生物化学期末复习资料:生化 小结
生化知识点重点总结

生化知识点重点总结1. 生物大分子:生体内的大分子主要包括蛋白质、核酸、多糖和脂质等。
蛋白质是生物体内最重要的大分子之一,它具有结构和功能多样性;核酸是DNA和RNA的总称,它携带了生物体的遗传信息;多糖是由许多单糖分子聚合而成,主要包括淀粉、糖原和纤维素等;脂质是生物体内比较复杂的一类大分子,包括脂肪、磷脂和皂质等。
2. 蛋白质的结构和功能:蛋白质是生物体内最重要的大分子之一。
它的结构可以分为一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶作用、结构作用、传递作用和免疫作用等。
3. 核酸的结构和功能:核酸是DNA和RNA的总称,它携带了生物体的遗传信息。
DNA是双链结构,RNA是单链结构。
核酸的功能主要包括遗传信息的传递和蛋白质合成等。
4. 多糖的结构和功能:多糖是由许多单糖分子聚合而成。
它主要包括淀粉、糖原和纤维素。
多糖的功能包括能量储备和结构支持等。
5. 脂质的结构和功能:脂质是生物体内比较复杂的一类大分子,包括脂肪、磷脂和皂质等。
脂质的功能包括能量储备、结构支持和传递信号等。
6. 细胞膜的结构和功能:细胞膜是细胞的外层膜。
它主要由脂质分子和蛋白质分子构成。
细胞膜的功能包括细胞的结构支持、物质的进出和信号的传递等。
7. 酶的性质和作用:酶是生物体内的一类特殊蛋白质,它在生物体内具有催化作用。
酶的作用包括降低反应活化能、增加反应速率和特异性催化等。
8. 代谢途径:代谢是生物体内的一系列化学反应过程。
代谢途径主要包括糖代谢、脂质代谢、核酸代谢和蛋白质代谢等。
9. 能量的利用和储存:能量是维持生命活动的重要物质基础。
生物体内的能量主要通过ATP和NADH等化合物来储存和利用。
10. 酶的调控:酶的活性受到多种因素的调控,包括底物浓度、温度、pH值和酶的抑制剂等。
11. 免疫系统:免疫系统是生物体内的一套防御系统,它包括天然免疫和获得性免疫两个部分。
12. 体内环境平衡:体内的环境平衡主要包括细胞内外离子平衡、酸碱平衡和渗透压平衡等。
生化小结(完整版)

生化小结(完整版)生化小结绪论一. 生物化学的定义:生物化学即生命的化学,主要应用化学的理论和方法研究生命现象、从分子水平阐明生命现象的本质。
二. 生物化学发展史:①构成生物机体的物质基础(静态生化阶段)②研究生命物质在生物体内运动规律(动态生化阶段)③遗传信息传递、调控与生物大分子结构功能(分子生物学阶段)第一章蛋白质的结构与功能一.蛋白质(Protein):由20种氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物。
二.蛋白质的生物学重要性:1.蛋白质是生物体重要组成成分(分布广,含量高)。
2.蛋白质具有重要的生物学功能(作为生物催化剂、代谢调节作用、免疫保护作用、物质的转运和存储、运动与支持作用、参与细胞间信息传递)。
3.氧化供能三.蛋白质组成元素:主要有C、H、O、N和S。
各种蛋白质的含氮量很接近,平均为16%。
四.组成人体蛋白质的20种氨基酸均属于L-α-氨基酸。
五.氨基酸可根据侧链结构和理化性质进行分类(非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸)。
六.20种氨基酸具有共同或特异的理化性质1.氨基酸具有两性解离的性质(氨基酸呈电中性时溶液的pH值称为该氨基酸的等电点)。
2.含共轭双键的氨基酸具有紫外吸收性质(测定蛋白质溶液280nm的光吸收值)。
3.氨基酸与茚三酮反应生成蓝紫色化合物。
七.蛋白质是由许多氨基酸残基组成的多肽链(肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键)。
八.蛋白质的分子结构:1.一级结构:蛋白质分子从N-端至C-端的氨基酸排列顺序,是蛋白质空间构象和特异生物学功能的基础,一级结构相似的蛋白质具有相似的高级结构与功能。
(主要化学键:肽键,有些蛋白质还包括二硫键)。
2.二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
生化组期末总结

生化组期末总结一、学习内容回顾本学期,我们主要学习了以下几个方面的内容:1. 生物大分子的结构和功能:我们学习了蛋白质、核酸、多糖和脂质等生物大分子的结构组成、生理功能及其与生态系统的关系。
通过学习,我们进一步了解了生命体的基本组成,以及生物大分子在维持生命活动中的重要作用。
2. 酶与酶促反应:我们学习了酶的结构、分类、催化原理及其在生态系统中的作用。
通过学习,我们深入理解了酶对生物体代谢过程的调控作用,以及酶在环境污染治理与修复中的应用。
3. 基因与遗传:我们学习了DNA的结构和复制、转录、翻译等过程,以及基因突变和基因表达调控等遗传学基本概念。
通过学习,我们了解了基因与遗传对生态系统中个体及种群遗传多样性和适应性的重要作用,以及基因工程在生态系统保护和资源利用中的应用。
4. 能量与物质代谢:我们学习了生物体内能量和物质的转化和代谢过程,包括糖、脂肪和蛋白质等的降解和合成。
通过学习,我们了解了生物体内能量和物质的流动与循环,以及生态系统中能量和物质的流动格局和效率。
5. 免疫与免疫调控:我们学习了免疫系统的基本原理、机制和免疫调控的分子基础。
通过学习,我们了解了免疫系统在生态适应、疾病防御和抗生物污染中的重要作用,以及生物技术在免疫调控中的应用。
二、所学知识总结与思考通过本学期的学习,我对生物化学有了更深入的认识和理解,也认识到生化与生态研究的重要性。
以下是我对所学知识的总结与思考:1. 生物大分子与生态系统:生态学的研究对象是生物与环境之间的相互关系,而生物大分子是生物体与环境之间信息传递和物质转化的基础。
蛋白质、核酸、多糖和脂质等生物大分子在生命体内具有多样的结构和功能,对能量和物质的流动与转化具有重要调控作用。
例如,蛋白质通过催化酶反应调控代谢过程;核酸通过遗传信息的传递和表达调控遗传变异和适应性;多糖和脂质通过构成细胞膜和存储能量等方式调控生物体对外界环境的响应。
生物大分子与生态系统之间的相互作用是生态学研究的重要内容。
生化背诵知识点总结

生化背诵知识点总结生物化学是生物学的重要分支,研究生物各种生物分子的结构、性质、合成、降解以及能量转换等方面的科学。
在生命科学领域,生化背诵知识点是非常重要的,本文将对生化背诵知识点进行总结,希望对大家的学习有所帮助。
一、氨基酸与蛋白质1. 氨基酸的结构氨基酸是蛋白质的基本组成单位,分为20种,其中9种为必需氨基酸。
氨基酸的共同结构为:羧基(-COOH)、氨基(-NH2)、α-碳原子(-C)和一个侧链(-R)。
氨基酸可以根据侧链的性质分为极性氨基酸和非极性氨基酸。
2. 氨基酸的分类根据侧链的性质,氨基酸可以分为极性氨基酸、非极性氨基酸、酸性氨基酸和碱性氨基酸。
极性氨基酸包括赖氨酸、色氨酸、组氨酸、天冬氨酸、精氨酸和丝氨酸等;非极性氨基酸包括丙氨酸、甲硫氨酸、异亮氨酸、缬氨酸和脯氨酸等。
3. 蛋白质的结构蛋白质是由氨基酸通过肽键连接而成的巨大分子,可以分为一级结构、二级结构、三级结构和四级结构。
一级结构是指氨基酸的线性排列;二级结构是指氨基酸的局部结构,包括α-螺旋、β-折叠和无规则卷曲;三级结构是指整个蛋白质的立体构象,包括超级螺旋、反平行和平行β-折叠;四级结构是多个亚基蛋白质之间的组合。
4. 氨基酸代谢氨基酸代谢包括氨基酸的降解与合成。
氨基酸的降解主要发生在肝脏中,通过转氨基酶的作用将氨基酸转化为α-酮酸和氨基基团,然后氨基基团通过尿素循环转化为尿素排出体外。
氨基酸的合成主要发生在细胞质内,通过氨基酸合成酶的催化将α-酮酸转化为氨基酸。
5. 氨基酸的同化和异化氨基酸的同化是指将氨基酸转化为体内蛋白质的过程,主要发生在肝脏和肌肉组织中;氨基酸的异化是指氨基酸被降解为能量和二氧化碳的过程,主要发生在肝脏和肾上腺皮质中。
二、糖与糖代谢1. 单糖的结构单糖主要包括葡萄糖、果糖、半乳糖和核糖等,它们的共同结构为Cn(H2O)n,并且具有醛基或酮基。
其中,葡萄糖和果糖是生物体内最常见的单糖,葡萄糖是葡萄糖醇的高级物质。
生化知识点总结大全

生化知识点总结大全生物化学是研究生物分子、细胞和组织等生物学基本单位在化学层面上的结构、功能和相互关系的一门学科。
生物化学知识的掌握对于理解生物体内各种生理过程以及疾病的发生、发展和治疗都具有重要意义。
下面将对生化知识点进行总结,包括生物大分子、酶和代谢、细胞信号传导、遗传信息的传递和表达等内容。
一、生物大分子1. 蛋白质蛋白质是由氨基酸组成的大分子,是生物体内最重要的大分子之一。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,分别代表了氨基酸序列、局部结构、全局结构和蛋白质的组装形式。
蛋白质在生物体内担任着结构、酶、携氧等多种重要功能。
2. 核酸核酸是构成生物体遗传信息的重要大分子。
核酸包括DNA和RNA两类,其中DNA是生物体内遗传信息的主要携带者,而RNA则参与了蛋白质的合成过程。
核酸的结构包括磷酸、核糖和碱基,它们通过磷酸二酯键相连而形成长链状结构。
3. 脂类脂类是一类绝缘性物质,其分子结构包含甘油酯和磷脂,具有水、油双亲性,是细胞膜的主要构成成分。
脂类还包括胆固醇和脂蛋白,它们在人体内参与了能量储存、细胞膜形成、传递体内信息等多种生理活动。
二、酶和代谢1. 酶的分类和特性酶是一类生物催化剂,可以加速生物体内的化学反应。
酶根据其作用的基质可以分为氧化还原酶、水解酶、转移酶等多种类型;根据作用反应的特点还可以分为氧化酶、脱氢酶、水合酶等。
酶的活性受到PH值、温度、离子浓度等因素的影响。
2. 代谢途径代谢是生物体维持生命活动所必需的化学反应过程,包括物质的合成、降解和转化等步骤。
常见的代谢途径包括糖酵解、三羧酸循环、氧化磷酸化等。
这些代谢途径通过调控酶的活性来维持生物体内各种代谢物质的平衡。
三、细胞信号传导1. 受体的结构和功能受体是细胞膜上的一类蛋白质,可以感知外界信号并将其转化为细胞内信号传导的起始物质。
受体的结构包括外部配体结合区、跨膜区和细胞内信号传递区,它可以通过配体结合激活下游信号分子,从而引发细胞内的生理反应。
生化期末考点总结

生化期末考点总结一、细胞结构和功能1、细胞膜:结构、组成及功能2、细胞核:构造、功能及DNA复制3、内质网:构造、功能及蛋白质合成4、高尔基体:构造、功能及糖基化修饰5、线粒体:构造、功能及能量产生6、溶酶体:构造、功能及消化7、细胞骨架:结构、功能及细胞运动二、维持能量平衡和能量限制1、糖酵解:反应及能量转化2、糖异生:途径及调节3、脂肪酸代谢:氧化与合成4、蛋白质代谢:氨基酸转化及尿素循环5、异氟醚酶:构成及功能6、线粒体呼吸链:构成、功能及调节7、光合作用:反应、产物及调节8、ATP合成:制备、机制及调节三、生物分子的结构和功能1、蛋白质结构:一级到四级结构2、核酸结构:DNA及RNA的结构3、糖类结构:单糖、双糖和多糖的结构4、脂类结构:脂肪酸和甘油的结构5、氨基酸:结构、分类及性质6、核苷酸:结构、分类及性质7、酶:类别、性质及酶促反应四、细胞信号传导的机制1、受体:分类及激活机制2、信号途径:蛋白质激酶途径、信号转导蛋白途径3、细胞周期:G1期、S期、G2期、有丝分裂4、细胞凋亡:发生机制及调节五、细胞生长和分裂1、细胞分子的生长:DNA复制、RNA合成和蛋白质合成2、细胞周期的控制:启动子和抑制子3、有丝分裂的过程:纺锤体的形成、染色体的复制4、错应变和癌症:突变、DNA修复和癌细胞的特点六、免疫1、免疫系统的组成:淋巴细胞、抗原和抗体2、免疫应答的机制:细胞免疫和体液免疫3、炎症和免疫调节:炎症的发生和免疫调节剂的作用4、自身免疫病:自身抗原和免疫系统的疾病以上是生物化学期末考点的总结,希望对大家复习有所帮助。
祝各位考试顺利!。
生化知识点总结

生化知识点总结一、蛋白质结构与功能。
1. 氨基酸。
- 结构特点:氨基酸是蛋白质的基本组成单位,具有共同的结构通式,即中心碳原子连接一个氨基、一个羧基、一个氢原子和一个侧链基团(R基)。
不同的氨基酸R 基不同,这决定了氨基酸的性质差异。
- 分类:根据R基的化学结构可分为脂肪族氨基酸、芳香族氨基酸、杂环族氨基酸等;根据R基的极性可分为非极性氨基酸、极性中性氨基酸、酸性氨基酸和碱性氨基酸。
- 理化性质:- 两性解离:氨基酸分子中既含有酸性的羧基,又含有碱性的氨基,在不同的pH 溶液中可发生两性解离,当溶液pH等于其等电点(pI)时,氨基酸呈电中性。
- 紫外吸收:色氨酸、酪氨酸在280nm波长附近有最大紫外吸收峰,可用于蛋白质的定量分析。
2. 蛋白质的一级结构。
- 定义:蛋白质的一级结构是指多肽链中氨基酸的排列顺序。
主要化学键为肽键,有些蛋白质还包括二硫键。
- 意义:一级结构是蛋白质空间构象和特异生物学功能的基础。
例如,镰刀型红细胞贫血病就是由于β - 球蛋白N端第6个氨基酸残基由正常的谷氨酸被缬氨酸取代,导致蛋白质的一级结构改变,进而引起其空间结构和功能的异常。
3. 蛋白质的二级结构。
- 定义:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。
- 主要形式:- α - 螺旋:多肽链主链围绕中心轴呈有规律的螺旋式上升,每3.6个氨基酸残基螺旋上升一圈,螺距为0.54nm。
其稳定因素是每个肽键的N - H和第四个肽键的C=O形成的氢键。
- β - 折叠:多肽链充分伸展,相邻肽段之间折叠成锯齿状结构,靠链间氢键维系。
可分为平行式和反平行式β - 折叠。
- β - 转角:常发生于肽链进行180°回折的转角处,由4个氨基酸残基组成,第二个残基常为脯氨酸。
- 无规卷曲:没有确定规律性的肽链结构。
4. 蛋白质的三级结构。
- 定义:整条多肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
生化复习知识点总结

第一章、蛋白质的结构与功能1、主要元素:C、H、O、N、S(P7)2、定氮法:样品中含蛋白质克数=样品的含氮克数×6.253、肽键:肽键是由一个氨基酸α-羟基与另一个氨基酸的α-氨基脱水缩全面行成的化学键,是蛋白质分子中的主要共价键,性质比较稳定。
(P11)4、肽:肽是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。
10个以下氨基酸组成成寡肽,10个以上氨基酸组成称多肽。
(P11)5、多肽和蛋白质分子中的氨基酸均称为氨基酸残基。
具有特殊的生理功能的肽称为活性肽。
(P11)6、蛋白质一级结构:指多肽链中氨基酸(残基)从N端到C端的排列顺序,即氨基酸序列。
主要化学键为肽键。
(P12)7、蛋白质二级结构:指多肽链中相邻氨基酸残基的局部肽链空间结构,是其主链原子的局部空间排布。
主要化学键为氢键。
(P13)8、蛋白质三级结构:指整条多肽链中所有氨基酸残基,包括主链和侧链在内所形成的空间结构。
主要化学键为疏水键。
(P15)9、结构域:分子量大的蛋白质分子由于多肽链上相邻的超二级结构紧密联系,形成多个相对独特并承担不同生物学功能的超三级结构。
(P16)10、蛋白质四级结构:指各具独立三级结构多肽链以各种特定形式接触排布后,结集在此蛋白质最高层次空间结构。
在此空间结构中,各具独立三级结构的多肽链称亚基。
主要化学键为疏水键,氢键,离子键。
(P16)第三章、酶1、同工酶:指催化的化学反应相同,但酶蛋白的分子结构、理化性质及免疫化学特性不同的一组酶。
亚基:骨骼肌形和心肌形。
组成的五种同工酶:LDH1(H4)、LDH2(H3M)、LDH3(H2M4)、LDH4(HM3)、LDH5(M5)。
(P40)2、酶促反应的特点:催化性、特异性、不稳定性、调节性。
(P41)第五章、糖代谢1、糖酵解反应的特点:在无氧条件下发生的不完全的氧化分解反应,整个过程均在胞质中完成,无需氧的参与,终产物是乳酸;反应中适放能量较少,一分子葡萄糖可净生成二分子ATP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
by——Shawn
a
by——Shawn
糖酵解小结
⑴glycolysis:在缺氧条件下,葡萄糖分解生成乳酸并 释放能量的过程。 glycolytic pathway:葡氧的产能过程,二个阶段,共10
步反应: • 耗能阶段:前五步反应(二步耗能) • 产能阶段:后五步反应(二步产能) • 方式:底物水平磷酸化
真核与原核生物蛋白质合成的异同:
相同点:
遗传密码相同 组分相似:核糖体,tRNA,各种蛋白质因子 合成途径相似
不同点:
(见下表)
a
by——Shawn
原核
mRNA
多顺反子(polycistron) 无“帽、尾”结构,
5’起动信号上游有SD序列
核糖体
30S+50S=70S
起始AA
fMet-tRNAfMet
➢ 氨基酸的一般代谢:脱氨基的方式、 -酮酸的代谢; ➢ 氨的代谢:氨的来源与去路、氨的转运、尿素的生成;
➢ 个别氨基酸代谢:
一碳单位:概念、种类、载体、生理功能;
蛋氨酸代谢:SAM、蛋氨酸循环; 硫酸根代谢:PAPS
苯丙氨酸、酪氨酸代谢:儿茶酚胺和黑色素的生成
a
by——Shawn
a
by——Shawn
释放入血,进入肝脏再进一步代谢。 分解利用; 乳酸循环(糖异生)
a
by——Shawn
糖酵解小结
1、部位:细胞液 2、 2步脱氢,产出2个NADPH 3、六碳糖酸直接脱羧生成CO2 4、关键酶:6磷酸葡萄糖脱氢酶I 5、意义 (1)生成磷酸核糖:提供核酸合成原料 (2)生成NADPH:供代谢合成所需还原当量
❖ 递氢体同时也是递电子体
1、呼吸链的组成成分(主要有5类) (1)NAD+和NADP+为辅酶的脱氢酶:递氢体 (2)黄素酶(黄素蛋白,辅酶为FAD或FMN):递氢体 (3)铁硫蛋白(含有Fe-S):递电子体 (4)泛醌(辅酶Q):递氢体 (5)细胞色素体系:递电子体 • 呼吸链细胞色素体系:cytaa3、b、c1、c
内含子 intron
转录泡 transcription bubble
单顺反子 monocistronic mRNA
多顺反子 polycistronic mRNA
a
by——Shawn
真核生物与原核生物转录特点的比较
模板DNA
原核生物 启动子
真核生物 启动子+增强子+静息子
RNA聚合酶
1种,α2ββ’ωσ
维持红细胞功能 供生物转化所需还原当量 (3)连接3C、4C、5C、6C、7C
a
by——Shaw7n
糖原分解小结
1、部位:细胞液
2、关键酶:糖原磷酸化酶
➢糖原磷酸化酶磷酸化后激活
3、肌肉组织缺少葡萄糖6磷酸酶,故肌糖原不 能补充血糖
4、意义
(1)肌糖原供能
(2)肝糖原维持血糖 a
by——Shaw8n
己糖激酶:不受ATP/AMP的调节 激活剂:2,6-二磷酸果糖,
磷酸果糖激酶1(限速酶)
1,6-二磷酸果糖(正反馈) 抑制剂:柠檬酸,ATP/AMP
丙酮酸激酶:受ATP/AMP的抑制a
by——Shawn
(5)一步脱氢,生成1分子NADH • NADH的利用:无氧时,用于还原丙酮酸
生成乳酸;有氧时,用于生成ATP(1.5或 2.5个ATP/NADH) (6) 终产物乳酸的去路
IF、EF 及RF
IF 3种 EF-Tu、EF-Ts、EF-G
RF1、RF2、RF3
转录与翻译
转录翻译偶联
的关系
(几乎同时进行)
抑制剂
抗生素
a
真核
单顺反子(monocistron) 有“帽、尾”结构 无SD序列
40S+60S=80S
Met-tRNAiMet eIF 10多种 eEF1、eEF2
eRF 不偶联(分隔进行)
③ 双重调节:别构调节和共价修饰调节。
④ 关键酶调节上存在级联效应。
⑤ 肝糖原和肌糖原代谢调节各有特点:
如:分解肝糖原的激素主要为胰高血糖素,
分解肌糖原的激素主要为肾上腺素。
a
by——Sha1w0n
糖异生小
结 糖异生(Gluconeogenesis):非糖物质转变为葡萄糖或糖原的
过程
1、部位:线粒体,细胞液
7、进行生物氧化反应的部位 (1)线粒体 (2)内质网、过氧化物酶体等
8、生理意义:供给机体能量,转化有害废物。
a
by——Shawn
小结
❖ 由递氢体或递电子体在线粒体内膜上按一定顺序排列组成的连 锁反应体系称为电子传递链(electron transfer chain)。它与细 胞摄取氧的呼吸过程相关,故又称呼吸链(respiratory chain)
生化小结
——by Shawn
蛋白质的化学 糖代谢
氨基酸代谢 核苷酸代谢 RNA合成 细胞信号传导 肝脏化学
a
by——Shawn
维生素与维辅生酶素的与关辅系酶的关系
1. 维生素A的活性形式是顺视黄醛 2. 维生素D的活性形式是l,25-(OH)2-D3 3. 维生素B1活性形式是TPP 4. 维生素B2的活性形式是FMN和FAD 5. 维生素PP的活性形式NAD+和NADP+ 6. 维生素B6的活性形式是磷酸吡哆醛和磷酸吡哆胺 7. 四氢叶酸(FH4)是一碳单位转移酶的辅酶
本章重点
➢ 三类RNA在蛋白质合成中的作用 ➢ 遗传密码
概念、特点 ➢ 蛋白质合成过程
氨基酸的活化与转运 核糖体循环 真核与原核合成过程的异同 ➢ 蛋白质合成后加工 ➢ 复制、转录、翻译的异同
a
by——Shawn
真核生物蛋白质合成的特点Characteristics
of Protein Synthesis in Eukaryotes
净生成ATP数量:从G开始 2×2-2= 2ATP
从Gn开始 2×2-1= 3ATP • 高能化合物:1,3-二磷酸甘a 油酸,磷酸烯醇式by丙——酮Sha酸wn 。
(4) 反应全过程中有三步不可逆的反应
G F-6-P
PEP
ATP
ADP
己糖激酶
ATP
ADP
磷酸果糖激酶-1
ADP
ATP
丙酮酸激酶
G-6-P F-1,6-2P 丙酮酸
➢ 脱氧胸腺嘧啶核苷酸的生成
➢ 抗代谢物
作用机理
➢ 分解代谢
产物
a
by——Shawn
a
by——Shawn
本章重点
➢ 物质代谢的特点及相互联系 ➢ 物质代谢细胞水平的调节
变构调节(概念、特点) 化学修饰(概念、特点) ➢ 以饥饿为例说明机体物质代谢的整体调节
a
by——Shawn
a
by——Shawn
糖原合成小结
1、部位:细胞液 2、关键酶:糖原合酶 ➢糖原合酶磷酸化后失活 3、活性葡萄糖:UDPG 4、意义 (1)储存能量 (2)维持血糖
a
by——Shaw9n
调节小结
① 关键酶都以活性、无(低)活性二种形式存 在,二种形式之间可通过磷酸化和去磷酸化 而相互转变。
② 双向调控:对合成酶系与分解酶系分别进行 调节,如加强合成则减弱分解,或反之。
思考题
简述中心法则内容 简述参与DNA复制的酶和蛋白质因子,以及其
在复制中的作用。 比较真核和原核生物DNA复制异同点。 何为逆转录?讨论RNA病毒致癌的分子过程。
a
by——Shawn
a
by——Shawn
本章重点
➢ 转录体系
模板、原料、方向、方式、 RNA聚合酶(原核、真核)
➢ 转录过程
a
by——Shawn
小结
❖ 1、氧化磷酸化ATP的生成
❖ ATP合酶复合体是ATP合成的场所。
❖ 氧化磷酸化后,NADH=2.5个ATP,FADH2=1.5个ATP ❖ 2、化学渗透假说的要点:
(1)H+不能自由通透线粒体内膜;
(2)线粒体内膜的电子传递链中的复合物Ⅰ,Ⅲ,Ⅳ具 有质子泵的功能,可利用递氢体与递电子体之间电子传
(2)解偶联剂:使氧化磷酸化脱离
➢ 2,4二硝基苯酚(DNP):破坏H+梯度 (3)ATP合酶抑制剂:抑制ADP的磷酸化和电子传递 ➢ 寡霉素 :破坏H+回流
a
by——Shawn
小结
❖ 1、-磷酸甘油穿梭 ❖ 部位:脑、骨骼肌 ❖ 磷酸甘油脱氢酶(FAD) ❖ 能量生成:1.5个ATP 2、苹果酸-天冬氨酸穿梭 ➢ 部位:肝、心肌 ➢ 催化酶:苹果酸脱氢酶(NAD+)、谷草转氨酶
本章重点
嘌呤核苷酸代谢
➢ 从头合成
元素来源、原料、关键酶、重要中间产物、调节
➢ 补救合成
意义
➢ 脱氧核苷酸的生成( NDP dNDP)
➢ 抗代谢物
作用机理
➢ 分解代谢
产物(尿酸)、痛风症、痛风症的治疗 a
by——Shawn
嘧啶核苷酸代谢
➢ 从头合成
元素来源、原料、关键酶、重要中间产物、调节
➢ 两种氨基甲酰磷酸合成酶的比较
a
by——Shaw11n
血糖调节小结
1、正常血糖水平:80~120mg/dl (3.89~6.11mM) 2、调节血糖的激素:主要调节因素为胰高血糖素/胰
岛素 • 胰岛素:降低血糖 • 胰高血糖素、肾上腺素、糖皮质激素:升高血糖 4、糖耐量:人体能够耐受葡萄糖的最高浓度 5、血糖异常疾病:高血糖(糖尿病)、低血糖
a
by——Shawn
a
by——Shawn
小结
1、细胞内条件温和 (水溶液,pH7 ,恒温 ) 2、酶促分步进行。有利于温和释放能量,提高利用率。 3、氧化与还原相伴进行 4、碳的氧化和氢的氧化非同步进行。氢和电子由各种载体 传递到氧并生成水;有机酸脱羧生成CO2 5、间接供氧更普遍 6 、能量逐步释放,并通过与ATP合成相偶联,转换成生物 体能够直接利用的生物能。