第7讲 分式方程

合集下载

【解答版】《火线100天》中考数学复习第7讲分式方程

【解答版】《火线100天》中考数学复习第7讲分式方程

第7讲分式方程考点1 分式方程及解法分式方程的概念分母里含有①的方程叫做分式方程.分式方程的解法解分式方程的基本思路是将分式方程转化为②方程,具体步骤是:(1)去分母,在方程的两边都乘以③,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母,如果④,则整式方程的解是原式方程的解;否则,这个解不是原分式方程的解.考点2 分式方程的应用列分式方程解应用题的步骤跟一次方程(组)的应用题不一样的是:要检验⑤,既要检验求出来的解是否为原方程的根,又要检验是否⑥ .分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.命题点1 分式方程的解法例1 (·呼和浩特)解方程:23 2x x +-212x x-=0.【思路点拨】先确定最简公分母x(x+2)(x-2),方程两边同乘最简公分母,把分式方程转化为整式方程求解,最后要检验.【解答】方法归纳:解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程,解这个整式方程,并检验该整式方程的解是不是原分式方程的解.1.(·原创)把分式方程24x+=1x转化为一元一次方程时,方程两边需同乘以( )A.xB.2xC.x+4D.x(x+4)2.(·台州)将分式方程1-21xx-=31x-去分母,得到正确的整式方程是( )A.1-2x=3B.x-1-2x=3C.1+2x=3D.x-1+2x=33.(·重庆B卷)分式方程41x+=3x的解是( )A.x=1B.x=-1C.x=3D.x=-34.(·连云港)解方程:22x-+3=12xx--.命题点2 分式方程的应用例2 (·襄阳)甲、乙两座城市的中心火车站A,B两站相距360 km,一列动车与一列特快列车分别从A、B两站同时出发相向而行,动车的平均速度比特快列车快54 km/h.当动车到达B站时,特快列车恰好到达距离A站135 km处的C站.求动车和特快列车的平均速度各是多少?【思路点拨】设特快列车的平均速度为x km/h,则动车的平均速度为(x+54)km/h,依题意有等量关系:动车行驶360 km所用时间=特快列车行驶(360-135)km所用时间.列方程求解即可.【解答】方法归纳:列分式方程解应用题的关键是分析题意,弄清楚已知量与未知量之间的关系,从而得到等量关系式,进而引进未知数,列出方程解决问题.利用分式方程解应用题一定要注意检验,找出符合实际情况的答案.1.(·莱芜)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是( )A. 40x=5012x-B.4012x-=50xC. 40x=5012x+D.4012x+=50x2.(·大连)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1 260元,A、B两种糖果的重量比是1∶3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B 两种糖果各购进多少千克?3.(·东营)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造.根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?1.(·山西)解分式方程21x -+ 21x x+-=3时,去分母后变形为( ) A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3(1-x)D.2-(x+2)=3(x-1)2.(·孝感)分式方程1x x -=233x -的解为( ) A.x=-16 B.x=23C.x=13D.x=563.(·原创)邱老师和黄老师住在同一个小区,离学校 3 000米,某天早晨,邱老师和黄老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知黄老师骑车的速度是邱老师的1.2倍,则邱老师骑车的速度是( )A.80米/分B.100米/分C.120米/分D.200米/分4.(·无锡)方程22x +=1x的解是 . 5.(·广安)解方程42x x --1=32x-,则方程的解是 . 6.(·巴中)若分式方程1x x -- 1m x -=2无解,则m 的值是 . 7.(·盘锦)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为 .8.解分式方程:(1)(·盐城)31x -=21x +;(2)(·聊城) 22xx+-+2164x-=-1.9.(·东营模拟)如图,点A、B在数轴上,它们所对应的数分别是-3和1-x2-x,且点A、B 到原点的距离相等,求x的值.10.(·娄底)娄底到长沙的距离约为180千米,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发1小时,最后两车同时到达,已知小轿车的速度是大货车的速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,小张离长沙还有多远?11.(·徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出小伙伴们的人数.12.(·威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲种粽子比乙种粽子少用100元.已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?13.(·自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成.现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?14.(·荆门)已知:点P(1-2a ,a-2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程 1x x a+-=2的解是( ) A.5 B.1 C.3 D.不能确定15.(·枣庄)对于非零的两个实数a ,b ,规定a b ⊕=1b -1a ,若()221x ⊕-=1,则x 的值为( ) A.56 B.54 C.32 D.-16 16.(·达州)某服装商预测一种应季衬衫能畅销市场,就用8 000元购进一批衬衫,面市后果然供不应求,服装商又用17 600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?17.(·娄底)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?参考答案考点解读①未知数②整式③最简公分母④不为0 ⑤两⑥符合题意各个击破例1方程两边同乘x(x+2)(x-2),去分母,得3(x-2)-(x+2)=0,去括号,得3x-6-x-2=0,移项,得3x-x=6+2,合并,得2x=8,系数化为1,得x=4.检验,当x=4时,x(x+2)(x-2)=48≠0,∴x=4是原方程的解.题组训练 1.D 2.B 3.C4.2+3(x-2)=x-1,2+3x-6=x-1,2x=3,x=32.经检验,x=32是原方程的解.例2 设特快列车的平均速度为x km/h,则动车的平均速度为(x+54)km/h,根据题意,得36054 x+=360135x-.解得x=90.经检验,x=90是这个分式方程的解,且符合题意.x+54=144.答:动车和特快列车的平均速度分别为144 km/h和90 km/h.题组训练 1.B2.设A种糖果购进x千克,则B种糖果购进3x千克,根据题意,得480 x -12603x=2.解得x=30.经检验,x=30是原方程的解,且符合题意.3x=90.答:A种糖果购进30千克,B种糖果购进90千克.3.设甲工程队单独完成此项工程需x天,则乙工程队单独完成此项工程需2x天.由题意得1x +12x =110.解得x=15. 经检验,x=15是原方程的解.∴2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天. 整合集训1.D2.B3.B4.x=25.x=-536.-17.5x -52x =168.(1)分式两边同乘(x+1)(x-1),去分母,得3(x+1)=2(x-1).解得x =-5.检验,当x =-5时,(x+1)(x-1)=24≠0.∴原分式方程的解是x =-5.(2)分式两边同乘(x+2)(x-2)去分母,得-(2+x)2+16=-(x 2-4),解得x=2.经检验,当x=2时,x 2-4=0.∴原方程无解.9.依题意可得12x x --=3,解得x=52. 经检验,x=52是原方程的解. ∴x 的值为52. 10.(1)设大货车的速度为x 千米/时,小轿车的速度为1.5x 千米/时,则180x -1801.5x=1.解得x=60. 经检验,x=60是方程的解,且符合题意.1.5x=90.答:大货车的速度为60千米/时,小轿车的速度为90千米/时.(2)180-60=120(千米).答:当小刘出发时,小张离长沙还有120千米.11.设共有x 个小伙伴,依题意,得3602x -×0.6=36072x-.解得x=8. 经检验,x=8是原方程的解,且符合题意.答:共有8个小伙伴.12.设乙种粽子的单价为x 元,则()00300120x ++400x=260.解得x=2.5. 经检验,x=2.5是原方程的解,且符合题意. ∴()00300120x +=100, 400x =160.答:乙种粽子的单价是2.5元,甲、乙两种粽子分别购买了100个、160个.13.(1)设王师傅单独整理这批实验器材需要x 分钟完成,则 (140+1x )×20+20x=1.解得x=80. 经检验得x=80是原分式方程的解,且符合题意.答:王师傅单独整理这批实验器材需要80分钟完成.(2)设李老师要工作m 分钟,则40m +3080≥1.解得x ≥25. 答:李老师至少要工作25分钟.14.C 15.A16.设第一批进货的单价为x 元,则第二批进货的单价为(x+8)元,由题意,得 2×8 000x =17 6008x .解得x=80. 经检验,x=80是原分式方程的解,且符合题意.则第一次进货100件,第二次进货的单价为88元,第二次进货200件.总盈利为:(100-80)×100+(100-88)×(200-10)+10×(100×0.8-88)=4 200(元).答:在这两笔生意中,商家共盈利4 200元.17.(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运2x 趟,依题意,得12x +122x=1.解得x=18. 经检验x=18是原方程的解,且符合题意.2x=36.答:甲车单独运完此堆垃圾需18趟,乙车需36趟.(2)设甲车每趟需运费a 元,则乙车每趟需运费(a-200)元,依题意,得12a+12(a-200)=4 800.解得a=300.a-200=100.∴单独租用甲车的费用=300×18=5 400(元),单独租用乙车的费用=100×36=3 600(元).∵5 400>3 600,∴单独租用乙车合算.。

《分式方程》 讲义

《分式方程》 讲义

《分式方程》讲义一、什么是分式方程在我们学习数学的过程中,方程是一个非常重要的概念。

之前我们接触过一元一次方程、二元一次方程等,今天我们要来认识一种新的方程类型——分式方程。

那到底什么是分式方程呢?分式方程是指方程里含有分式,并且分母里含有未知数或含有未知数整式的有理方程。

比如说,像这样的方程:$\frac{x}{x-1} = 2$ ,$\frac{2}{x} + 3 = 5$ ,它们都是分式方程。

因为在这些方程中,分母中都含有未知数。

二、分式方程的解法接下来,我们重点来学习一下分式方程的解法。

解分式方程的一般步骤可以总结为以下几步:1、去分母这是解分式方程最为关键的一步。

我们要找到所有分式的最简公分母,然后将方程两边同时乘以这个最简公分母,把分式方程化为整式方程。

例如,对于方程$\frac{x}{x-1} = 2$ ,最简公分母是$x 1$ ,方程两边同时乘以$x 1$ ,得到$x = 2(x 1)$。

2、解整式方程完成去分母后,我们得到了一个整式方程。

接下来,按照解整式方程的方法求解这个方程。

就以上面得到的整式方程$x = 2(x 1)$为例,展开得到$x =2x 2$ ,移项可得$2x x = 2$ ,即$x = 2$ 。

3、检验这一步非常重要,却很容易被忽略。

我们将求得的解代入原分式方程的分母中,如果分母不为零,那么这个解就是原分式方程的解;如果分母为零,那么这个解就是增根,原分式方程无解。

还是以方程$\frac{x}{x-1} = 2$ 为例,把$x = 2$ 代入分母$x 1$ ,$2 1 = 1$ ,不为零,所以$x = 2$ 是原方程的解。

三、分式方程的增根在解分式方程的过程中,增根是一个需要特别关注的概念。

增根是分式方程化为整式方程后,产生的使分式方程的分母为零的根。

为什么会产生增根呢?这是因为在去分母的过程中,我们乘以了一个含有未知数的式子,这个式子有可能为零。

而等式两边同乘以零是不符合数学规则的,所以可能会产生额外的根,也就是增根。

《分式方程》 讲义

《分式方程》 讲义

《分式方程》讲义一、分式方程的定义首先,咱们来聊聊啥是分式方程。

分式方程啊,就是指方程里含有分式,并且分母里含有未知数的方程。

比如说,像这样的方程:\(\frac{x}{x 1} = 2\),\(\frac{3}{x + 2} = 5\),这里的\(x 1\)、\(x + 2\)就是分母,而且里面都有未知数\(x\),所以它们就是分式方程。

那为啥要研究分式方程呢?因为在很多实际问题中,我们常常会遇到这种形式的方程,通过求解分式方程,就能找到问题的答案。

二、分式方程的解法接下来,重点讲讲分式方程咋解。

解分式方程的关键步骤就是去分母,把分式方程转化为整式方程。

举个例子,对于方程\(\frac{x}{x 1} = 2\),我们在方程两边同时乘以\(x 1\),得到\(x = 2(x 1)\)。

这时候就得到了一个整式方程,接下来就可以按照整式方程的解法来求解啦。

展开式子:\(x = 2x 2\),然后移项:\(2x x = 2\),解得\(x = 2\)。

但是,这里要特别注意!解完之后一定要检验!为啥要检验呢?因为在去分母的过程中,我们乘以了一个含未知数的式子,可能会产生增根。

所谓增根,就是使分母为\(0\)的根。

比如上面这个例子,把\(x = 2\)代入原方程的分母\(x1\),\(2 1 = 1\neq 0\),所以\(x = 2\)是原方程的根。

再看个例子,方程\(\frac{1}{x 2} + 3 =\frac{x 1}{x 2}\)。

先在方程两边同时乘以\(x 2\),得到\(1 + 3(x 2) = x1\)。

去括号:\(1 + 3x 6 = x 1\),移项:\(3x x = 1 1 + 6\),合并同类项:\(2x = 4\),解得\(x = 2\)。

检验一下,把\(x = 2\)代入原方程分母\(x 2\),\(2 2 = 0\),所以\(x = 2\)是增根,原方程无解。

三、分式方程的应用分式方程在实际生活中有很多用处呢。

2025年九年级中考数学一轮复习课件:第7讲分式方程

2025年九年级中考数学一轮复习课件:第7讲分式方程
可列方程是( C )


-50=


B.


+50=


D.
A.
C.


-50=




+50=


16.[工作量问题](2024·达州)甲、乙两人各自加工120个零件,甲由于个人原因没有和
乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追上乙的进度,加工的速度是
( B )

=0.75
A.0.98×5=0.75x
B.
C.0.75×5=0.98x

D.
=0.98


20.(2023·呼和浩特)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,
甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速
C.m<3
D.m<3且m≠-2
B)
分式方程的根或增根
考查角度1:根据分式方程的根求值


6.已知x=3是分式方程

=2的解,那么实数k的值为(


A.-1
B.0
C.1
D.2


7.若关于x的分式方程 =
有解,则字母a的取值范围是(


A.a=5或a=0
B.a≠0
C.a≠5
D )
D.a≠5且a≠0
两名程序操作员各输入一遍,比较两人的输入是否一致,本次操作需输入2 640个数
据.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两名操作员每分钟各
能输入多少个数据?设乙每分钟能输入x个数据,根据题意列方程正确的是( D )

(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析

(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析

中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。

人教版初三数学下册中考知识点梳理:第7讲分式方程

人教版初三数学下册中考知识点梳理:第7讲分式方程

第7讲分式方程一、知识清单梳理中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°. 【详解】∵∠AFD =65°, ∴∠CFB =65°, ∵CD ∥EB ,∴∠B =180°−65°=115°, 故选:A . 【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.2.如图,矩形ABCD 中,AB=8,BC=1.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6【答案】C【解析】试题分析:连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用”AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=45,且tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=25,tan ∠BAC=12EM AM =可得EM=5;在Rt △AME 中,由勾股定理求得AE=2.故答案选C .考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.3.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x=" 1" . 其中正确的有A .1个B .2个C .3个D .4个【答案】B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 22x 22=+=-,(舍去). ∴使得M=2的x 值是1或22+.∴④错误. 综上所述,正确的有②③2个.故选B .4.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D 【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D. 5.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位【答案】D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意; B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意; C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意; D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意; 故选D.6.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°【答案】C【解析】试题分析:∵PA 、PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C . 考点:切线的性质.79153 ) A .2到3之间 B .3到4之间 C .4到5之间 D .5到6之间【答案】D915335,∵253,∴355到6之间.故选D . 【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键. 8.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 【答案】C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.9.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C .10.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .45【答案】D【解析】如图,连接AB ,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .二、填空题(本题包括8个小题)11.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____.【答案】72°【解析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键12.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.【答案】20 cm.【解析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222''++(cm).A B A D BD121620故答案为:20cm. 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.13.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF 的面积为50cm 2, 所以25010AC cm =⨯=, 因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==, 所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故答案为13.14.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.【答案】4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解. 详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是AB 的中点,∴∠COD=45°, ∴OC=2CD=42,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.15.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可. 【详解】∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3, ∵DE ∥AC , ∴△BED ∽△BCA , ∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1, 故答案为1:1. 【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 【答案】13.【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)【答案】12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1, ∴当x>1时,y 随x 的增大而增大. ∴若x 1>x 2>1 时,y 1>y 2 . 故答案为>18.如图,△ABC 中,AB =BD ,点D ,E 分别是AC ,BD 上的点,且∠ABD =∠DCE ,若∠BEC =105°,则∠A 的度数是_____.【答案】85°【解析】设∠A=∠BDA=x ,∠ABD=∠ECD=y ,构建方程组即可解决问题. 【详解】解:∵BA =BD ,∴∠A =∠BDA ,设∠A =∠BDA =x ,∠ABD =∠ECD =y ,则有21802105x y y x ︒︒⎧+=⎨+=⎩, 解得x =85°, 故答案为85°. 【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本题包括8个小题)19.已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.20.如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .求证:BE=EC 填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O ,D ,E ,C 为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②1.【解析】(1)证出EC 为⊙O 的切线;由切线长定理得出EC=ED ,再求得EB=ED ,即可得出结论; (2)①由含30°角的直角三角形的性质得出AB ,由勾股定理求出BC ,再由直角三角形斜边上的中线性质即可得出DE ;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO .∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,3∴3∴22AB AC,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=12BC=3,故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO 是矩形,∵OD=OC ,∴矩形DECO 是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.解方程组4311,213.x y x y -=⎧⎨+=⎩①② 【答案】53x y =⎧⎨=⎩ 【解析】将②×3,再联立①②消未知数即可计算. 【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.22.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 【答案】小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x )元,在2018年的基础上再增长x ,就是2019年收到微信红包金额400(1+x )(1+x )元,由此可列出方程400(1+x )2=484,求解即可. 【详解】解:设小王在这两年春节收到的红包的年平均增长率是. 依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.23.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26.若关于x的方程311x ax x--=-无解,求a的值.【答案】1-2a=或【解析】分析:该分式方程311x ax x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【答案】C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.2.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算3.已知a35a等于()A.1 B.2 C.3 D.4【答案】B351,进而得出答案.【详解】∵a35∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【答案】B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.5.实数21-的相反数是()A.21--B.21+C.21--D.12【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm【答案】A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.33πB.32πC.πD.32π【答案】A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23,∠A=30°,∴OB=3,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC长为6033 1803ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.8.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.9.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C .22D.52【答案】C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG=22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)【答案】A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,332).故选A.二、填空题(本题包括8个小题)11.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.【答案】1 4【解析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形,∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.12.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.【答案】4﹣π【解析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题13.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.【答案】12【解析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. 【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型. 14.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.15.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF的面积为50cm2,所以25010AC cm=⨯=,因为菱形ABCD的面积为120cm2,所以21202410BD cm⨯==,所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭故答案为13.16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.【答案】1.5【解析】在Rt△ABC中,225AC=AB+BC=,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x=.17.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.【答案】28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.18.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.【答案】30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.考点:折叠图形的性质三、解答题(本题包括8个小题)19.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.求y 与x 之间的函数关系式,并写出自变量x 的取值范围;求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩, 所以y 与x 的函数解析式为()y x 4010x 16=-+;(2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<,∴当x 25<时,W 随x 的增大而增大,10x 16,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.20.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?【答案】(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图21.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B 与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG 为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)。

分式方程

分式方程

分式方程————————————————————————————————作者:————————————————————————————————日期:分式方程一、分式方程:1、识别一个方程是分式方程的关键是方程分母中有未知数。

2、解分式方程的基本思想是:“把分式方程的分母去掉,使分式方程化为整式方程,就可以利用整式方程的解法求解”。

这就是“转化思想”。

3、将分式方程转化为整式方程,转化的条件是“去分母”。

其方法是在分式的两边同乘以分式方程中各分式的最简公分母。

4、在方程变形中,有时可能产生不适合原方程的根,这种根叫做原方程的“增根”。

应当舍去。

因此,解得整式方程的根后,要代入原分式方程检验,适合原方程即为分式方程的根,不适合,就说明原方程无解。

也可以代入去分母时乘以的最简公分母中,使公分母≠0时为原方程的解,使公分母=0时为增根舍去。

例5,解方程:。

分析:本题方程中分母含有未知数x,是分式方程,解分式方程的关键是去分母,将分式方程化为整式方程,首先要将各个分母能因式分解的多项式先做因式分解,再找最简公分母。

解:将原方程变形:去分母:方程两边同乘以2(x+3)得:4+3(x+3)=7,去括号:4+3x+9=7移项:3x=7-4-9合并同类项:3x=-6系数化为1:x=-2检验:把x=-2代入原方程左边==2+=,右边==,∵左边=右边,∴x=-2是原方程的解。

注:把求得的未知数的值代入原方程检验,不仅可以检验出是不是增根,还可以检查在解方程过程中计算是否有错误。

例6,解方程:=1-。

分析:本题方程中分母含有未知数,是分式方程,解分式方程的关键是去分母,此题中分母应先按x的降幂排列,再因式分解,这样便于找最简公分母。

解:原方程变形:=1-去分母:方程两边同乘以(x-7)(x-1),得:(x-3)(x-7)-(x-5)(x-1)=(x-7)(x-1)-(x2-2)去括号:x2-10x+21-x2+6x-5=x2-8x+7-x2+2合并同类项:-4x+16=-8x+9移项:-4x+8x=9-16合并同类项:4x=-7系数化为1:∴x=-检验:将x=-代入(x-7)(x-1)∵(x-7)(x-1)=( --7)(--1)≠0,∴x=-是原方程的解。

中考数学第7 讲 分式方程及其应用

中考数学第7 讲 分式方程及其应用

解:(1)设 A 种茶叶每盒进价为 x 元,则 B 种茶叶每盒进价为 1.4x 元,依题意,得:814.40x0 -40x00 =10,解得:x=200,经检验,x =200 是原方程的解,且符合题意,∴1.4x=280. 答:A 种茶叶每盒进价为 200 元,B 种茶叶每盒进价为 280 元;
(2)设第二次购进 A 种茶叶 m 盒,则购进 B 种茶叶(100-m)盒,
1. (2019·淄博)解分式方程1x--x2 =2-1 x -2 时,去分母变形正确的是
(D) A.-1+x=-1-2(x-2) B.1-x=1-2(x-2) C.-1+x=1+2(2-x) D.1-x=-1-2(x-2)
2. (2020·杭州)若分式x+1 1 的值等于 1,则 x=___0_.
例5 (2019·阜新)节能又环保的油电混合动力汽车,既可以用油做动力行 驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地, 若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用 为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元. (1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千 米? (2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元, 则至少需要用电行驶多少千米?
(1)甲、乙两公司各有多少人? (2)现甲、乙两公司共同使用这笔捐款购买A,B两种防疫物资,A种防 疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资 不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A, B两种防疫物资均需购买,并按整箱配送).
解:(1)设甲公司有 x 人,则乙公司有(x+30)人, 依题意,得:100x000 ×76 =1x4+003000 ,解得:x=150, 经检验,x=150 是原方程的解,且符合题意, ∴x+30=180.答:甲公司有 150 人,乙公司有 180 人;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档