=26。那么9*5的值是多少?
知识点讲解 2
2有关字母新定义的题型
例 1. 对于任意数 、 ,定义运算“*”,规定 * = × - - ,求12*4的值。
2:项数=(末项-首项)÷公差+1 和=(首项+末项)×项数÷2
例 1. 101+103+105+……+299
知识点讲解 3:3:分组求和
例 1. 100-99+98-97+96-95+…+4-3+2-1
例 2. (1+3+5+…+2009)-(2+4+6+…+2008)
例 3. 1000+999-998-997+996+995-994-993+…+104+103-102-101
பைடு நூலகம்8.
,
,试求
的值。
培养良好的自主学习习惯
课首小测
1.(1)140;(2)7956;(3)5200
2019/3/16
解析:(1)28×17-17×12+17×4
(2)102×78
=(28-12+4)×17
=(100+2)×78
=20×7
=100×78+2×78
=140
=7800+156
=7956
2.
☆4的值。
自主学习
1.
2. 3.
4.
5. 201+203+205+……+2015
小升初数学六年级简便运算

小升初数学六年级简便运算一、加法交换律和结合律。
1. 加法交换律。
- 定义:两个数相加,交换加数的位置,和不变。
用字母表示为a + b=b + a。
- 例如:计算23+15+77,我们可以根据加法交换律将式子变为23 + 77+15。
先计算23+77 = 100,再加上15,结果为115。
2. 加法结合律。
- 定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示为(a + b)+c=a+(b + c)。
- 例如:计算12+34 + 66,根据加法结合律可写成12+(34 + 66)。
先算34+66 = 100,再加上12得到112。
- 在一些综合运算中,加法交换律和结合律常常一起使用。
例如计算18+25+75+82,可以变为(18 + 82)+(25+75),结果为200。
二、减法的性质。
1. 一个数连续减去两个数等于这个数减去这两个数的和。
- 用字母表示为a - b - c=a-(b + c)。
- 例如:计算125-36 - 64,可根据减法的性质写成125-(36 + 64)。
先算36+64 = 100,再用125减去100,结果为25。
2. 一个数减去两个数的差等于这个数先减去被减数再加上减数。
- 用字母表示为a-(b - c)=a - b + c。
- 例如:计算25-(15 - 5),可变为25-15 + 5,先算25-15 = 10,再加上5得到15。
三、乘法交换律、结合律和分配律。
1. 乘法交换律。
- 定义:两个数相乘,交换因数的位置,积不变。
用字母表示为a× b = b× a。
- 例如:计算25×4×13,根据乘法交换律可写成25×13×4,先算25×4 = 100,再乘以13得到1300。
2. 乘法结合律。
- 定义:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
小升初常考简便运算

小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符搬家”。
二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31)2.提取公因式注意相同因数的提取。
0.92×1.41+0.92×8.59516×137-53×1373.注意构造,让算式满足乘法分配律的条件。
257×103-257×2-257 2.6×9.9 四、借来还去法看到名字,就知道这个方法的含义。
小升初数学简便运算例解

在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”; 19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
六年级下册数学试题小升初综合简便计算 冀教版

第二章数的运算第一节定义新运算【知识点拨】基本概念:定义新运算,是在四则运算的基础上,用一种特殊的符号来表示某种特定的运算,在计算时必须严格按照所定义的运算格式进行代换计算的一种新型运算。
解答定义新运算这种类型的题目,应分两步去做:首先按照新定义的运算方式将字母替换成数,然后根据四则运算求出算式的值。
如:设a△b=a+b+ab3△2=3+2+3×2=115△5=5+5+5×5=35【典型例题】例1.假设a ★b = ( a + b )÷b 。
求8 ★5 。
【解析】该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★5 =例2.如果a◎b=a×b-(a+b)。
求6◎(9◎2)。
【解析】根据定义,要先算括号里面的。
这里的符号“◎”就是一种新的运算符号。
例3.若A*B表示(A+3B)×(A+B),求5*7的值。
【解析】A*B是这样计算出来:先计算A+3B的结果,再计算A+B的结果,最后两个结果求乘积。
【练一练】1.对于任意的两个数a和b,规定a*b=3×a-b÷3。
求8*9的值。
2.若规定运算a*b=2(a+b),求(3*5)*2的值。
3、定义a△b=ba+ab,则4△50=例4.定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
【解析】所求算式是两重运算,先计算括号,所得结果再计算。
例5.如果1※2=1+112※3=2+22+2223※4=3+33+333+333+3333计算:(3※2)×5。
【解析】通过观察发现:a※b中的b表示加数的个数,每个加数数位上的数字都由a组成,都由一个数位,依次增加到b个数位。
例6.规定x△y=3x-2y,已知x△(4△1)=7,求x的值。
【解析】【练一练】4、已知a@b表示a除以3的余数再乘以b,求13@4的值。
重点小学新六年级数学小升初之简便计算(一)

新六年级小升初指导教课设计学员姓名学员年级学员性别就读学校指导学科数学指导教师指导时间月 日1 . 联合学生已有的知识经验和详细情境, 理解加法互换律和联合律、 乘法互换律和联合律的意义;2. 能运用加法互换律和联合律、乘法互换律和联合律进行简易计算;教课目的3. 在详细探究过程中,认识加法互换律和联合律、乘法互换律和联合律关系,并解决实质问题;4. 在探究学习简易计算的过程中,体验猜想、考证、比较、概括等数学方法。
重点1. 理解掌握加法互换律和联合律、乘法互换律和联合律的意义。
?难点 2. 能应用加法互换律和联合律、乘法互换律和联合律进行简易计算。
作业评论优良忘做忘带1. 观点的引入2. 例题解说教课过程 3. 习题练习4. 总结稳固提高5. 课后作业教课反省 署名确认教课主任:学管师:学员:第 1 讲:小数分数简易计算一、知识重点:1. 小数化成分数:本来有几位小数 , 就在 1 的后边写几个零作分母 , 把本来的小数去掉小数点作分子 , 能约分的要约分.? 2. 分数化成小数:用分母去除分子 . 能除尽的就化成有限小数 , 有的不可以除尽 , 不可以化成有限小数的 , 一般保存三位小数 .?3. 分数化成百分数:分数的分母化成100,依据分数的性质对分子做相应的计算,分母不可以化成100 的,能够先化成小数,小数点往右挪动两位,扩大100 倍,加上 %。
例1、:125%或125%4 4根源于网络练习 1:1、把以下分数化成百分数,把百分数化成分数。
7/40 11/4 124% 3.2%例 2、 6.73 -2 8+ (-1 9)17 17【解题过程】: 1.察看,同样性质的数有: 6.73 和 3.27 ; 2 8 和 1 98 -1 9 17 172.方法:加法的互换律,- 2(28 +19 17 173.加法的联合律:)(要注意变符号)17 174.计算结果: =10-45.=6练习 2:1、 7 5-( 3.8+15)-1 1 2、 -( 7 7-6 17)- 9 958 20 3、 13 7 -( 1 7 )-4、× 1 1 % 1 ÷ 417 4 +3+125+1 5 4 174 2例 3、运用联合律(1)31 ×43-31+58×31(2)3 6385 解: ( 1)乘法联合律:31×( 43- 1+ 58)= 3 3437533 8 10 1000 5=3100=3 173 33 8 5 85=3 (17 33)855=3练习 3:(1)242.8 211(2) 45205(3) 24 1276 3(4) 199 + 99 ×993 5根源于网络( 5)16(6)333333 9998891 3例 4、计算:5×27+5×413 3原式=5×9+5×413=5×( 9+41)3=5×50=30练习 4:计算下边各题:1 3 1 5 11、 4 ×39+4 × 27 2 、8 × 5+8 × 5+8 ×103、 139 ×137+137×141 3 1 4、 41 × +514×138 138 3 4 5 * 例 5、 45 ×2.08+1.5 ×45 = 1.5 ×3。
全国版六年级下册数学小升初简便计算专题

专题二:简便计算类型一、简便运算之拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小。
例1、简便计算3.2×12.5×25思考:同学们,从题目中我们可以看到12.5,就会想到它的朋友8;看到25,我们也容易想到4,刚好3.2里面含有与8和4有关的因数。
这样这道题就可以把3.2进行拆分,就会让计算简便很多。
解答:原式=255.1284.0⨯⨯⨯=()()5.128254.0⨯⨯⨯=10010⨯=1000变式1 简便计算1.25×88+3.6×0.25类型二、简便运算之乘法分配律的应用乘法分配律:a×(b+c) =a×b+a×ca×b+a×c= a×(b+c),同样也是运用乘法分配律,正逆运算都要牢记于心。
例2:简便计算34.5×76.5-345×6.42-123×1.45思考:看到“×”“-”马上联想到乘法分配律。
首先看到前面两个式子,并没有相同的因数,但是有34.5和345,因为345=34.5×10,我们可以利用积不变性质构造出相同因数。
于是前面两项提取相同因数就为34.5×(76.5-64.2)=34.5×12.3,再看到第三个式子,同样 123=12.3×10,再次运用积不变性质构造出相同因数,就可得出答案。
原式=34.5×76.5-34.5×(10×6.42)-123×1.45=34.5×(76.5-64.2)-123×1.45=34.5×12.3-123×1.45=12.3×(34.5-14.5)=12.3×20=246变式2、简便计算1.025.174.48126.6125.0⨯-⨯+⨯例3:简便计算9999×2222+3333×3334思考:同学们,一般看到”+””-“,我们首先就可以联想到乘法分配律。
小升初数学专题复习 简便计算(例题+练习题)

小升初专题—简便计算辅导教案知识点一:简便计算一在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算。
【例题1】计算:(1)4445×37 (2) 27×1526练习1用简便方法计算下面各题:1、1415×8 2、225×1263、 35×11364、 73×7475【例题2】计算:73115 ×18练习2计算下面各题:1、64117 ×192、 22120 ×1213、 17 ×57164、 4113 ×34 +5114 ×45【例题3】计算:15 ×27+35×41练习3计算下面各题:1、 14 ×39+34 ×272、 16 ×35+56 ×17【例题4】计算:56 ×113 +59 ×213 +518 ×613练习4计算下面各题:1、 117 ×49 +517 ×192、 17 ×34 +37 ×16 +67 ×1123、59 ×791617 +50×19 +19 ×5174、 517 ×38 +115 ×716 +115 ×312【例题5】计算:(1)166120÷41 (2) 1998÷199819981999练习计算下面各题:1、 5425÷17 2、 238÷238238239知识点二:简便计算二前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法(也叫裂项法、拆项法)进行分数的简便运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新六年级小升初辅导教案
学员姓名学员年级学员性别就读学校辅导学科数学辅导教师辅导时间月日
教学目标1.结合学生已有的知识经验和具体情境,理解加法交换律和结合律、乘法交换律和结合律的意义;
2.能运用加法交换律和结合律、乘法交换律和结合律进行简便计算;
3.在具体探索过程中,了解加法交换律和结合律、乘法交换律和结合律关系,并解决实际问题;
4.在探索学习简便计算的过程中,体验猜想、验证、比较、归纳等数学方法。
重点难点1.理解掌握加法交换律和结合律、乘法交换律和结合律的意义。
2.能应用加法交换律和结合律、乘法交换律和结合律进行简便计算。
作业评价优良忘做忘带
教学过程1.概念的引入
2.例题讲解
3.习题练习
4.总结巩固提升
5.课后作业
教学反思
签字确认教学主任:学管师:学员:
第1讲:小数分数简便计算
一、知识要点:
1. 小数化成分数:
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分. 2. 分数化成小数:
用分母去除分子.能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数. 3. 分数化成百分数:分数的分母化成100,根据分数的性质对分子做相应的计算,分母不能化成100的,可以先化成小数,小数点往右移动两位,扩大100倍,加上%。
例1、:=+%2541或=+%254
1
练习1:
1、把下列分数化成百分数,把百分数化成分数。
7/40 11/4124%3.2%
例2、 6.73-1782
+(3.27-17
91) 【解题过程】:1.观察,相同性质的数有:6.73和3.27;1782
和17
9
1 2.方法:加法的交换律, 6.73+3.27-1782-17
9
1 3.加法的结合律:6.73+3.27-(1782+17
9
1)(要注意变符号) 4.计算结果:=10-4 5. =6
练习2:
1、957-(3.8+951)-511
2、 14.15-(877-2017
6)-2.125
3、17713-(414+1773)-0.75
4、 3.5×411+125%+211÷54
例3、运用结合律
(1)31×43-31+58×31 (2) 5
36375.04.383⨯+⨯ 解:(1)乘法结合律:31×(43-1+58) =533
1000375103483⨯+
⨯ =3100 =533
8351783⨯+⨯
=)(5
3351783+⨯ =3 练习3:
(1)201128.245.7542⨯+⨯ (2) 09.125.15
4
91.0⨯+÷
(3)5
3
7632124⨯+÷ (4)199 + 99×99
(5)39.220161.7411.7616⨯+⨯+⨯ (6)889999333333⨯+⨯
例4、计算:15 ×27+3
5
×41
原式=35×9+3
5
×41
=3
5
×(9+41) =3
5×50 =30
练习4: 计算下面各题:
1、14 ×39+34 ×27
2、 18 ×5+58 ×5+1
8
×10
3、 139×
138137+137×138
1
4、 4113 ×34 +5114 ×45
*例5、 45×2.08+1.5×37.6
45 = 1.5×3。
这样一转化,就可以运用乘法分配律了 练习5:
1、 52×11.1+2.6×778
2、 48×1.08+1.2×56.8
3、 72×2.09-1.8×73.6
例6、 975×0.25+4
39×76-9.75
【解析】:975×0.25+75.9×76-9.75
都有975和9.75,可以把975=9.75×100,就有了9.75 利用结合律:9.75×100×0.25+9.75×76-9.75 =9.75×(100×0.25+76-1) =975
练习6:
(1)、529×425+4.25÷601
(2)0.9999×0.7+0.1111×2.7
*例7、计算:56 ×113 +59 ×213 +518 ×6
13
原式=16×513+29×513+618×5
13
=(16+29+618)×513
=
1318×513=518
练习7:
计算下面各题:
1.
1
17
×
4
9
+
5
17
×
1
9
2.
1
7
×
3
4
+
3
7
×
1
6
+
6
7
×
1
12
3.
5
17
×
3
8
+
1
15
×
7
16
+
1
15
×3
1
2
*例:8、计算:1
1×2 +
1
2×3
+
1
3×4
+…..+
1
99×100
原式=(1-1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…..+(
1
99
-
1
100
)
=1-1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…..+
1
99
-
1
100
=1-
1 100
练习8:
计算下面各题:
1. 14×5 +15×6 +16×7 +…..+139×40
2. 110×11 +111×12 +112×13 +113×14 +1
14×15
六年级第一课时课后习题
(相信自己可以在30分钟内完成)
一.学习内容回顾:533×5225+37.9×5
26
【解题思路】:1.先找具有相同性质的数字:
2. ( 统一数字计算格式 ):
3.( 运用定律 ):
(1)4.75-9.63+(8.25-1.37)
(2)81.5×15.8+81.5×51.8+67.6×18.5
(3)16 ×35+5
6 ×17
(4)59 ×791617 +50×19 +19 ×517
(5)137
68
1801372013613713627⨯+⨯+⨯
(6)36×1.09+1.2×67.3
(7)101
992972752532⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯。