函数的对称性82459

合集下载

函数对称性和周期性的一些重要结论

函数对称性和周期性的一些重要结论

函数对称性和周期性的一些重要结论1.函数的对称性函数的对称性可以分为自对称和互对称。

其中,自对称指函数图像关于某一条直线对称,互对称指两个函数图像关于某一条直线对称。

自对称的函数满足以下条件:满足f(x) = f(-x)的函数y = f(x)的图像关于y轴对称,对称轴为x = 0.满足f(a+x) = f(a-x)的函数y = f(x)的图像关于直线x = a对称。

互对称的函数满足以下条件:满足f(x) = f(2a-x)或f(-x) = f(2a+x)的函数y = f(x)的图像关于直线x = a对称。

满足f(a+x) = f(b-x)的函数y = f(x)的图像关于直线x = (a+b)/2对称。

满足f(a+wx) = f(b-wx)的函数y = f(x)的图像关于直线x = (b-a)/(2w)对称。

满足f(a+x) + f(b-x) = c的函数y = f(x)的图像关于直线x = (a+b)/2对称。

2.函数的周期性函数的周期性指函数满足f(x+T) = f(x)的性质,其中T为函数的周期。

常见的函数周期有以下几种:周期为T的函数,其图像在横轴上每隔T个单位长度就会重复一次。

周期为2T的函数,其图像在横轴上每隔2T个单位长度就会重复一次。

周期为2T的奇函数,其图像关于原点对称,即满足f(x+2T) = -f(x)。

周期为2T的偶函数,其图像关于y轴对称,即满足f(x+2T) = f(x)。

3.函数的一些结论周期为T的函数f(x)的平均值为f(x)在一个周期内的积分除以T。

两个周期为T的函数f(x)和g(x)满足f(x) + g(x) = c的解析式为f(x) = (c/2) + h(x),g(x) = (c/2) - h(x),其中h(x)为周期为T的函数。

如果y = f(x)和y = f(-x)的图像关于y轴对称,则f(x)为奇函数,其图像关于原点对称。

如果y = f(x)和y = f(-x) + b的图像关于y轴对称,则f(x)为奇函数,其图像关于原点上下平移b个单位。

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

函数的对称性

函数的对称性

函数的对称性
(内容需原创)
1. 函数的对称性是指一个函数的值在某一点或几个点取到最大值或最小值的性质。

2. 函数的对称性是一种比较容易发现的函数性质。

掌握函数的对称性有助于提升函数分解、求导和求解数学问题的能力。

3. 常见的函数对称性有:
(1) 奇函数的对称性:如果它以某一点经过或以其为中心对称,则称其为奇函数。

例如,三次多项式函数y=ax^3+bx^2+cx+d,它以x = 0 为中心,应用自变量的变换x→-x,函数变化f(x)→-f(x),可知y=ax^3+bx^2+cx+d也是一个奇函数。

(2)偶函数的对称性:如果以某一点经过左右对称,则称其为偶函数。

例如,二次多项式函数y=ax^2+bx+c,它以 x = 0 中心对称,若将自变量x变换x→-x,函数变化f(x)→f(x),可知y=ax^2+bx+c也是一个偶函数。

(3) 关于y轴对称性:如果函数的每一对对称点,在y轴中对称,则称其为y轴对称性。

例如,三次多项式函数y= ax^3+bx^2+cx+d,它的每一对对称点(x1,y1)(x2,y2),在y轴中也是对称的,即(-x1,y1)(-x2,y2),因此y=ax^3+bx^2+cx+d也具有y轴对称性。

4. 位移与缩放函数作为其他对称性。

位移函数可以理解为在某一段函数上进行位移,缩放函数可以理解为改变某一段函数的显示大小。

5. 函数对称性可用已知特征函数作为依据来发现,其变换规律可以用三角函数,指数函数以及幂函数等来描述。

6. 对函数的对称性有所了解,能够从宏观和微观的角度更好的理解函数的定义及其变化规律,并有效的运用它们解决数学问题。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数是数学中十分重要的概念之一,它描述了两个集合之间的关系。

而在函数的定义中,有一种特殊的性质被广泛研究和应用,那就是对称性。

函数的对称性是指函数图像关于某个中心轴或中心点具有对称性。

在实际问题中,对称性可以帮助我们简化问题、提取信息,以及更好地理解函数的性质。

在本文中,将对函数对称性进行总结和阐述。

函数对称性可以分为水平对称、垂直对称、中心对称以及零对称四种类型。

水平对称是指函数图像关于x轴对称。

具体而言,若函数f(x)满足对于任意x,f(x) = f(-x),则函数f(x)是水平对称的。

例如,函数y =x^2是一个典型的水平对称函数,其图像关于x轴对称。

水平对称函数在图像上旋转一定角度后,仍然与原图像重合,这种性质可以简化问题的解决过程。

比如在研究汽车的加速度与减速度时,我们可以利用水平对称性简化计算,因为加速度与减速度的变化规律是相似的。

垂直对称是指函数图像关于y轴对称。

具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是垂直对称的。

例如,函数y =sin(x)是一个典型的垂直对称函数,其图像关于y轴对称。

垂直对称函数在图像上左右移动一定距离后,仍然与原图像重合。

这种性质在处理对称结构时非常有用。

例如,在纺织品设计中,我们可以利用垂直对称性确定图案的左右对称部分,以减少设计成本和提高生产效率。

中心对称是指函数图像关于某个点对称。

具体而言,若函数f(x)满足对于任意x,f(x) = f(-x + a),其中a为常数,则函数f(x)是中心对称的。

例如,函数y = e^(-x^2)是一个典型的中心对称函数,其图像关于原点对称。

中心对称函数在图像上绕某个点旋转一定角度后,仍然与原图像重合。

这种性质在物理学中十分重要。

例如,在研究电场的分布时,我们可以利用中心对称性确定电场的中心位置和形状。

零对称是指函数图像关于原点对称。

具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是零对称的。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中一个重要的概念,在各个领域都有广泛应用。

理解和应用函数对称性有助于我们更好地理解和解决数学问题。

本文将对函数对称性的概念、性质和应用进行总结。

函数对称性的概念:在数学中,函数对称性是指函数具有某种变换性质,使得在一定的条件下,函数在变换前后保持不变。

具体来说,如果对于定义域上的任意一个元素x,都存在一个元素y,使得对称变换后的x,会得到y,在函数对称变换之后,函数的图像也会发生相应的变化。

函数对称性可以分为轴对称、中心对称和周期对称等。

1.轴对称:一个函数在平面上如果具有轴对称性,比如存在一个轴使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是轴对称函数。

轴对称函数的图像具有左右对称的特点。

比如,y = x^2 就是一个轴对称函数,其图像关于y轴对称。

2.中心对称:一个函数在平面上如果具有中心对称性,比如存在一个点使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是中心对称函数。

中心对称函数的图像具有上下左右对称的特点。

比如,y = sin(x) 就是一个中心对称函数,其图像关于原点对称。

3.周期对称:一个函数如果具有周期对称性,那么在一定的周期内,函数的变换可以形成循环。

即,在给定的周期内,函数的某个值与另一个值相等。

周期对称函数的图像在周期内具有相似的形状和变化趋势。

比如,y = sin(x) 就是一个周期对称函数,其周期为2π。

函数对称性的性质:1.对称轴或对称中心是函数对称性的重要特征。

通过找到函数的对称轴或对称中心,可以更好地理解函数的变化规律和性质。

2.函数对称性能够简化函数的分析和计算过程。

根据函数对称性的特点,我们可以通过分析对称图形的一部分,推断出对称图形的其他部分;通过对称性可以简化函数的复杂性,并提供更方便的计算方法。

3.函数对称性能够提供问题求解的启示。

函数对称性在实际问题中具有重要的应用价值,比如建筑设计中的对称线、电路中的交流信号分析等。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中一个重要的概念,可以帮助我们更好地理解和分析各种函数。

在本文中,我将总结函数对称性的基本概念、性质和应用,以及如何判断函数的对称性。

首先,什么是函数对称性?函数对称性指的是函数在某种变换下保持不变的性质。

具体来说,如果函数在某个变换下满足等式 f(x) = f(-x),那么我们称这个函数具有对称性。

这个变换可以是关于原点对称、关于y轴对称、关于x轴对称等。

常见的函数对称性包括:1. 关于原点对称:如果一个函数满足 f(x) = f(-x),则称该函数关于原点对称。

这意味着函数的图像在原点处对称,即图像的左右两侧是镜像关系。

2. 关于y轴对称:如果一个函数满足 f(x) = f(-x),则称该函数关于y轴对称。

这意味着函数的图像在y轴上对称,即在图像的左右两侧相互重合。

3. 关于x轴对称:如果一个函数满足 f(x) = -f(-x),则称该函数关于x轴对称。

这意味着函数的图像在x轴上对称,即图像关于x轴对称。

函数对称性的性质也值得我们注意:1. 对称性可以简化函数的分析和计算。

例如,如果一个函数是关于y轴对称的,那么我们只需要计算出函数在y轴右侧的部分,然后将结果镜像到左侧即可。

2. 对称性可以帮助我们发现函数的特点。

例如,如果一个函数是关于x轴对称的,那么当 x = a 是函数的零点时,可以确定 x = -a 也是函数的零点。

现在,让我们来看看如何判断一个函数是否具有对称性。

一般来说,我们可以通过一些简单的方法来进行判断。

1. 对称性的代数判断方法:通过代数运算,我们可以验证函数的对称性。

例如,对于关于原点对称的函数,我们可以将 x 替换为 -x,然后将两边进行比较来判断函数是否具有对称性。

2. 对称性的图形判断方法:通过函数的图形来判断函数是否具有对称性。

我们可以绘制函数的图像,并观察图像是否在某个变换下保持不变。

3. 对称性的性质判断方法:通过函数的性质来判断函数是否具有对称性。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。

函数对称性有多种形式,如轴对称性、中心对称性等。

本文将对函数对称性的一些常见公式进行总结,并提供示例说明。

2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。

设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。

2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。

•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。

偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。

3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。

设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。

3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。

•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。

•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。

4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。

函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。

4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。

5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。

函数的对称性与奇偶性

函数的对称性与奇偶性

函数的对称性与奇偶性函数是一种数学工具,用于描述两个变量之间的关系。

函数的对称性与奇偶性是函数的重要性质之一,它们可以帮助我们简化函数的分析和计算。

下面将介绍函数的对称性与奇偶性的概念和特点,并通过实例来说明其应用。

1. 对称性的定义和性质函数的对称性是指函数在某种变换下保持不变的性质。

常见的对称性包括轴对称(即关于某一条轴的对称性)和中心对称(即关于某一中心点的对称性)。

1.1 轴对称性对于轴对称函数,其图像相对于某一条轴对称,也就是说,图像在镜像之后仍然保持不变。

轴对称函数可以表示为f(x) = f(-x)。

常见的轴对称函数有偶函数和周期为2π的周期函数。

1.2 中心对称性对于中心对称函数,其图像相对于某一中心点对称,也就是说,图像在中心点旋转180°之后仍然保持不变。

中心对称函数可以表示为f(x) = -f(-x)。

常见的中心对称函数有奇函数。

2. 奇偶性的定义和性质函数的奇偶性是指函数在代入负数或正数时的表现特点。

奇函数与轴对称性相关,而偶函数与中心对称性相关。

2.1 奇函数奇函数满足f(-x) = -f(x),也就是说,当自变量取反时,函数值也取反。

奇函数的图像关于原点对称,具有轴对称性。

奇函数的常见特点是在原点处取值为零,而且在自变量为正负相等的情况下函数值相等。

2.2 偶函数偶函数满足f(-x) = f(x),也就是说,当自变量取反时,函数值不变。

偶函数的图像关于y轴对称,具有中心对称性。

偶函数的常见特点是在y轴处取值为零,而且在自变量为相反数的情况下函数值相等。

3. 对称性和奇偶性的应用对称性和奇偶性是函数分析中常用的工具之一,它们可以帮助我们简化函数的计算和图像的绘制。

3.1 推导函数的性质通过对函数的奇偶性进行分析,我们可以推导出函数的其他性质。

例如,偶函数的奇次幂项的系数为零,奇函数的偶次幂项的系数为零。

这些推导可以帮助我们更快地分析函数的特点。

3.2 简化函数的计算对于奇函数,当我们需要计算积分、求解方程等操作时,可以从负数到正数的范围内进行计算,然后将结果乘以2即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的对称性
一、教学目标
函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。

1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到;
2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。

二、举例分析
例1. 设()f x 是定义在R 上的函数,
(1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2
a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。

选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。

思路分析:
(1)要证明()f x 图象上任意一点()00,P x y 关于直线2
a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。

事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-⎡⎤⎡⎤⎣⎦⎣⎦,即得点()00,Q a b x y +-也在()f x 的图象上。

特别地,当,a b 都为0时,就是偶函数的特征了。

(2)要证明()f x 图象上任意一点()00,A x y 关于点(),a b 的对称点
()002,2B a x b y --也在()f x 的图象上。

事实上,由()00,A x y 在的图象上及
()()22f x f a x b +-=可得,()00y f x =及()()0022f x f a x b +-=,则有
()()000222b y b f x f a x -=-=-,从而得到()002,2B a x b y --也在()f x 的图象上。

特别地,当,a b 都为0时,就是奇函数的特征了。

例2.对于定义在R 上的函数()f x 有下列命题:
(1)若()f x 是奇函数,则函数()1f x -的图象关于点()1,0对称;
其中正确命题的个数是--------------------------------------------------( )
A.1
B.2
C.3
D.4
选题目的:学生通过此题学习,加深理解图象具有对称性函数的特征,掌握图象平移后的形状保持不变,所变的是对称位置;另外要清楚是函数图象本身的对称特征还是两个函数图象的对称关系。

思路分析:(1)、(2)两小题较为简单,就是平移后图象问题;
(3)是函数()f x 自身的对称问题,函数()f x 满足关系: ()()22f x f x -+=,由例1中的结论知, 函数()f x 图象关于点()1,1成中心对称。

也可以从对应点的关系中获取,设图象上任意点()(),P x f x ,则图象上必存在与之对应的点()()
2,2Q x f x --,则P 、Q 的中点为定点()1,1,即为对称中心。

(4)首先要清楚这是两个函数图象的对称问题,它们都是由函数()y f x =图象变换得到的;()y f x =图象?
−−→()1y f x =-的图象; ()y f x =图象?−−
→()y f x =-?−−→()1y f x =-
例3.如图,正比例函数和反比例函数的图象相交于A 、B 两
点。

分别以A 、B 两点为圆心,画出与y 轴相切的两个圆。

若点A 的坐标为(1,2),则图中两个阴影部分面积的和是
___________。

选题目的:充分运用正比例函数和反比例函数的图象都是关于坐标原点成中心对称的特点,注重图形的割补法来求解;
思路分析:分别求两个阴影部分面积显然不可行。

由于正比例函数与反比例函数图象都关于原点对称,可知A 、B 两点关于原点对称。

从而⊙A 与⊙B 也关于原点对称,故阴影部分面积和等于⊙A (或⊙B )的面积。

⊙A 与y 轴相切,则⊙A 的半径为1,故阴影部分的面
积和等于π=⨯π21。

例4.曲线C 的方程是3y x x =-,将C 沿X 轴、Y 轴的正向分别平移,t s 个单位长度后得到
曲线1C ,求证:曲线C 与1C 关于点,22t s A ⎛⎫ ⎪⎝⎭
对称。

选题目的:学会证明两曲线的对称的方法,培养运算能力;
思路分析:两条曲线的对称问题证明必须是双向的,即曲线C 上的任意一点关于点A 的对称点在曲线1C 上;曲线1C 上的任意一点关于点A 的对称点也在曲线C 上。

三、巩固练习
1.已知函数()1
a x f x x a -=--图象的对称中心为()3,1-,则的值为 A .4- B .2- C .2 D .3
2.二次函数()f x 满足:()()22f x f x +=-,且()(
)21,03f f ==。

若在区间[]0,m 上
有最小值1,最大值3,则的取值范围是
A .02m <≤
B .2m ≥
C .0m >
D .24m ≤≤
3.定义在R 上的非常数函数()f x 满足:()10f x +是偶函数,且()()55f x f x -=+,则()f x 一定
A .是偶函数且是周期函数
B .是偶函数但不是周期函数
C .是奇函数且是周期函数
D .是奇函数但不是周期函数
4.()f x 是R 上的函数,若()1f x +与()1f x -都是奇函数,则()3f x +的奇偶性是
A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .既不是奇函数也不是偶函数
5.函数()f x 满足:1344f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭
,且方程()0f x =有三个不同的根,则这三个根的和等于 ;
6.设方程35x x =+的根为1x ,方程3log 5x x =+的根为2x ,则12x x +的值为 ;
10.研究函数()()32
0f x ax bx cx d a =+++≠的对称性。

(1)()3
3f x x x =-; (2)()32133
f x x x x =-- 上述两个函数的对称性给我们什么启示,能否得出()()320f x ax bx cx d a =+++≠对称
性的一般结论。

相关文档
最新文档