双折射现象
双折射_实验报告

一、实验目的1. 理解双折射现象,掌握双折射实验的基本原理和操作方法。
2. 学习利用尼科尔棱镜观察双折射现象,观察和分析不同物质的折射率。
3. 理解光的偏振现象,掌握布儒斯特定律。
二、实验原理1. 双折射现象:当一束光线入射到各向异性介质(如晶体)时,光线在介质中传播方向会发生改变,形成两束折射光线,这种现象称为双折射现象。
2. 尼科尔棱镜:尼科尔棱镜是一种特殊的偏振片,其作用是使一束非偏振光分解为两束相互垂直的偏振光。
3. 布儒斯特定律:当一束光线入射到介质表面时,若入射角等于布儒斯特角,则反射光为完全偏振光。
三、实验器材1. 尼科尔棱镜2. 双折射晶体(如方解石)3. 平行光管4. 光具座5. 量角器6. 毛玻璃7. 铅笔8. 记录纸四、实验步骤1. 将平行光管置于光具座上,调整光源,使光束平行。
2. 将双折射晶体放置在平行光管的光路上,调整晶体位置,使光束穿过晶体。
3. 在晶体后面放置尼科尔棱镜,调整尼科尔棱镜,使晶体出射的光束通过棱镜。
4. 观察光束在尼科尔棱镜后面的现象,记录观察结果。
5. 改变入射角,重复步骤4,观察不同入射角下的现象。
6. 记录观察结果,包括光束在尼科尔棱镜后面的现象、入射角、反射光和折射光的情况。
7. 利用布儒斯特定律,计算晶体的折射率。
五、实验数据及结果1. 观察结果:入射角/度尼科尔棱镜后面的现象0 光束穿过晶体后无变化30 光束穿过晶体后变为两束光线45 光束穿过晶体后变为两束相互垂直的光线60 光束穿过晶体后变为两束光线,其中一束光线在晶体内部发生偏振90 光束穿过晶体后变为两束光线,其中一束光线在晶体内部发生偏振2. 计算折射率:根据布儒斯特定律,入射角等于布儒斯特角时,反射光为完全偏振光。
设入射角为θB,折射率为n,则有tanθB = n。
由观察结果可知,当入射角为45度时,光束穿过晶体后变为两束相互垂直的光线,此时入射角等于布儒斯特角。
因此,n = tan45° = 1。
晶体的双折射现象讲解

正晶体
v0 ve
负晶体
v0 ve
几点说明:
1、以上讨论的是自然光入射情形,双折射总是存在的;
2、若入射的光是线偏振光,当偏振方向垂直入射面,则 在晶体中只能引起o光的次波波面,折射光只有o光;
3、若入射的光是线偏振光,当偏振方向在入射面内,则 在晶体中只能引起e光的次波波面,折射光只有e光;
单轴晶体中的波面——惠更斯假设
e光:
o
no
c
o
e
ne
c
e
n0 ,ne称为晶体的主折射率
正晶体 : ne> no (ve< vo)
负晶体 : ne< no (ve > vo)
光轴 vet
vot 子波源
光轴
vot vet
子波源
正晶体 (vo > ve)
负晶体 (vo < ve )
位相差 作为补偿,目的是使 与入,的总和等于o
或 。
入 附 补 0或
(2、巴俾涅补偿器
由两块光轴互相垂直的楔形石英组成,上楔中o光进入下 楔,变为e光;……
2
[(n0
ne )d1
(ne
n0 )d2 ]
2
(n0
ne )(d1
光光
方解石 晶体
纸面
光光
方解石 晶体
纸面
光光
方解石 晶体
纸面
光光
方解石 晶体
纸面
光光
方解石 晶体
纸面
光光
方解石 晶体
纸面
光 光
方解石 晶体
1、放玻璃板时看到一个字。
玻璃是各向同性介质。 光射到各向同性介质的表面时它将按折射定 律向某一方向折射,这是一般常见的折射现象。
光通过单轴晶体时的双折射现象ppt课件

3、o光和e光的振动方向 o 光和 e光都是线偏振光,其振动方向如何?
o 光轴
e 光轴
o 光主截面
e 光主截面
用检偏器检验知
o 光的振动垂直 o光的主截面 e 光的振动在 e 光的主截面内
光轴在入射面内时, 两条光线的主截面就是入射面 o光的振动垂直入射面 两光偏振方向垂直 e光的振动在入射面内
4、o光和e光的主折射率(仅讨论单轴晶体) 光轴 o光的主折射率 两个主折射率
注意:在晶体内光轴是一个方向 实验上怎么操作呢?令入射表面垂直光轴,光线沿光轴方向入射,光线在晶体内 部传播不发生双折射。
光轴方向
空气
方解石 不发生双折射
方解石晶体的光轴(方向)
两钝隅连线方向为 光轴方向
101°52′
78°8′
78°8′
三个角度均为 101°52′的顶点 称为钝隅
单轴晶体 单轴晶体(uniaxis crystal) 只有一个光轴方向: 方解石 (冰洲石)、石英(quartz)、红宝石 人工拉制单轴晶体、ADP(磷酸二氢氨)、铌酸锂(LiNiO3) 方解石晶体的演示 双轴晶体(biaxis crystal)
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石晶体实物照 片 纸面
双折射原理的实际应用举例

双折射原理的实际应用举例什么是双折射原理双折射原理,又称为光学双折射现象,是指光在透明介质中传播时发生的光波的分裂和双光轴现象。
这种现象是由于介质的晶格结构导致光的传播速度和方向在不同方向上有所区别而导致的。
实际应用举例双折射原理在很多领域都有广泛的应用,下面举例说明几个常见的应用:1. 双折射片用于显微镜在显微镜中,双折射片被用于观察和分析晶体的结构。
通过放置一个双折射片在样品和镜头之间,当光通过样品时,会因为样品的结构而发生双折射现象,从而使得观察者可以清晰地看到样品的细微结构。
这种应用在材料科学、地质学以及生物学等领域中起着重要的作用。
2. 双折射用于建筑玻璃双折射原理也被应用于建筑玻璃的制造中。
通过在玻璃中加入一定的应力,可以使得光在玻璃中传播时发生双折射现象。
通过调整玻璃的结构和应力分布,可以实现对光的折射角度的控制,从而达到不同的光学效果。
比如,可以制造具有隐私功能的玻璃,只有从特定角度观察时才能看清楚其后面的景象,而在其他角度时呈现模糊效果。
3. 双折射用于激光器和光纤通信激光器和光纤通信技术是现代通信领域中的重要技术。
在这些技术中,双折射原理被广泛应用于单模光纤的制造。
通过将光纤拉制成一条细丝并施加一定的拉应力,可以使光在光纤中传播时发生双折射现象,从而实现对光的传输和控制。
这种应用在光纤通信系统和光学传感器中起着关键的作用。
4. 双折射用于光学器件制造双折射原理还广泛应用于光学器件的制造中。
尤其是在偏振光学器件的制造中,双折射现象是其中关键的原理之一。
通过利用不同材料的双折射性质,可以制造出具有特定偏振特性的光学器件,如偏振片、波片、偏振分束器等。
这些器件在显示技术、光学检测和测量等领域中有着广泛的应用。
小结双折射原理是光学中的重要现象,通过利用介质的晶格结构和应力分布,可以实现对光的传播和控制。
在显微镜、建筑玻璃、激光器和光纤通信、光学器件制造等领域中都有广泛的应用。
双折射原理的实际应用使得我们能够更好地观察和分析物质的结构,实现光学设备的功能和性能的优化,并推动科学和技术的发展。
双折射现象及其对光的影响

双折射现象及其对光的影响光作为一种电磁波的形式,具有许多奇妙的性质。
其中一种常见的现象就是光的双折射现象。
在一些特定的晶体中,光在传播过程中会出现两种不同速度的情况,从而使得光线发生折射,并且发生两次折射并沿不同方向传播。
这种现象的重要性不仅体现在科学研究领域,更在实际应用中发挥了巨大的作用。
在描述双折射现象之前,我们先来了解一下折射是什么。
折射是光线在两种介质间传播时速度和方向发生改变的现象。
根据光的波动性质,当光线从一种介质传播到另一种介质时,其传播速度会改变,从而产生折射。
根据斯涅尔定律,光在发生折射时,入射角和折射角之间存在着一个固定的关系。
而双折射现象则是在某些特殊的晶体中发生的,如岭南玉、石英等。
这些晶体具有各向异性,即其光学性质沿不同方向不同。
当光线垂直入射到这些晶体表面上时,会发生两次折射。
一个是按照正常的折射规律发生的普通光线,被称为O光线;另一个是按照不寻常的折射规律发生的异常光线,被称为E光线。
这两束光线在通过晶体后沿不同的方向传播,形成了两个不同的折射光线。
双折射现象对光的影响是多方面的。
首先,在显微镜的应用中,双折射现象可以使得晶体中的结构、性质以及缺陷等细节更加清晰可见。
通过分析样品中双折射现象的特征,可以获取关于晶体特性的重要信息。
这对于材料科学、地质学、生物学等领域的研究具有重要意义。
其次,在光学仪器中,双折射现象可用于制造偏振片和波片等光学元件。
偏振片是一种能够选择性地通过特定方向的光线的器件,其基本原理就是利用了双折射现象。
通过导入合适的晶体材料,可以制造出具有特定偏振方向的偏振片。
而波片则是一种能够改变光线偏振状态的光学器件,同样利用了双折射现象。
这些偏振片和波片在光学通讯、显示技术和光学测量等领域得到广泛应用。
另外,双折射现象还常用于分辨光学器件的特性。
通过观察通过晶体时光线的分离与汇聚现象,可以研究和判断晶体的光学常数、结构和杂质等信息。
这对于晶体材料的制备过程中的质量控制以及研究过程中的结构表征具有重要意义。
晶体的自然双折射

1. 光轴平行晶体表面,自然光垂直入射
· ·
光轴
· ·
晶体
e
· o o e · · ·
o光和e光在方向上虽没分开,但速度上是
分开的。产生双折射现象。
2. 光轴平行晶体表面,且垂直入射面, 自然光斜入射
oΔ t e Δ t
· · · · cΔ t · i · · ·
r0 o
sin i c n0 sin r o o
102° A
例如,方解石晶体
光轴 B
光轴是一特殊的方向,凡平 行于此方向的直线均为光轴。
•
单轴晶体:只有一个光轴的晶体
双轴晶体:有两个光轴的晶体
方解石
方解石的光轴
通过A或B,并 与三个会合钝角的 界面成等角的直线 方向,就是方解石 晶体的光轴方向
(对于严格等棱长的方解
石菱体,即AB连线方向)
与此平行通过晶 体的直线都是光 轴方向,常用 表示
e光折射线也不一定在入射面内。
o光
e光
方解石晶体
折射现象 双 折射现
CaCO 3
纸面
当方解石晶体旋转时,o光不 动,e光围绕o光旋转
纸面
e
o
双 折 射
光 光
方解石 晶体
当方解石晶体旋转时, o光不动,e光围绕o光旋转
纸面
双 折 射
光 光
方解石 晶体
当方解石晶体旋转时, o光不动,e光围绕o光旋转
光轴
· · v t · · · · · · · · · · · · · · · · · · · · ··
o
光轴 v t o
vet
o光: n0
c
0
e光 :
物理 光的双折射

I = I0 cos θ
2
i
玻璃片堆反射
ib
n2
0
ib
n2
ib + r = 90
r
o光沿原来方Βιβλιοθήκη 传播 光沿原来方向传播(ro = 0)
e光不沿原来方向传播 光不沿原来方向传播
re ≠ 0
o
e
③ o光、e光在晶体中具有不同的传播速度 光 光在晶体中具有不同的传播速度
c o光: vo = 光 no c e光:ve = 光 ne
④
no常数 , v o常数
说明: 光的传播速度在各个方向是相同的 说明:o光的传播速度在各个方向是相同的
纸面
双 折 射
光 光
方解石 晶体
当方解石晶体旋转时 o光不动,e光围绕 光旋转 光不动, 光围绕o光旋转 光不动 光围绕
纸面
双 折 射
光 光
方解石 晶体
当方解石晶体旋转时 o光不动,e光围绕 光旋转 光不动, 光围绕o光旋转 光不动 光围绕
纸面
双 折 射
方解石 晶体
光 光
② 在入射角
i = 0时
双 折
1.双折射现象 双折射现象 (1) o光、e光特征 光 光特征
i
射 现 象
① O光: 始终在入射面内 光 始终在入射面内, 并遵守折射定律。 并遵守折射定律。
re
方解石 晶体
各向异性
ro e o
sin i = n0 sin r0
寻常光 非常光
n0为常数
注意:寻常、非 注意 寻常、
常指光在折射时 是否遵守折射定 律,o光、e光也 光 光也 只在晶体内部才 有意义。 有意义。
晶体的光轴与晶体表面 法线所构成的平面。 法线所构成的平面。
晶体的双折射现象(精)

方解石
光轴
o光
e光
o光
e光
3. 光轴平行晶体表面,自然光垂直入射
o光
e光
e光
o光
此时,o, e 光传播方向相同,但传播速度不同。从晶体出 射后,二者产生相位差。
三. 晶体偏振器 1. 尼科耳棱镜 2. 渥拉斯顿棱镜
no (1.658) n(1.55) ne (1.486)
光轴
v o t
v e t
( 平行光轴截面 )
( 平行光轴截面 )
ve
vo
( 垂直光轴截面 )
ve
vo
( 垂直光轴截面 )
二. 单轴晶体中的波面 ( 惠更斯作图法(ve>vo) )
1. 光轴平行入射面,自然光斜入射负晶体中 B
光轴
A
光轴
B'
方解石
o光 e光
2. 光轴平行入射面,自然光垂直入射负晶体中
光轴
o光
负晶体 no ne
加拿大树胶
o光 e光
e光 o光
o光 ie,o e光
e光
e
上述两种棱镜得到的偏振光 质量非常好,但棱镜本身价 格很高,因而使用较少。
o
o光
3. 波晶片 (光轴平行于表面且厚度均匀的晶体) 自然光垂直入射波晶片后, o 光, e 光传播速度不同, 产生的相位不同 。 出射 o 光 e 光的相差为