基本、典型应用题分类复习
一二年级的重点应用题分类总结

一二年级的重点应用题分类总结
应用题是小学数学教学中的重要组成部分,尤其对于一二年级的学生来说,通过解决应用题能够帮助他们将数学知识应用到实际生活中,培养解决问题的能力。
以下是对一二年级常见的重点应用题进行的分类总结,旨在帮助学生们更好地掌握解题技巧。
一、加减法应用题
1.水果问题:例如,小明有5个苹果,妈妈又给了他3个,请问小明现在有多少个苹果?
2.买卖问题:例如,一支铅笔3元钱,小明买了2支,请问小明一共花了多少钱?
二、乘法应用题
1.队伍问题:例如,一个队伍有5排,每排有4个人,请问这个队伍一共有多少人?
2.面积问题:例如,一个长方形的长是5厘米,宽是3厘米,请问这个长方形的面积是多少?
三、除法应用题
1.分享问题:例如,有12个糖果要平均分给4个小朋友,每个小朋友能分到几个糖果?
2.价格问题:例如,一箱苹果的价格是24元,这箱苹果有8个,每个苹果的价格是多少?
四、混合运算应用题
1.组合问题:例如,小明有2个篮球和3个足球,篮球和足球一共有多少个?
2.优惠问题:例如,一件衣服原价50元,打8折后,小明还需要支付多少钱?
五、时间应用题
1.速度问题:例如,小明每分钟走50米,他走了10分钟,请问小明走了多少米?
2.等待问题:例如,小明等公交车,每辆公交车10分钟一趟,他等了3趟,请问小明等了多长时间?
总结:通过对一二年级的重点应用题进行分类总结,我们可以发现,这些应用题主要涉及加减乘除和混合运算,以及时间问题。
掌握这些类型的应用题,对于提高学生的数学解题能力具有重要意义。
小学数学典型应用题归类总结(30种)

小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学应用题21种类型总结

小学数学应用题21种类型总结以下是一些小学数学常见的应用题类型总结:1. 长度问题:例如给出一段线段的长度,计算另一段线段的长度。
2. 运算问题:例如给出一组数字,进行加减乘除运算。
3. 相等问题:例如给出一组数字,找出相等的数字,或者给出几个相等的数字,找出缺失的数字。
4. 比较问题:例如给出两个数,比较大小或者找出其中较大/较小的数。
5. 分配问题:例如将一组物品平均分配给一些人,计算每个人能分到多少。
6. 比例问题:例如给出一组物品的比例关系,计算另一组物品的数量。
7. 时钟问题:例如给出时钟的时间,计算经过一段时间后的时间。
8. 面积问题:例如给出一个图形的面积,计算另一个图形的面积。
9. 体积问题:例如给出一个物体的体积,计算另一个物体的体积。
10. 距离问题:例如给出两个地点之间的距离,计算另两个地点之间的距离。
11. 速度问题:例如给出一个物体的速度和时间,计算它经过的距离。
12. 天气问题:例如给出一些天气数据,计算平均温度或者最高/最低温度。
13. 日期问题:例如给出一个日期,计算几天后/几天前的日期。
14. 货币问题:例如给出一些货币的面值和数量,计算总价值。
15. 数字问题:例如给出一些数字,按照一定规则进行排列或者解码。
16. 数列问题:例如给出一些数字,找出它们的规律或者下一个数字。
17. 百分比问题:例如给出一个数,计算它的百分之几或者多少是另一个数的百分之几。
18. 逻辑问题:例如给出一些条件,判断哪些条件成立或者给出一些条件,判断是否满足某个条件。
19. 单位换算问题:例如给出一个单位的数量,将它转换为另一个单位的数量。
20. 几何问题:例如给出一个图形的属性,计算另一个图形的属性。
21. 拼图问题:例如给出一些形状的拼图,找出缺失的形状。
小学奥数应用题类型归纳整理(30类典型应用题分析)

小学数学30类典型应用题分析小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。
小学数学主要有以下30类典型应用题:一、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
(完整版)小学生数学总复习应用题专项归类讲解及训练(汇总)

小学数学经典典型类型应用题(方法、习题、讲解)本资料汇总了以下30类典型应用题:(网上搜集,如有雷同,不是巧合)----HEREIS0071 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。
2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。
3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
典型应用题归类复习(行程问题)
典型应用题归类复习(行程问题)一、首先要弄清“相对”、“相向”、“相背”、“相遇”、“同时”、“同向”等词语。
二、其次要弄清行程问题的结构特点:运动方向:是同向还是背向出发地点:是同地还是两地出发时间:是同时还是分别,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。
速度:是一个物体的速度还是两个物体的速度。
运动结果:是相遇、相隔,还是相遇后反方向相离。
有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者相遇后又反方向相离,要把多行的路程加上,得到同时行驶的路程。
三、最后,还要掌握好每种应用题的解题规律,其解题规律有:(1)相向运动——是指两个物体的出发点不同,运动方向相对,越走相距越近,其中还可分为相遇和相差两种情况。
基本公式如下:相遇时间=相遇路程÷(甲速+乙速)相遇路程=(甲速+乙速)×相遇时间速度和=相遇路程÷相遇时间未知速度=速度和-已知速度两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
(2)同向运动——是指两个运动物体的运动方向相同,但是出发地点、时间可以相同或不同,因此,又可分为同地同向和异地同向两种情况。
①同地同向:特点是出发地点相同,运动方向相同,由于速度有快慢,因此越走相隔越远。
公式是:相隔路程=速度差×时间②异地同向:特点是出发地点不同,运动方向相同。
如果速度慢的在前,快的在后就能追及,称为追及问题,其公式是:追及时间=追及路程÷速度差追及路程=速度差×追及时间速度差=追及路程÷追及时间=快速-慢速如果快的在前,慢的在后,二者越走越远,就不能追及。
其公式是:解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
(3)背向运动——是指两个物体运动方向相反,但出发点可以相同或不同。
三年级数学常见应用题归类
三年级数学常见应用题归类数学是逻辑思考和问题解决能力培养的重要学科。
对于三年级的学生来说,掌握一些基础的数学应用题类型对于他们日后的数学学习至关重要。
以下是三年级数学应用题的一些常见类型及其解题思路:1. 加法和减法问题- 类型:购物时的总价计算,物品数量的增减等。
- 解题思路:理解加法和减法的基本含义,将问题转化为数学表达式,然后进行计算。
2. 乘法和除法问题- 类型:分配物品到多个组,计算平均数,求几个相同加数的和等。
- 解题思路:识别问题中的乘法或除法关系,使用乘法表和除法规则进行计算。
3. 时间问题- 类型:计算时间间隔,时钟的读数,日历的日期计算等。
- 解题思路:了解时间单位(时、分、秒)之间的转换关系,使用加减法进行时间的计算。
4. 长度和距离问题- 类型:测量物体的长度,计算两地之间的距离等。
- 解题思路:掌握长度单位(米、厘米等)的换算,使用加减法或乘除法进行长度的计算。
5. 货币问题- 类型:货币的兑换,购物找零,计算总花费等。
- 解题思路:理解不同面额货币之间的关系,使用加减法进行货币的计算。
6. 比例和分数问题- 类型:分配比例,计算分数,理解部分与整体的关系等。
- 解题思路:理解比例和分数的基本概念,使用乘除法进行比例的计算。
7. 面积问题- 类型:计算图形的面积,如正方形、长方形等。
- 解题思路:掌握不同图形面积的计算公式,使用乘法进行面积的计算。
8. 体积和容量问题- 类型:计算容器的容量,物体的体积等。
- 解题思路:了解体积和容量单位的换算,使用乘法进行体积和容量的计算。
9. 速度和路程问题- 类型:计算速度,路程,时间三者之间的关系。
- 解题思路:使用速度=路程/时间的公式,进行速度和路程的计算。
10. 几何图形问题- 类型:识别和计算基本几何图形的属性,如边长、角度等。
- 解题思路:了解基本几何图形的性质,使用相关的数学公式进行计算。
11. 逻辑推理问题- 类型:根据已知条件,推断未知量或解决逻辑谜题。
六年级数学应用题分类讲解
六年级数学应用题分类讲解六班级的应用题往往会难倒许多人,由于应用题涉及的方面有点多,略微不留意就会丢失一些细节导致结果的错误。
我在这里整理了相关信息,盼望能关心到您。
(一)整数和小数的应用1 简洁应用题(1) 简洁应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简洁应用题。
(2) 解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。
读题时,不丢字不添字边读边思索,弄明白题中每句话的意思。
也可以复述条件和问题,关心理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。
从题目中告知什么,要求什么着手,逐步依据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是依据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。
假如发觉错误,立刻改正。
2 复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
d答案:依据计算的结果,先口答,逐步过渡到笔答。
( 3 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(4 ) 解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
小学数学30种典型应用题分类讲解附带例题和解题过程
小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学基本应用题数量关系的种类把应用题的数量关系讲明白,把类型分清楚,清晰理解和掌握各种类型中的数量关系,是关键的一环。
也为今后解答复合应用题打好基础的重要一步。
在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。
现分述如下:一、加法的种类:(2种)1.已知一部分数和另一部分数,求总数。
(求和用加法)例:小明家养灰兔8只,养白兔4只。
一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。
求总数。
也就是求8与4的和。
列式:8+4=12(只)答:(略)2.已知小数和相差数,求大数。
(求比一个数多几的数用加法)例:小利家养白兔4只,灰兔比白兔多3只。
灰兔有多少只?想:已知小数(白兔4只)和相差数(灰兔比白兔多3只),求大数(灰兔的只数)。
也就是求比4多3的数。
列式:4+3=7(只)答:(略)二、减法有3种:1.已知总数和其中一部分数,求另一部分数。
(求剩余用减法)例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)也就是求剩余部分。
列式:12—8=4(只)2.已知大数和相差数,求小数。
(即求比一个数少几的数)例:小强家养白兔8只,养的白兔比灰兔多3只(或养的灰兔比白兔少3只)。
养灰兔多少只?想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)(即求比8少的数)列式:8-3=5(只)3.已知大数和小数,求相差数。
(求一个数比另一个数多多少或少多少)例:小勇家养白兔8只,灰兔5只。
白兔比灰兔多多少只?(灰兔比白兔少多少只?)想:已知大数(白兔8只)和小数(灰兔5只),求相差数。
(白兔比灰兔多多少只?或灰兔比白兔少多少只?)列式:8-5=3(只)三、乘法有2种:1.已知每份数和份数。
求总数。
(即求几个相同加数的和)例:小利家养了6笼兔子,每笼4只。
一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少。
用乘法计算。
列式:4×6=24(只)2.求一个数的几倍是多少?例:白兔有8只,灰兔的只数是白兔的2倍。
灰兔有多少只?想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?列式:8×2=16(只)四、除法有4种:1.已知总数和份数,求每份数。
(把一个数平均分成几份求一份是多少)例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?想:已知总数(15个),份数(放3盘)。
求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。
列式:15÷3=5(个)2.已知总数和每份数,求份数。
(求一个数里面包含有几个另一数)例:小强有15个苹果,每5个放一盘,可以放几盘?想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?列式:15÷5=3(盘)3.求一个数是另一个数的几倍。
例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?想:看苹果的个数里面有几个梨的个数,就是梨的几倍。
即求一个数是另一个数的几倍。
列式:15÷5=34.已知一个数的几倍是多少,求这个数。
例:小勇有15个苹果,是梨个数的3倍,有梨多少个?想:苹果的个数是梨的3倍也就是苹果里面有3个梨的个数,求梨的个数,也就是把15平均分成3份,求一份是多少。
列式:15÷3=5(个)解题时注意:“比……多……”不一定用加法来计算;遇到“比……少……”也不一定用减法来计算;或有“倍”字的题也不一定用乘法来计算。
先分清应用题的数量关系的类型,如果出现上述问题时,要用加法来计算,想一想你算的这道(或这步)应用题是属于哪一类加法应用题的数量关系?(因为加法只有2类),如果你对不上类型,你一定是算错了。
在两步或两步以上复合应用题时,也要时刻强调:解答复合应用题的每一步都离不开上述十一类的数量关系。
虽然世间的事物千变万化,但是在“+、-、×、÷”这四种运算中,数量之间的关系都不会离开上述某一个类型。
只有清晰地掌握这十一种关系,才掌握了解题的规律。
例如:同学们植了350棵树,其中200棵是松树,其余全是树。
松树比树多植多少棵?分析:这是一道有两个已知条件的两步计算。
三年级学生刚接触很容易与一步应用题的解法相混。
那么只有学生清晰地掌握了基本类型中的“已知大数和小数,求相差数。
”这一类数量关系。
教者可以从问题入手,应用“分析法”来引导:(1)求“栽的松树比树多多少棵?:要什么数?(是相差数)。
(2)要求相差数,必须已知哪两个数?[大数(松树的棵数)与小数(树的棵数)](3)大数与小数的数量题中告诉我们了吗?告诉了,是多少?没告诉怎么办?[大数(松树200棵)已知。
小数(树的棵数)不知道。
必须先求出树有多少棵?]这样就顺理成章地找出解答本题的关键一环——中间问题:树有多少棵?解题:(1)树有多少棵?想(说算理):已知总数(350棵)和一部分数(200棵),求另一部分数(树的棵数)[用减法来计算]350-200=150(棵)(2)松树比树多多少棵?想(说算理):已知数(200棵)和小数(150棵)求相差数,(用减法来计算)200-150=50(棵)从上面明显看出:正确理解和掌握解答应用题的方法,首先必须清晰地掌握以上十一种数量关系。
在解答复合应用题时,每一步都离不开这种关系。
虽然应用题的容千变万化,但是在“+、-、×、÷”四种运算的过程中,每一步的数量关系都不会离开上述十一种关系中的某一种。
只有清晰地掌握了这十一种数量关系,才能掌握了解答应用题的规律。
才能达到高屋建瓴,纲举目的作用。
同时,学应用题的解法时,尽量运用线段分析图示之,有了第一感知印象,达到数形统一。
并要学会用“综合分析法”等思考方法。
典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:(是等分除法的发展。
)解题关键:在于确定总数量和与之相对应的总份数。
数量关系式:总数量÷总份数=平均数例1:求34、4、82三个数的平均数。
先找:总数量——34+4+82 总份数——3再算:(34+4+82)÷3=40例2:一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。
求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。
此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为1/100,汽车从乙地到甲地速度为60 千米,所用的时间是1/60,汽车共行的时间为1/100+1/60 = 2/75, 汽车的平均速度为2 ÷2/75 =75(千米)(2)归一问题:解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。
解题关键:求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
也可以先求同类数量之间的倍数,再乘上不同类数量。
数量关系式:单一量×份数=总数量总数量÷单一量=份数例1 一个织布工人,5天织布1500 米,照这样计算,20天织布多少米?分析:必须先求出平均每天织布多少米,就是单一量。
归一法:(1500 ÷5)×20=6000 (米)倍比法:20÷5×1500例2 一个织布工人,5天织布1500 米,照这样计算,织布6000米,需要多少天?归一法:6000 ÷(1500 ÷5)=20 (天)倍比法:6000÷1500×5(3)归总问题:解题时需先根据已知条件,求出总量,如总产量、工作总量、总价、总路程等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归总问题。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量= 另一个单位数量例1 修一条水渠,原计划每天修800 米,6 天修完。
实际4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。
所以也把这类应用题叫做“归总问题”。
不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。
800 ×6 ÷4=1200 (米)例2 修一段公路,12个工人45天可完成,如果要提前9天完成,需要增加多少人?这样想:要求需要增加的人数,要用现在需要的人数一原来的人数,就可以求出需要增加的人数。
其中“现在需要的人数”还不知道,要用总工作量÷现在需要的天数。
根据“12个工人45天可完成”可以求出总工作量,即工作总量12×45=540。
根据“原来45天完成”与“如果要提前9天完成”可以求出现在需要的天数45-9=36(天),根据工作总量540与现在需要的天数36天,可以求出现在需要的人数540÷36=15(人),最后用现在需要的人数-原来的人数15-12=3(人)。
解:12×45÷(45-9)-12=12×45÷36-12=15-12=3(人)答:需要增加3人。
(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数大数-差=小数(和-差)÷2=小数和-小数= 大数例1:一批锡铝合金共重500㎏,其中铝比锡重100㎏,问两种金属各多少?锡:(500-100)÷2=200kg铝:500-200=300KG(提示:解和差问题时,通常先用公式求一个数,再用减法求另一个数)例2 某加工厂甲班和乙班共有工人94 人,因工作需要临时从乙班调46 人到甲班工作,这时乙班比甲班人数少12 人,求原来甲班和乙班各有多少人?分析:从乙班调46 人到甲班,对于总数没有变化,现在把总数转化成2 个乙班,即9 4 -12 ,由此得到现在的乙班是(9 4 -12 )÷2=41 (人),乙班在调出46 人之前应该为41+46=87 (人),甲班为9 4 -87=7 (人)(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。