筛法求素数
素数判断如何判断一个数是否为素数

素数判断如何判断一个数是否为素数素数是指除了1和本身之外没有其他因数的自然数。
在数论中,素数因其独特的性质和重要性而备受关注。
判断一个数是否为素数是数学中的一个基本问题,下面将介绍几种常用的方法来判断一个数是否为素数。
一、试除法试除法是一种简单直接的判断素数的方法。
对于一个待判断的数n,如果n能被不大于根号n的自然数整除,则n不是素数;如果n不能被不大于根号n的自然数整除,则n是素数。
二、埃拉托斯特尼筛法埃拉托斯特尼筛法是一种高效的筛选素数的方法。
基本思想是从2开始,依次找到每一个素数,然后将能被该素数整除的数标记为非素数。
具体操作为,将2到N的自然数按顺序排列,对于每个素数p,将大于p且能被p整除的数标记为非素数。
遍历完所有素数后,剩下的未被标记的数即为素数。
三、费马小定理费马小定理是一种通过取模运算判断素数的方法。
若p为素数,a是小于p的任意整数,则a的p次幂与a模p的余数相等。
即a^p ≡ a (mod p)。
基于这个定理,可以用快速幂算法来计算a^p的结果,如果与a模p的余数相等,则a为素数。
四、Miller-Rabin素性测试Miller-Rabin素性测试是一种概率算法,用于测试一个数是否为素数。
该算法基于费马小定理的倒推,通过多次的概率测试来判断一个数的素性。
算法的具体原理较为复杂,在此不做详细介绍。
综上所述,判断一个数是否为素数可以使用试除法、埃拉托斯特尼筛法、费马小定理或Miller-Rabin素性测试等方法。
根据具体需求和时间复杂度要求选择合适的算法来判断素数。
素数(超详细!!!)

素数(超详细)整数惟⼀分解定理素数筛法给定n,求出1~n之间所有的质数。
⼀、Eratosthenes筛法(☒此处本应有⼀幅动图,然鹅我并不知道该如何显⽰动图(。-ω-)-ω-)-ω-)Eratosthenes筛法思想⼆、欧拉筛法(线性筛)埃⽒筛法中以n=30为例,30这个数被筛了3次,分别是:2*15(p=2)3*10(p=3)5*6(p=5)枚举 2~n 中的每⼀个数 i:如果 i 是素数则保存到素数表中;利⽤ i 和素数表中的素数 prime[j] 去筛除 i*prime[j] ,为了确保i*prime[j] 只被素数 prime[j] 筛除过这⼀次,要确保 prime[j] 是i*prime[j] 中最⼩的素还要⼩的素因⼦。
因⼦,即 i 中不能有⽐ prime[j] 还要⼩的素因⼦写法⼀:(仅⽤于判断)写法⼆:(可求出每个数的最⼩质因⼦)素数筛法优化素因数分解只要在判定素数时记录下每个数值的最⼩素因数即可。
⼀道肥肠简单的模板题——【例 1】Prime Distance(信息学奥赛⼀本通 1619)【题⽬描述】给定两个整数 L,R,求闭区间 [L,R] 中相邻两个质数差值最⼩的数对与差值最⼤的数对。
当存在多个时,输出靠前的素数对。
【输⼊】多组数据。
每⾏两个数 L,R。
【输出】详见输出样例。
【输⼊样例】2 1714 17【输出样例】2,3 are closest, 7,11 are most distant.There are no adjacent primes.。
筛法求素数

筛法求素数一,确定素数。
二,以此数为圆心,作对称轴。
三,逐步减去该圆周长的一半,直至结果为素数。
四,看哪个素数与对称轴之积最大,则是这个素数。
如上面所示: 16与15的差=1,这样,很快就能看出这个素数是1。
五,如果不符合条件,那么必须重新开始。
找到符合条件的数后,再用筛法。
…我的老师——赵老师为了表示大自然对我们的恩泽,便出了一道题给我们做。
我听到了这个消息时,高兴得两只手抓住了头发,感觉头发都快掉光了。
“太棒了!我终于可以摆脱他们啦!”找出来,每天除了吃饭、睡觉,其余的时间我都花在寻找素数和合数上面了。
我把找素数和合数当成游戏一般,玩耍一番。
我去问爸爸妈妈,我从她们那里得知方程就是求未知数的值的,我很惊奇,便去查资料。
方程是一种解决数学问题的等式,是比较重要的数学模型之一。
它既是一种等式,又是一个未知数。
同时也是具有等号左边的值和右边的未知数的等式。
有时候,我感觉很难理解它的含义。
我去翻阅书本,书上写着:“方程就是用一个未知数和一个已知数表示出两个数之间的关系。
例如: X+Y=Y,则X和Y就叫做方程的未知数,X和Y就叫做方程的两个数,而方程里的未知数,等于方程两边的数的总和。
”书上讲的是那么的清晰,我渐渐地明白了方程的意思。
“接下来就是探索素数和合数的奥秘了。
”老师说道。
随着老师这一声令下,同学们又在火热的研究素数和合数的道路上狂奔。
我问同学们,他们问了一些同学,我一点也没想到一道简单的题,可以出现这么多问题。
由于没有经验,我研究了很久,还是没能解决。
老师走过来,亲切地对我说:“你怎么了?这道题目是这样做的,为什么不会呢?”“对啊,你能告诉我吗?”我回答道。
老师不紧不慢地说:“好吧,这样做吧!”说完,老师便教我做这道题。
老师解释道:“这样的做法:素数÷1÷2÷3÷4÷5,同理,合数也是这样算的。
”我恍然大悟,原来做题可以这么简单。
在我们班上,还有一位特殊的数学家——罗嘉东,同学们都尊敬地称呼他为“罗爷”。
素数(质数)判断的五种方法

素数(质数)判断的五种方法素数判断是编写程序过程中常见的问题,所以今天我简单梳理一下常用的素数判断方法。
素数的介绍素数定义质数(prime number)又称素数,有无限个。
一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。
最小的质数是2。
--------360百科第一种:暴力筛选法思路分析根据素数的定义,我们可以简单地想到:若要判断n是不是素数,我们可以直接写一个循环(i从2到n-1,进行n%i运算,即n能不能被i整除,如被整除即不是素数。
若所有的i 都不能整除,n即为素数)。
代码实现booleanisPrime(int n){for(inti=2;i<n;i++){if(n%i==0){returnfalse;break;}}returntrue ;}时间复杂度:O(n)这个时间复杂度乍一看并不乐观,我们就简单优化一下。
booleanisPrime(int n){for( i=2; i<=(int)sqrt(n);i++){if(n%i==0){returnfalse;break;}}returntrue;}时间复杂度:O(sqrt(n))优化原理:素数是因子为1和本身,如果num不是素数,则还有其他因子,其中的因子,假如为a,b.其中必有一个大于sqrt(num) ,一个小于sqrt(num)。
所以必有一个小于或等于其平方根的因数,那么验证素数时就只需要验证到其平方根就可以了。
即一个合数一定含有小于它平方根的质因子。
第二种:素数表筛选法素数表的筛选方法一看就知道素数存储在一个表中,然后在表中查找要判断的数。
找到了就是质数,没找到就不是质数。
思路分析如果一个数不能整除比它小的任何素数,那么这个数就是素数对了,这个方法效率不高,看看就知道思路了。
用筛法求出100以内的全部素数

例6、用筛法求出100以内的全部素数,并按每行五个数显示。
【问题分析】⑴把2到100的自然数放入a[2]到a[100]中(所放入的数与下标号相同);⑵在数组元素中,以下标为序,按顺序找到未曾找过的最小素数minp,和它的位置p(即下标号);⑶从p+1开始,把凡是能被minp整除的各元素值从a数组中划去(筛掉),也就是给该元素值置0;⑷让p=p+1,重复执行第②、③步骤,直到minp>Trunc(sqrt(N)) 为止;⑸打印输出a数组中留下来、未被筛掉的各元素值,并按每行五个数显示。
用筛法求素数的过程示意如下(图中用下划线作删去标志):① 2 3 4 5 6 7 8 9 10 11 12 13 14 15…98 99 100 {置数}② 2 3 4 5 6 7 8 9 10 11 12 13 14 15…98 99 100 {筛去被2整除的数}③ 2 3 4 5 6 7 8 9 10 11 12 13 14 15…98 99 100 {筛去被3整除的数}……2 3 4 5 6 7 8 9 10 11 12 13 14 15…98 99 100 {筛去被整除的数}Program Exam53;const N=100;type xx=1 .. N; {自定义子界类型xx(类型名)}Var a: array[xx] of boolean; i,j: integer;BeginFillchar(a,sizeof(a),true);a[1] := False;for i:=2 to Trunc(sqrt(N)) doif a[I] thenfor j := 2 to N div I doa[I*j]:= False;t:=0;for i:=2 to N doif a[i] thenBeginwrite(a[ i ]:5); inc(t);if t mod 5=0 then writelnend;End.【例3】输入十个正整数,把这十个数按由大到小的顺序排列(将数据按一定顺序排列称为排序,排序的算法有很多,其中选择排序中的“简单选择排序”是一种较简单的方法)分析:要把十个数按从大到小顺序排列,则排完后,第一个数最大,第二个数次大,……;因此,我们第一步可将第一个数与其后的各个数依次比较,若发现,比它大的,则与之交换,比较结束后,则第一个数已是最大的数。
线性筛法求素数的原理与实现

何为线性筛法,顾名思义,就是在线性时间内(也就是O(n))用筛选的方法把素数找出来的一种算法,没用过线性筛素数法的人可能会奇怪,用遍历取余判定素数不是也是线性时间的吗,没错,但是确切的说线性筛法并不是判定素数的,而是在线性时间内求出一个素数表,需要判定是否是素数的时候只要看该数是否在表内就可以瞬间知道是不是素数。
比如想求10000以内的素数,定义表int a[10000],进行线性筛选后,a[n]的值就代表n是不是素数,a[n]如果是1,就代表n是素数,a[n]如果是0,就代表n不是素数,这就是查表。
再判定其他的素数也是一样,不用再做任何计算。
而如果用遍历取余,那么每判定一个数都要从头开始再遍历一遍,而线性筛法只在开始一次性运算完,以后只要查表即可,查表通常只需要1条语句。
所以如果你的程序从始至终只需要判定那么几次素数那么用遍历取余即可,但是如果需要多次判定素数,而且这个数还不是很小的话,那么线性筛法就会体现出巨大的优越性来。
线性筛法的核心原理就是一句话:每个合数必有一个最大因子(不包括它本身),用这个因子把合数筛掉,还有另一种说法(每个合数必有一个最小素因子,用这个因子筛掉合数,其实都一样,但是我觉得这种方法不太容易说明,这种方法我会在最后给出简略说明)。
这个很容易证明:这个小学就知道合数一定有因子,既然是几个数,就一定有最大的一个。
最大因子是唯一的,所以合数只会被它自己唯一的因子筛掉一次,把所有合数筛掉后剩下的就全是素数了。
先假设一个数i,一个合数t,i是t最大的因数,t显然可能并不唯一(例如30和45的最大因数都是15)。
那么如何通过i知道t呢,t必然等于i乘以一个比i小的素数。
先来说这个数为什么一定要比i小,这很显然,如果是i乘上一个比它大的素数,那么i显然不能是t最大的因子。
再来说为什么要是素数,因为如果乘上一个合数,我们知道合数一定可以被分解成几个素数相乘的结果,如果乘上的这个合数x=p1*p2*……,那么t = i * x = i * p1 * p2……很显然p1* i也是一个因数,而且大于i。
用MATLAB筛选法求解素数

用MATLAB筛选法求解素数用MATLAB筛选法求解素数1. 引言素数在数论中扮演了重要的角色,它们不仅具有理论上的重要性,还在实际生活中有着广泛的应用。
在本文中,我们将介绍一种使用MATLAB编程语言进行素数筛选的方法。
通过这种方法,我们可以快速有效地找到给定范围内的所有素数,并加深对素数的理解。
2. 素数的定义和性质素数是指只能被1和自身整除的整数。
2、3、5、7、11等都是素数。
素数具有以下性质:- 素数只有两个正因子: 1和自身。
- 素数大于1。
- 除了2以外,其他素数都是奇数。
3. 筛选法基本原理筛选法是一种用于找出一定范围内所有素数的有效方法。
其中最著名的算法是埃拉托色尼筛法(Sieve of Eratosthenes)。
该方法的基本原理如下:- 我们创建一个长度为N的初始素数表,其中所有元素均为1(表示为True)。
- 我们从2开始,将2的所有倍数标记为非素数(表示为False)。
- 再从3开始,将3的所有倍数标记为非素数。
依此类推,直到遍历完范围内的所有数。
- 初始素数表中为True的数即为素数。
- 筛选法的时间复杂度约为O(n log(log n))。
4. MATLAB代码实现下面是使用MATLAB实现筛选法的代码:```matlabfunction primes = sieveOfEratosthenes(n)primes = logical(ones(1, n)); % 创建初始素数表并初始化为1(True)primes(1) = false; % 将1标记为非素数for i = 2:sqrt(n)if primes(i) == trueprimes(i*i:i:n) = false; % 将i的所有倍数标记为非素数endendprimes = find(primes); % 提取所有素数的索引end```5. 代码解释上述代码中,我们定义了一个名为`sieveOfEratosthenes`的函数,它接受一个参数n作为筛选范围,返回一个包含所有素数的向量。
素数的算法原理和应用

素数的算法原理和应用概述素数是指只能被1和自身整除的正整数。
素数在密码学、计算机科学和数学研究等领域具有重要的应用。
本文将介绍素数的算法原理以及在实际应用中的一些常见场景。
素数的判断算法判断一个数是否为素数是素数算法的基础。
常用的素数判定算法有两种:试除法和素数筛法。
试除法试除法是最简单直观的素数判定方法。
对于一个待判断的正整数n,只需从2开始遍历到sqrt(n)(即n的平方根)的整数m,检查是否有任何m能整除n。
若能找到能整除n的m,则n不是素数;否则,n是素数。
试除法的时间复杂度为O(sqrt(n)),适用于判断大部分整数是否是素数。
然而,对于非常大的数,这种方法的效率较低。
素数筛法素数筛法通过筛选法来判断素数。
其中最常用的是埃拉托斯特尼筛法。
首先,生成一个长度为n+1的布尔类型数组,将其初始值都设为true。
然后从2开始遍历到sqrt(n)的整数m,在数组中将2的倍数、3的倍数、4的倍数…全部标记为false。
最后,数组中值为true的索引对应的数就是素数。
素数筛法的时间复杂度为O(nloglogn),虽然比试除法高效,但由于需要生成一个长度为n+1的数组,对于非常庞大的数,也存在一定的限制。
素数的应用素数在密码学、计算机科学和数学研究等领域有广泛的应用。
以下是一些常见的素数应用场景。
密码学中的应用素数在密码学中起到至关重要的作用,特别是在公钥密码学中。
其中一个常见的应用是RSA加密算法。
在RSA算法中,首先需要生成两个大素数p和q,然后计算它们的乘积n=p*q。
n被用作加密和解密过程中的模数,而p和q用于生成公钥和私钥。
素数的随机性应用素数的随机分布属性使其成为生成随机数的重要组成部分。
例如,质数的随机分布性质被广泛应用在随机数生成算法中,确保生成的随机数能够满足安全性和随机性的要求。
整数因子分解素数在整数因子分解中也有重要应用。
由于素数只能被1和自身整除,因此在将一个大数分解成其因子时,可以使用素数的概念来加快计算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
initial+=2*(step+1)
if initial>half:
return[2]+filter(None,numbers)
begin
sieve[newp]:=false;
newp:=newp+i;//每次取出这个数的倍数
end;
end;
1,C++实现:
#include <iostream>
using namespace std;
void FilterPrime(int n)
{
bool* isPrimes = new bool[n+1];
}
}
}
for(int k=2;k<=n;++k)
{
if(isPrimes[k]==true)
{
cout<<k<<"是素数"<<endl;
}
}
delete [] isPrimes;
}
int main()
{
int num;
cin>>num;
FilterPrime(num);
system("pause");
{
if(Location[i]!=0)
{
cout<<Location[i]<<" ";
++m;
}
if(m%10==0) cout<<endl;
}
cout<<endl<<m<<endl;
return 0;
}
该代码在Visual Studio 2010环境下测试通过。
以上两种算法在小数据下速度几乎相同。
void set(bool IsPrime[])
{
int i,j;
for(i=0;i<=range;++i)
IsPrime[i]=true;
IsPrime[0]=IsPrime[1]=false;
for(i=2;i<=range;++i)
{
if(IsPrime[i])
{
for(j=2*i;j<=range;j+=i)
因为每个非质数都只被删除一次,可想而知,这个程序的速度一定相当快。依据Gries与Misra的文章,线性的时间,也就是与N成正比的时间就足够了(此时要找出2N的质数)。(摘自《C语言名题精选百则(技巧篇)》,冼镜光编著,机械工业出版社,2005年7月第一版第一次印刷)。代码如下:
#include<iostream>
return 0;
}
2,python实现:
def sundaram3(max_n):
numbers=range(3,max_n+1,2)
half=(max_n)//2
initial=4
for step in xrange(3,max_n+1,2):
for i in xrange(initial,half,step):
end=sqrt((double)N)+1;
for(p=2;p!=end;++p)
{
if(Location[p])
{
for(q=p;p*q<=N;++q)
{
if(Location[q])
{
for(int k=p*q;k<=N;k*=p)
Location[k]=0;
}
}
}
}
int m=0;
for(int i=1;i!=N+1;++i)
pascal实现:
maxfactor:=trunc(sqrt(maxp));//筛法求素数
fillchar(sieve,sizeof(sieve),true);
for i:=2 to maxfactor do
if sieve[i] then
begin
newp:=i+i;
while newp<=maxp do
IsPrime[j]=false;
}
}
}
2、
说明:解决这个问题的诀窍是如何安排删除的次序,使得每一个非质数都只被删除一次。中学时学过一个因式分解定理,他说任何一个非质(合)数都可以分解成质数的连乘积。例如,16=4^2,18=2 * 3^2,691488=2^5 * 3^2 * 7^4等。如果把因式分解中最小质数写在最左边,有16=4^2,18=2*9,691488=2^5 * 21609,;换句话说,把合数N写成N=p^k * q,此时q当然是大于p的,因为p是因式分解中最小的质数。由于因式分解的唯一性,任何一个合数N,写成N=p^k * q;的方式也是唯一的。由于q>=p的关系,因此在删除非质数时,如果已知p是质数,可以先删除P^2,p^3,p^4,...,再删除pq,p^2*q,p^3*q,...,(q是比p大而没有被删除的数),一直到pq>N为止。
2 3 5 7 11 13 17 19 23 29
C语言实现
1、算法一:令A为素数,则A*N(N>1;N为自然数)都不是素数。
#define range 2000
bool IsPrime[range+1];
//set函数确定i是否为素数,结果储存在IsPrime[i]中,此函数在DEV C++中测试通过
for(int i=2;i<=n;++i)
{
isPrimes[i] = true;
}
isPrimes[2] = true;
for(int j=2;j<=n;++j)
{
if(isPrimes[j]==true)
{
for(int m=2;j*m<=n;++m)
{
isPrimes[j*m] = false;
#include<cmath>
using namespace std;
int main()
{
int N; cin>>N;
int *Location=new int[N+1];
for(int i=0;i!=N+1;++i)
Location[i]=i;
Location[1]=0; //筛除部分int p,q,end;
筛法求素数
基本思想
C语言实现
pascal实现:
1C++实现:
2python实现:
基本思想
用筛法求素数的基本思想是:把从1开始的、某一范围内的正整数从小到大顺序排列,1不是素数,首先把它筛掉。剩下的数中选择最小的数是素数,然后去掉它的倍数。依次类推,直到筛子为空时结束。如有:
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
1不是素数,去掉。剩下的数中2最小 11 13 15 17 19 21 23 25 27 29
剩下的数中3最小,是素数,去掉3的倍数,如此下去直到所有的数都被筛完,求出的素数为: