山东科技大学概率论卓相来岳嵘编第三章习题解析

合集下载

山东科技大学概率论卓相来岳嵘编第三章知识题解析

山东科技大学概率论卓相来岳嵘编第三章知识题解析

习 题 三1. 一个口袋中装有5只球,其中4只红球,1只白球,采用不放回抽样,接连摸两次.设⎩⎨⎧=⎩⎨⎧=.,0,1 01第二次摸到白球第二次摸到红球,,第一次摸到白球;,第一次摸到红球,Y X 试求:(1)Y X 和的联合分布律;(2){}.Y X P ≥解 (1) ),(Y X 的可能取的数组为 (0,0),(0,1),. (1,0), (1,1) 下面先算出每一组取值的概率第一次取到白球的概率为15,第一次取到白球后,第二次取白球的概率为0. 第一次取到白球的概率为15,第一次取到白球后,第二次取红球的概率为1.因此由乘法定理得{}(,)}{(0,0)0P X Y P == {}11(,)(0,1)155P X Y ==⨯=第一次取到红球的概率为45,第一次取到红球后,第二次取白球的概率为14. 第一次取到红球的概率为45,第一次取到红球后,第二次取红球的概率为34.因此由乘法定理得{}433(,)(1,1)545P X Y ==⨯={}411(,)(1,0)545P X Y ==⨯=于是所求的分布律为Y 0 1X0 0151 15 35(2){}.Y X P ≥={}{}{}4(0,0)(1,0)(1,1)5P P P ++=2. 将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示在三次中出现正面次数与出现反面次数之差的绝对值。

试写出Y X 和的联合分布律.解 由X 表示在三次中出现正面的次数,出现反面次数为3X -,所以(3)23Y X X X =--=-,X 的取值为0,1,2,3,Y 的取值为3,1,1,3,且(3,0.5)X b :于是{}{}311(,)(0,3)0()28P X Y P X ====={}{}123113(,)(1,1)1()228P X Y P X C ====={}{}223113(,)(2,1)2()228P X Y P X C ====={}{}311(,)(3,3)3()28P X Y P X =====而(,)(0,1),(1,3),(2,3),(3,1),X Y =均为不可能事件.所求的Y X 和的联合分布律为 X 0 1 2 3Y1 038 38 0 3 18 0 0 183. 一盒子里装有3只黑球,2只红球,2只白球,在其中任取4只,以X 表示取到黑球的只数,以Y 表示取到红球的只数,求Y X 和的联合分布律.解 X 的取值为0,1,2,3,Y 的取值为0,1,2,其联合分布律为 X 0 1 2 3Y0 0 0335 2351 0635 1235 235 2 135 635 3354. 设二维随机变量()Y X ,概率密度为⎩⎨⎧<<<<--=. ,0,42,20),6(),(其它y x y x k y x f求:(1)常数k ; (2){}3,1<<Y X P ; (3){}5.1<X P ; (4){}4≤+Y X P .解 (1)由概率密度的性质⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得24220(,)(6)2(3)81f x y dxdy k x y dxdy k x dx k +∞+∞-∞-∞=--=-==⎰⎰⎰⎰⎰,故18k =. 于是 6,02,24,(,)80, .x yx y f x y --⎧<<<<⎪=⎨⎪⎩其它 {}{}1302(2) 1,3(,)6388DP P X Y f x y dxdyx y dydx <<=--==⎰⎰⎰⎰{} 1.5402627(3) 1.5832x y P X dydx --<==⎰⎰ (4){}240262483x x y P X Y dydx ---+≤==⎰⎰.5. 设二维随机变量()Y X ,服从区域G 上的均匀分布,其中{}1,1≤≤=y x G ,试求关于t 的一元二次方程02=++Y Xt t 无实根的概率.解 二维随机变量),(Y X 在区域{}1,1≤≤=y x G 服从均匀分布,由G 的面积4A =,所以),(Y X 的概率密度为1, 1,1,(,)40, .x y f x y ⎧≤≤⎪=⎨⎪⎩其它若关于t 的一元二次方程02=++Y Xt t 无实数根,则判别式240X Y ∆=-<t 的一元二次方程02=++Y Xt t 无实数根的概率为2112214111{40}{4}424x P X Y P X Y dydx --<=<==⎰⎰. 6. 设X 与Y 的联合概率密度为4, 01,01,(,)0, .xy x y f x y ≤≤≤≤⎧=⎨⎩其它求X 与Y 的联合分布函数(,)F x y解 22220,00,01,01(,)(,),01,1,1,011,1,1xyx y x y x y F x y ds f s t dt x x y y x y x y -∞-∞<<⎧⎪≤≤≤≤⎪⎪==≤≤>⎨⎪>≤≤⎪>>⎪⎩⎰⎰或7. 设X 与Y 的联合概率密度为⎩⎨⎧∈=.,0,),( ,2),(其它G y x xy y x f 其中区域G 如图3-7所示,试求X 与Y 的边缘概率密度.解 3202, 02,()(,)40, .xx x xydy x f x f x y dy +∞-∞⎧=≤≤⎪==⎨⎪⎩⎰⎰其它23224(), 01,()(,)0, .y Y xydx y y y f y f x y dx +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其它 8. 二维随机变量()Y X ,概率密度为 ⎩⎨⎧≤≤=. ,0,1 ,),(22其它y x y cx y x f图3-7试求:(1)确定常数c ;(2)边缘概率密度.解 (1)由概率密度的性质⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得21112241114(,)(1)1221xf x y dxdy cx ydxdy cx x dx c +∞+∞-∞-∞--==-==⎰⎰⎰⎰⎰,故214c =. 于是2221, 1,(,)40, .x y x y f x y ⎧≤≤⎪=⎨⎪⎩其它(2) X 的边缘概率密度 212242121(1), -11,()(,)480, .x x x ydy x x x f x f x y dy +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其它Y 的边缘概率密度5227, 01,()(,)20, .Y ydx y y f y f x y dx +∞-∞⎧=≤≤⎪==⎨⎪⎩⎰其它 9. 设袋中有标记为14:的四张卡片,从中不放回地抽取两张,X 表示首次抽到的卡片上的数字,Y 表示抽到的两张卡片上的数字差的绝对值 . (1)求,X Y ()的概率分布; (2)给出X 与Y 的边缘分布;(3)求在=4X 下Y 的条件概率分布和在Y=3下X 的条件概率分布.解 (1) X 的取值为1,2,3,4,Y 的取值为1,2,3,,X Y ()的概率分布为X 1 2 3 4Y1 1122122121122 1121121121123 1120 0112(2)给出X与Y的边缘分布X 1 2 3 4p1*******iY 1 2 3p12131iX下Y的条件概率分布(3)求在=4Y 1 2 3p131313i在Y=3下X的条件概率分布X 1 4ip121210. 在第8题中,试求(1)已知事件⎭⎬⎫⎩⎨⎧=21Y发生时X的条件概率密度;(2))/(xyfXY.解(1)2221,1,(,)40,.x y x yf x y⎧≤≤⎪=⎨⎪⎩其它由5227, 01, ()(,)20,.Yydx y yf y f x y dx+∞-∞⎧=≤≤⎪==⎨⎪⎩⎰其它1()216Yf=已知事件⎭⎬⎫⎩⎨⎧=21Y发生时X的条件概率密度21(,)1,2(/)212()0,2X YYf xxf xf⎧≤⎪==⎨⎪⎩其它(2))/(xyfXY.由212242121(1), -11,()(,)480,.xxx ydy x x xf x f x y dy+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其它当-1<1x<时4221,1(,)(/)()0,Y XXy x x yf x yf y xf x⎧-≤≤==⎨⎩其它11. 设,X Y ()服从区域2:{(,)01}D x y y x ≤≤-上的均匀分布,设区域 2:{(,)}B x y y x ≥;(1)写出,X Y ()的联合密度函数; (2)给出X 与Y 的边缘密度函数; (3)求在1=-2X 时Y 的条件密度函数和在1Y=2时X 的条件密度函数;. (4)求概率P{(,)}X Y B ∈. 解 (1)区域D 的面积1214(1)3S x dx -=-=⎰. ,X Y ()的联合密度函数为 234,01(,)0,y x f x y ⎧≤≤-=⎨⎩其它 (2)X 与Y 的边缘密度函数;212033(1), -1<1,()(,)440, .x x dy x x f x f x y dy -+∞-∞⎧=-<⎪==⎨⎪⎩⎰⎰其它1,()(,)0, .Y y f y f x y dx +∞-∞⎧<⎪==⎨⎪⎩⎰其它 (3) 19()0216X f -=>,在1=2X -时Y 的条件密度函数 1(,)43,03412(/)10,2()2Y X X f y y f y f -<<⎧-==⎨⎩-其它1()02Y f => 已知事件⎭⎬⎫⎩⎨⎧=21Y 发生时X 的条件概率密度1(,)1,2(/)2212()0,2X Y Y f x x f x f <⎪==⎨⎪⎩其它(4)概率2213P{(,)}(,)42x xBX Y B f x y dxdy dx dy -∈===⎰⎰⎰ 12. 二维随机变量()Y X ,概率密度为3, 01,0,(,)0, .x x y x f x y ≤<≤<⎧=⎨⎩其它求11P{}84Y X ≤= 解 2033, 01,()(,)0, .xx xdy x x f x f x y dy +∞-∞⎧=≤<⎪==⎨⎪⎩⎰⎰其它从而 1,0(,)(/)0,()Y X X x y xf x y f y x f x ≤<⎧==⎨⎩其它于是 14,01(/)440,Y X y f y x ⎧≤<⎪==⎨⎪⎩其它从而18180111P{}(/)844142Y X Y X f y x dydy -∞≤=====⎰⎰13. Y X ,相互独立,()Y X ,的联合分布律及关于X ,关于Y 的边缘分布律部分数值如下表X Y 1y 2y 3y {}⋅==i i p x X P1x 812x 81{}j j p y Y P ⋅==61完成上述表格中的空格.解. Y X ,相互独立,有的可能取值),(j i y x 有{}{}{}j i j i y Y P x X P y Y x X P =⋅====,,1,2;1,2,3.i j ==()Y X ,的联合分布律及关于X ,关于Y 的边缘分布律部分数值如下表X Y 1y 2y 3y {}⋅==i i p x X P1x 12481112 14 2x 813814 34{}j j p y Y P ⋅== 61 121314. 已知随机变量X 与Y 的分布律分别为X -1 0 1 Y 0 1 p41 21 41 p 2121 已知 {}01P XY ==.试求 (1)X 与Y 的联合分布律;(2)X 与Y 是否相互独立?为什么?解 (1)由{}01P XY == 可知{}00P XY ≠=故 {}{}1,11,10P X Y P X Y =-===== 因而 {}{}11,014P X Y P X =-===-={}{}11,014P X Y P X ====={}{}{}{}0,001,01,0111()0244P X Y P Y P X Y P X Y ====-=-=-===-+=X 与Y 的联合分布律()Y X ,的联合分布律及关于X ,关于Y 的边缘分布律部分数值如下表Y X 1- 0 1 {}j j P Y y p ⋅==0 1414 12 1 0120 12{}i i P X x p ⋅== 141214由以上结果 {}0,00P X Y ===, {}10}{04P X P Y ===,于是X 与Y 不独立. 15. 二维随机变量()Y X ,概率密度为⎩⎨⎧>>=+-.,0,0,0 ,2),()2(其它y x e y x f y x试求(1)X 与Y 是否相互独立?为什么?;(2){}2,1><Y X P ,)1/(/x f Y X 与)/(/y x f Y X ,其中.0>y 解 (1)X 的边缘概率密度 (2)02, 0,()(,)0, .x y x x edy e x f x f x y dy +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰其它 Y 的边缘概率密度(2)2022, y 0,()(,)0, .x y y Y edx e f y f x y dx +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰其它 对于任意的常数y x ,有)()(),(y f x f y x f Y X ⋅=.所以X 与Y 是否相互独立(2){}1(2)45021,2(,)2x y DP X Y f x y dxdy e dxdy e e +∞-+--<>===-⎰⎰⎰⎰(2)/2(,1)2(/1)(1)2x xX Y Y f x e f x e f e-+--=== 与 (2)0/2, 0,(/)()0, .x y x X Y X edy e x f x y f x +∞-+-⎧=>⎪==⎨⎪⎩⎰其它,其中.0>y 16. X 与Y 是相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧>=-. ,0,0 ,21)(2其它y e y f yY(1) 试求X 与Y 的联合概率密度;(2)设含有a 的二次方程022=++Y Xa a ,试求a 有实根的概率.解(1)X 在(0,1)上服从均匀分布,X 的概率密度为1, 01,()0, .X x f x <<⎧=⎨⎩其它Y 的概率密度为⎪⎩⎪⎨⎧>=-. ,0,0 ,21)(2其它y e y f yY 因为X 与Y 是相互独立的随机变量, X 与Y 的联合概率密度21, 01,0,(,)()()20, .yX Y e x y f x y f x f y -⎧<<>⎪=⋅=⎨⎪⎩其它 (2)含有a 的二次方程022=++Y Xa a ,若 a 有实根,则判别式2440X Y ∆=-≥a 的二次方程022=++Y Xa a ,若 a 有实根的概率为222221112220000{0}{}1(1)12yx x x P X Y P X Y dx e dy edx dx----≥=≥==-=-⎰⎰⎰1(1(0=))=0.144517. 若在区间(0,1)内任取两个数,求事件“两数之和小于65”的概率.解 在区间(0,1)内任取两个数分别为随机变量X 与YX 在(0,1)上服从均匀分布,X 的概率密度为1, 01,()0, .X x f x <<⎧=⎨⎩其它Y 在(0,1)上服从均匀分布,Y 的概率密度为1, 01,()0, .Y y f y <<⎧=⎨⎩其它 因为X 与Y 是相互独立的随机变量, X 与Y 的联合概率密度1, 01,01,(,)()()0, .X Y x y f x y f x f y <<<<⎧=⋅=⎨⎩其它 事件“两数之和小于65”的概率. 556600525{}672x P X Y dxdy -+<==⎰⎰ 18. 设钻头的寿命(即钻头直到磨损报废为止 ,所钻透的地层厚度,以米为单位)服从参数为 0.001的指数分布,即Y 的概率密度为0.0010.001,0,()0, .x e x f x -⎧>=⎨⎩其它现要打一口深度为2000米的的井.(1)求只需一根钻头的概率; (2)恰好用两根钻头的概率。

概率论~第三章习题参考答案与提示

概率论~第三章习题参考答案与提示
设二维随机变量xy的概率密度为6第三章习题参考答案与提示?2121yxyxyxf?xy?其中1yx?和2yx?都是二维正态密度函数且它们对应的二维随机变量的相关系数分别为13和13它们的边缘密度函数所对应的随机变量的数学期望都是0方差都是1
第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案概率论与数理统计第三章课后习题答案习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:(2)随机变量(X ,Y )的分布函数;(3)P {0≤X <1,0≤Y <2}.【解】(1)由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===??得 A =12(2)由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=??(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--??-->>?==?? 其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈?5.设随机变量(X ,Y )的概率密度为f (x ,y )=<<<<--.,0,42,20),6(其他y x y x k(1)确定常数k ;(2)求P {X <1,Y <3};(3)求P {X <1.5};(4)求P {X +Y ≤4}. 【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==??故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=??130213(6)d d 88k x y y x =--=?? (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=如图 1.542127d (6)d .832x x y y =--=?(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=如图b 240212d (6)d .83xx x y y -=--=??题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2)P {Y ≤X }.题6图【解】(1)因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ?<而55e ,0,()0,.y Y y f y -?>=?其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --<<>?==??且其他.5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x-==-+≈7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度. 【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+?>>?==?其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )=4.8(2),01,0,0,.y x x y x -≤≤≤≤??求边缘概率密度.【解】()(,)d X fx f x y y+∞-∞=?x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ??--≤≤?=??其他()(,)d Y f y f x y x+∞-∞=?12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ?-?-+≤≤?=??其他题8图题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=<<-.,0,0,其他e y x y求边缘概率密度.【解】()(,)d Xf x f x y y +∞-∞=?e d e ,0,=0,.0,y x x y x +∞--??>?=??其他()(,)d Y f y f x y x+∞-∞=?0e d e ,0,=0,.0,yy x x y y --??>?=??其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=≤≤.,0,1,22其他y x y cx(1)试确定常数c ;(2)求边缘概率密度. 【解】(1) (,)d d (,)d d Df x y x y f x y xy+∞+∞-∞-∞如图2112-14=d d 1.21xx cx y y c ==??得214c =.(2)()(,)d X f x f x y y+∞-∞=?212422121(1),11,d 840,0,.x x x x x y y ??--≤≤??==其他()(,)d Y f y f x y x+∞-∞=?522217d ,01,420,0,.y y x y x y y -??≤≤??==其他11.设随机变量(X ,Y )的概率密度为f (x ,y )=?<<<.,0,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d Xf x f x y y +∞-∞=?1d 2,01,0,.x x y x x -?=<111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞=+-<<??其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ?<其他, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y<<?-?==-<<?+其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1)求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===?=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独立?【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.XYX Y14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1)因1,01,()0,Xx fx <21e ,1,()20,yY y f y -?>?==其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -?<<>?=g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ?=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=??21/2001d e d 212[(1)(0)]0.1445.x yx yπ-==-Φ-Φ=??15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2)当0<="" p="">)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==??33610231010=d 2z zy yzy +∞-=题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==??336231010101=d 12y yzy z +∞-=-即11,1,2(),01,20,.Z z z zf z z ?-≥=<<??其他故21,1,21(),01,20,.Z z z f z z ?≥=<<??其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率. 【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<="" p="">44144180160[1{180}]120[1(1)](0.158)0.00063.P X ?-=-<=-Φ=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},ik P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-= ? ?-= ???-??= ???∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0};(2)求V =max (X ,Y )的分布律;(3)求U =min (X ,Y )的分布律;(4)求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤= 10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 (4)类似上述过程,有26 3 9 4 9 2 520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1)求P {Y >0|Y >X };(2)设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R+≤?=其他(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=> 0(,)d (,)d y y xy xf x y f x y σσ>>>=π2π/405π42π/401d d π1d d πRR r r R r r R θθ=??3/83;1/24==(2){0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=??21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===?(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x≤≤<≤?=其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x=≤≤?=其他所以1(2).4Xf=22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余。

概率论与数理统计习题及答案 第三章

概率论与数理统计习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 11()(1)(1),2,3,.k k P X k p p p p k --==-+-=L2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+L , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

山东建筑大学概率论第三章作业及答案

山东建筑大学概率论第三章作业及答案

E (XY )= 4/9
E( X )
,则 EX =
1/3
1/6
3. 随机变量的分布率为 P 0.4 0.3 0.3 ,则 E ( X ) -0.2 E (3 X 2 +5)= 13.4 4. 已知随机变量的分布列为P(X=m)=1/10, m=2,4,…,18,20, 则 EX = 11 5. 对两台仪器进行独立测试,已知第一台仪器发生故障的概率 为 p1 ,第二台仪器发生故障的概率为 p2 .令X表示测试中发生 故障的仪器数,则 EX p1 p2
x EX

2
f ( x )dx
2
有关方差的定理: 定理1
推论:Db 0;
DaX b a 2 DX
D X b DX ; D(aX ) a 2 DX .
6
定理2: 若X与Y 独立, D X Y DX DY
n n 推论:D X i D X i i 1 i 1


7
二维随机变量的方差:
D X xi EX p X xi xi EX p xi , y j ,
2
离散型随机变量 X ,Y ,
i
DY yi EY pY
2
y y EY px , y .
特别的,1 0; 2 DX

i

x k f ( x )dx
k ( X ) [ xi E ( X )]k p( xi ) 对于离散随机变量:
i
对于连续随机变量: k ( X )
x E ( X )

k
f ( x )dx

概率论第三章课后习题答案_课后习题答案

概率论第三章课后习题答案_课后习题答案

第三章 离散型随机变量率分布。

,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。

出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。

《概率论》数学3章课后习题详解

《概率论》数学3章课后习题详解

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。

解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论与数理统计》复习资料一、填空题(15分)题型一:概率分布的考察 【相关公式】(P379)【相关例题】 1、设(,)XU a b ,()2E X =,1()3D Z =,则求a ,b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东科技大学概率论卓相来岳嵘编第三章习题解析习 题 三1. 一个口袋中装有5只球,其中4只红球,1只白球,采用不放回抽样,接连摸两次.设⎩⎨⎧=⎩⎨⎧=.,0,1 01第二次摸到白球第二次摸到红球,,第一次摸到白球;,第一次摸到红球,Y X试求:(1)Y X 和的联合分布律;(2){}.Y X P ≥解 (1) ),(Y X 的可能取的数组为 (0,0),(0,1),. (1,0), (1,1)下面先算出每一组取值的概率第一次取到白球的概率为15,第一次取到白球后,第二次取白球的概率为0.第一次取到白球的概率为15,第一次取到白球后,第二次取红球的概率为1. 因此由乘法定理得{}(,)}{(0,0)0P X Y P == {}11(,)(0,1)155P X Y ==⨯=第一次取到红球的概率为45,第一次取到红球后,第二次取白球的概率为14.第一次取到红球的概率为45,第一次取到红球后,第二次取红球的概率为34. 因此由乘法定理得{}433(,)(1,1)545P X Y ==⨯={}411(,)(1,0)545P X Y ==⨯=于是所求的分布律为Y1X0 01511535(2){}.Y X P ≥={}{}{}4(0,0)(1,0)(1,1)5P P P ++=2. 将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示在三次中出现正面次数与出现反面次数之差的绝对值。

试写出Y X 和的联合分布律.解 由X 表示在三次中出现正面的次数,出现反面次数为3X -,所以(3)23Y X X X =--=-,X 的取值为0,1,2,3,Y 的取值为3,1,1,3,且(3,0.5)X b :于是{}{}311(,)(0,3)0()28P X Y P X ====={}{}123113(,)(1,1)1()228P X Y P X C ====={}{}223113(,)(2,1)2()228P X Y P X C ====={}{}311(,)(3,3)3()28P X Y P X =====而(,)(0,1),(1,3),(2,3),(3,1),X Y =均为不可能事件.所求的Y X 和的联合分布律为X0 12 3Y1 0 38383180 183. 一盒子里装有3只黑球,2只红球,2只白球,在其中任取4只,以X 表示取到黑球的只数,以Y 表示取到红球的只数,求Y X 和的联合分布律.解 X 的取值为0,1,2,3,Y 的取值为0,1,2,其联合分布律为X1 2 3Y0 03352351 0635123523521356353354. 设二维随机变量()Y X ,概率密度为⎩⎨⎧<<<<--=.,0,42,20),6(),(其它y x y x k y x f求:(1)常数k ; (2){}3,1<<Y X P ; (3){}5.1<X P ; (4){}4≤+Y X P .解 (1)由概率密度的性质⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得2422(,)(6)2(3)81f x y dxdy k x y dxdy k x dx k +∞+∞-∞-∞=--=-==⎰⎰⎰⎰⎰,故18k =. 于是6,02,24,(,)80, .x yx y f x y --⎧<<<<⎪=⎨⎪⎩其它{}{}132(2) 1,3(,)6388DP P X Y f x y dxdy x y dydx <<=--==⎰⎰⎰⎰{} 1.542627(3) 1.5832x y P X dydx --<==⎰⎰(4){}240262483xx y P X Y dydx ---+≤==⎰⎰.5. 设二维随机变量()Y X ,服从区域G 上的均匀分布,其中{}1,1≤≤=y x G ,试求关于t 的一元二次方程02=++Y Xt t无实根的概率.解 二维随机变量),(Y X 在区域{}1,1≤≤=y x G 服从均匀分布,由G 的面积4A =,所以),(Y X 的概率密度为1, 1,1,(,)40, .x y f x y ⎧≤≤⎪=⎨⎪⎩其它若关于t 的一元二次方程02=++Y Xt t 无实数根,则判别式240X Y ∆=-<t的一元二次方程02=++Y Xt t无实数根的概率为2112214111{40}{4}424xP X Y P X Y dydx --<=<==⎰⎰.6. 设X 与Y 的联合概率密度为4, 01,01,(,)0, .xy x y f x y ≤≤≤≤⎧=⎨⎩其它求X 与Y 的联合分布函数(,)F x y解22220,00,01,01(,)(,),01,1,1,011,1,1x yx y x y x y F x y ds f s t dt x x y y x y x y -∞-∞<<⎧⎪≤≤≤≤⎪⎪==≤≤>⎨⎪>≤≤⎪>>⎪⎩⎰⎰或7. 设X与Y的联为y⎩⎨⎧∈=.,0,),( ,2),(其它G y x xy y x f 其中区域G 如图3-7X Y 密度. 2 解3202, 02,()(,)40, .x x x xydy x f x f x y dy +∞-∞⎧=≤≤⎪==⎨⎪⎩⎰⎰其它23224(), 01,()(,)0, .yY xydx y y y f y f x y dx +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其它8. 二维随机变量()Y X ,概率密度为⎩⎨⎧≤≤=.,0,1 ,),(22其它y x y cx y x f试求:(1)确定常数c ;(2)边缘概率密度.解 (1)由概率密度的性质⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得21112241114(,)(1)1221xf x y dxdy cx ydxdy cx x dx c +∞+∞-∞-∞--==-==⎰⎰⎰⎰⎰,故214c =.于是2221, 1,(,)40, .x y x y f x y ⎧≤≤⎪=⎨⎪⎩其它(2) X 的边缘概率密度212242121(1), -11,()(,)480, .x x x ydy x x x f x f x y dy +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其它Y的边缘概率密度5227, 01,()(,)20, .Y ydx y y f y f x y dx +∞-∞⎧=≤≤⎪==⎨⎪⎩⎰其它9. 设袋中有标记为14:的四张卡片,从中不放回地抽取两张,X 表示首次抽到的卡片上的数字,Y 表示抽到的两张卡片上的数字差的绝对值 .(1)求,X Y ()的概率分布; (2)给出X 与Y 的边缘分布;(3)求在=4X 下Y 的条件概率分布和在Y=3下X 的条件概率分布.解 (1)X的取值为1,2,3,4,Y 的取值为1,2,3,,X Y ()的概率分布为X12 3 4Y1 112 2122121122 112 1121121123 112 0 0112(2)给出X与Y的边缘分布X 1 2 3 4p1414i1414Y 1 2 3p12i116(3)求在=4X 下Y 的条件概率分布Y12 3ip131 1在Y=3下X 的条件概率分布X 1 4ip 12 1210. 在第8题中,试求(1)已知事件⎭⎬⎫⎩⎨⎧=21Y 发生时X 的条件概率密度; (2))/(x y fXY .解 (1)2221, 1,(,)40, .x y x y f x y ⎧≤≤⎪=⎨⎪⎩其它由5227, 01,()(,)20, .Yx ydx y y f y f x y dx +∞-∞⎧=≤≤⎪==⎨⎪⎩⎰其它1()216Y f =已知事件⎭⎬⎫⎩⎨⎧=21Y 发生时X 的条件概率密度21(,)1,2(/)212()0,2X Y Y f x x f x f ⎧≤⎪==⎨⎪⎩其它(2))/(x y fXY .由212242121(1), -11,()(,)480, .x xx ydy x x x f x f x y dy +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其它当-1<1x <时4221,1(,)(/)()0,Y X X y x x y f x y f y x f x ⎧-≤≤==⎨⎩其它11. 设,X Y ()服从区域2:{(,)01}D x y y x ≤≤-上的均匀分布,设区域2:{(,)}B x y y x ≥;(1)写出,X Y ()的联合密度函数; (2)给出X 与Y 的边缘密度函数;(3)求在1=-2X 时Y 的条件密度函数和在1Y=2时X的条件密度函数;.(4)求概率P{(,)}X Y B ∈. 解 (1)区域D 的面积1214(1)3S x dx -=-=⎰.,X Y ()的联合密度函数为 234,01(,)0,y x f x y ⎧≤≤-=⎨⎩其它(2)X 与Y 的边缘密度函数;212033(1), -1<1,()(,)440, .x x dy x x f x f x y dy -+∞-∞⎧=-<⎪==⎨⎪⎩⎰⎰其它1,()(,)0, .Y y f y f x y dx +∞-∞⎧<⎪==⎨⎪⎩⎰其它(3) 19()0216X f -=>,在1=2X -时Y 的条件密度函数1(,)43,03412(/)10,2()2Y X X f y y f y f -<<⎧-==⎨⎩-其它1()02Y f =>已知事件⎭⎬⎫⎩⎨⎧=21Y 发生时X 的条件概率密度1(,)1,2(/)2212()0,2X Y Y f x x f x f <⎪==⎨⎪⎩其它(4)概率2213P{(,)}(,)42x x BX Y B f x y dxdy dx dy -∈===⎰⎰⎰12. 二维随机变量()Y X ,概率密度为3, 01,0,(,)0, .x x y x f x y ≤<≤<⎧=⎨⎩其它求11P{}84Y X ≤= 解2033, 01,()(,)0, .xx xdy x x f x f x y dy +∞-∞⎧=≤<⎪==⎨⎪⎩⎰⎰其它从而1,0(,)(/)0,()Y X X x y xf x y f y x f x ≤<⎧==⎨⎩其它于是 14,01(/)440,Y X y f y x ⎧≤<⎪==⎨⎪⎩其它从而18180111P{}(/)844142Y X Y X f y x dydy -∞≤=====⎰⎰13.YX ,相互独立,()Y X ,的联合分布律及关于X ,关于Y 的边缘分布律部分数值如下表X Y 1y 2y 3y{}⋅==i i p x X P1x 812x 81{}jj p y Y P ⋅== 61 完成上述表格中的空格.解.YX ,相互独立,有的可能取值),(jiy x 有{}{}{}j i j i y Y P x X P y Y x X P =⋅====,,1,2;1,2,3.i j ==()Y X ,的联合分布律及关于X ,关于Y 的边缘分布律部分数值如下表X Y 1y 2y 3y{}⋅==i i p x X P1x12481 112142x 81 381434{}jj p y Y P ⋅== 61 12 1314. 已知随机变量X 与Y 的分布律分别为X -1 0 1 Y 0 1p 41 21 41p 21 21 已知 {}01P XY ==.试求 (1)X 与Y 的联合分布律;(2)X 与Y 是否相互独立?为什么? 解 (1)由{}01P XY == 可知{}00P XY ≠=故{}{}1,11,10P X Y P X Y =-=====因而{}{}11,014P X Y P X =-===-={}{}11,014P X Y P X ====={}{}{}{}0,001,01,0111()0244P X Y P Y P X Y P X Y ====-=-=-===-+=X 与Y 的联合分布律()Y X ,的联合分布律及关于X,关于Y 的边缘分布律部分数值如下表Y X1- 0 1 {}jjP Y y p ⋅==0 141412 1 0 1212{}i i P X x p ⋅== 14 1214由以上结果 {}0,00P X Y ===,{}10}{04P X P Y ===,于是X 与Y 不独立.15. 二维随机变量()Y X ,概率密度为⎩⎨⎧>>=+-.,0,0,0 ,2),()2(其它y x e y x f y x试求(1)X 与Y 是否相互独立?为什么?;(2){}2,1><Y X P ,)1/(/x fYX 与)/(/y x fYX ,其中.0>y解 (1)X 的边缘概率密度(2)02, 0,()(,)0, .x y x x edy e x f x f x y dy +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰其它Y的边缘概率密度(2)2022, y 0,()(,)0, .x y y Y edx e f y f x y dx +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰其它对于任意的常数y x ,有)()(),(y f x f y x f Y X ⋅=.所以X 与Y 是否相互独立(2){}1(2)4521,2(,)2x y DP X Y f x y dxdy e dxdy e e +∞-+--<>===-⎰⎰⎰⎰(2)/2(,1)2(/1)(1)2x xX Y Y f x e f x e f e-+--=== 与(2)0/2, 0,(/)()0, .x y x X Y X edy e x f x y f x +∞-+-⎧=>⎪==⎨⎪⎩⎰其它,其中.0>y16. X 与Y 是相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧>=-. ,0,0 ,21)(2其它y e y f yY(1) 试求X 与Y 的联合概率密度; (2) 设含有a的二次方程22=++Y Xa a ,试求a 有实根的概率.解(1)X 在(0,1)上服从均匀分布,X 的概率密度为1, 01,()0, .Xx fx <<⎧=⎨⎩其它Y的概率密度为⎪⎩⎪⎨⎧>=-. ,0,0 ,21)(2其它y e y f yY因为X 与Y 是相互独立的随机变量, X 与Y 的联合概率密度21, 01,0,(,)()()20, .yX Y e x y f x y f x f y -⎧<<>⎪=⋅=⎨⎪⎩其它(2)含有a 的二次方程022=++Y Xa a,若 a 有实根,则判别式2440X Y ∆=-≥a的二次方程022=++Y Xa a,若 a 有实根的概率为222221112220000{0}{}1(1)12y x xx P X Y P X Y dx e dy e dx dx----≥=≥==-=-⎰⎰⎰1(1(0=-))=0.144517. 若在区间(0,1)内任取两个数,求事件“两数之和小于65”的概率.解 在区间(0,1)内任取两个数分别为随机变量X 与YX在(0,1)上服从均匀分布,X 的概率密度为1, 01,()0, .X x f x <<⎧=⎨⎩其它Y在(0,1)上服从均匀分布,Y 的概率密度为1, 01,()0, .Y y f y <<⎧=⎨⎩其它因为X 与Y 是相互独立的随机变量, X 与Y 的联合概率密度1, 01,01,(,)()()0, .X Y x y f x y f x f y <<<<⎧=⋅=⎨⎩其它事件“两数之和小于65”的概率.556600525{}672x P X Y dxdy -+<==⎰⎰18. 设钻头的寿命(即钻头直到磨损报废为止 ,所钻透的地层厚度,以米为单位)服从参数为0.001的指数分布,即Y 的概率密度为0.0010.001,0,()0, .x e x f x -⎧>=⎨⎩其它现要打一口深度为2000米的的井.(1)求只需一根钻头的概率; (2)恰好用两根钻头的概率。

相关文档
最新文档