广西壮族自治区普通高中学业水平考试数学试卷(含答案)(2020年整理).pptx
2022年广西壮族自治区普通高中学业水平考试试题及答案

12月广西壮族自治区一般高中学业水平考试化学(全卷满分100分,考试时间90分钟)注意事项:1.答题前,考生务必将姓名、座位号、考籍号填写在答题卡上。
2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试题上作答无效。
也许用到旳相对原子质量:H—1 C—12 N—14 O—16 Na—23 Cu—63.5 Sn—118.7一、单项选择题(本大题共35小题,每题2分,共70分。
在每题列出旳四个备选项中只有一项符合题目规定。
多选、错选或未选均不得分。
温馨提醒:请在答题卡上作答,在本试题上作答无效。
)1.在科学技术发展史上,为人类增产粮食、消除饥荒做出巨大奉献旳化学成就是A .合成氨工业B .金属冶炼C .石油工业D .海水综合运用2.使用绿色能源有助于保护环境。
下列能源中不属于...绿色能源旳是A .氢能B .化石能C .风能D .太阳能 3.在化学反应2H 2O 2 2H 2O + O 2↑中,发生了变化旳粒子是A .质子B .电子C .原子D .分子4.末,在巴黎召开旳全球气候变化大会讨论了“全球气温升高过快”旳议题。
该议题旳实质是怎样减少排放下列气体中旳A .H 2B .CO 2C .N 2D .O 25.当光束通过下列分散系时,没有..丁达尔效应旳是 A .雾B .稀豆浆C .CuSO 4溶液D .Fe(OH)3胶体6.在萃取—分液试验中,振荡分液漏斗旳操作对旳旳是 M nO 2A B C D7.原则状况下,44.8 L H2旳物质旳量为A.1.0 mol B.2.0 mol C.3.0 mol D.4.0 mol 8.下列能对旳表达Mg旳原子构造示意图旳是A.B.C.D.9.水体富营养化可导致赤潮、水华等水污染现象。
下列与水体富营养化亲密有关旳元素是A.C B.O C.P D.S 10.下列属于人工合成旳高分子化合物是A.聚氯乙烯B.淀粉C.乙酸乙酯D.苯乙烯11.试验室中常用到0.1 mol/L旳NaOH溶液,其中旳“mol/L”对应旳物理量是A.溶解度B.质量分数 C.摩尔质量D.物质旳量浓度12.下列能对旳表达乙烯构造简式旳是A.C2H4B.CH2 CH2C.CH2 ——CH2 D.CH2= CH213.下列各组微粒互为同位素旳是A.1H和2H B.14C和14N C.37Cl和37Cl -D.56Fe2+和56Fe3+14.在钠与水反应旳试验操作中,符合化学试验安全规则旳是A.不经切割,直接用大块旳钠做试验B.用手小心抓住钠块投入烧杯中C.在烧杯口盖上玻片后再观测现象D.将剩余旳钠块放入废液缸15.为中和酸性污水中旳H+,应投入物质旳类别为A.酸B.酸性氧化物 C.碱性氧化物D.非金属单质16.为防止新配制旳FeCl2溶液变质,应向溶液中加入旳物质是A.碳粉B.硫磺C.铜粉D.铁粉17.用作调味品旳食醋也可用来除水垢,其除垢旳有效成分是A.乙醇B.乙酸C.葡萄糖D.乙酸乙酯18.将下列物质分别投入水中,有气体放出旳是A.Na2O2B.Na2O C.NaOH D.Na2CO3 19.配制一定物质旳量浓度溶液时,其中一种操作为“转移”。
2020年广西省中考数学试卷(含答案)

广西省中考数学试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。
注意:答案一律填写在答题卷上,在试题卷上作答无效.........。
考试结束,将本试卷和答题卷一并交回。
第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)请用2B 铅笔在答题卷上将选定的答案标号涂黑。
1.-5的相反数是A .-5B .5C .51D . ±52.我国南海海域面积为38000002km ,用科学记数法表示正确的是A .3.8×1052km B .3.8×1062km C .3.8×1072km D .3.8×1082km3.如图,AB∥CD ,E 在AC 的延长线上,若︒=∠34A ,︒=∠90DEC ,则D ∠的度数为A .︒17B .︒34C .︒56D .o 66 4.在函数31x y x +=-中,自变量x 的取值范围是 A .x ≥-3且1x ≠ B .x >-3且1x ≠ C .x ≥3 D .x >3 5.如图是由4个大小相同的正方体搭成的几何体,其俯视图是6.下列说法中正确的是A .篮球队员在罚球线上投篮一次,未投中是必然事件B .想了解某种饮料中含色素的情况,宜采用普查C .数据5,1,-2,2,3的中位数是-2D .一组数据的波动越大,方差越大7.下列运算正确的是A. 235a a a +=B. 22a a -=C. 632a a a ÷=D. 236()a a =第5题图AB CDCD 第3题图8.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解的个数有A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,E 是CD 的中点,AD 、BE 的延长线交于点F ,3DF =,2DE =,则平行四边形ABCD 的周长为A .5B .12C .14D .1610.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是 A .200米 B. 2003米 C. 2203米 D. 100(31)+米11.如图,在平面直角坐标系中,抛物线y =23ax +与y 轴交于点A ,过点A 与x轴平行的直线交抛物线y =213x 于B 、C 两点,则BC 的长为A .1B .2C .3D .612.如图,AB 是⊙O 的直径,AD 是⊙O 的切线, BC ∥OD 交⊙O 于点C , 若AB =2, OD =3,则BC 的长为A .32B .23C .3D .2第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分;只要求填写最后结果.) 13.分解因式:24x - = .14.小玲在一次班会中参与知识抢答活动,现有语文题6个,第9题图F ED CBA 第10题图第12题图第11题图B OAC y xO CD45°30°BDC ADA数学题5个,综合题9个,她从中随机抽取1个,抽中 数学题的概率是 .15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为cm 6、cm 8,AE ⊥BC 于点E ,则AE 的长是 cm . 16.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其 对应点C '恰好落在直线AB 上,则点C '的坐标为 .17.如图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 18.如图,第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA OB ⊥,cos 3A =,则k 的值为 .三、解答题(本大题共8题,共66分;解答应写出必要的文字说明、演算步骤或推理过程.)19.(本题6分)计算: ()︒-++⎪⎭⎫⎝⎛-+-30tan 35321160120.(本题6分)先化简,再求值:221()111a a a a a -÷+--,其中12+=a .21. (本题8分) 如图,在△ABC 中,AB AC =,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母.①作CAM ∠的平分线AN ;第18题图BO Ayx第17题图BACBAO O O图1图220﹪纪念奖三等奖二等奖一等奖45﹪纪念奖三等奖二等奖600奖项一等奖人数(人)10020030040050063252567②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.22. (本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ; (3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23. (本题8分)某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这进价(元/千克) 售价(元/千克)甲种 5 8 乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?A B CM24. (本题8分)某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.(本题10分)如图,︒=∠90C ,⊙O 是Rt △ABC 的内切圆,分别切AB AC BC ,,于点G F E ,,,连接OF OE ,.AO 的延长线交BC 于点D ,2,6==CD AC . (1)求证:四边形OECF 为正方形; (2)求⊙O 的半径; (3)求AB 的长.OGFE DC BA乙甲72015963O y (米)x (天)26.(本题12分) 如图,已知直线121+=x y 与y 轴交于点A ,与x 轴交于点D ,抛物线c bx x y ++=221与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,直接写出点P 的坐标; (3)在抛物线的对称轴上找一点M ,使|MC AM -|的值最大,求出点M 的坐标.21OMN DC BA数学答案评分标准一.选择题BBCA DDDC CDDB 二.填空题13. (2)(2)x x +- 14.1415. 16. (﹣1,2) 17. 3π 18. -4三.解答题19.解:原式=4﹣2+1﹣333⨯4分(对一个知识点给1分) =4﹣2+1﹣1 5分 =2 6分20.解:原式=2(1)(1)(1)(1)(1)(1)(1)(1)a a a a a a a a a a ⎡⎤-+-⋅+-⎢⎥+-+-⎣⎦2分(还有其他做法) =2222(1)(1)(1)(1)a a a aa a a a ---⋅+-+- 3分 =23a a - ……4分 当a =21+时,原式=3223232+--=- ……6分 21.解:(1)作图正确 . ……3分(2)四边形ABCD 是平形四边形,理由如下: ∵AB AC =∴1ABC ∠=∠ 4分 ∵121CAM ABC ∠=∠+∠=∠∴112CAM ∠=∠∵AN 平分CAM ∠∴122CAM ∠=∠ 5分∴12∠=∠∴BC ∥AD ……6分 ∵AC 的中点是O ∴AO CO =又∵AOD COB ∠=∠ ∴AOD COB ∆≅∆∴BC =AD ……7分 ∴四边形ABCD 是平形四边形 ……8分22. 解:(1)1260.……(2分) (2)108°. ……4分(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,图略……6分 (4)抽到获得一等奖的学生的概率为:63÷1260=5%. ……8分23. 解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:1分5x +9(140﹣x )=1000, ……3分 解得:x =65,∴140﹣x =75(千克), ……5分 答:购进甲种水果65千克,乙种水果75千克; ……6分 (2)3×65+4×75=495,答:利润为495元. ……8分24解:(1)∵720÷(9-3)=120∴乙工程队每天修公路120米. ……1分(2)设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩== 2分∴y 乙=120x -360 ……3分当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x ……6分 (3)当x =15时,y 甲=900,∴该公路总长为:720+900=1620(米)设需x 天完成,由题意得,(120+60)x =1620 7分 解得x =9 答:需9天完成 ……8分25. (本题满分10分)解:(1)如图,因为⊙O 是Rt △ABC 的内接圆,分别切BC ,AC ,AB 于点E ,F ,G ∴∠CFO=∠OEC=90°∵∠C=90°...........1分 (三个直角少一个,这一分就不得) ∴则四边形OECF 为 矩形,……………………….2分 又∵OE=OF=r ……………………………3分 ∴四边形OECF 为 正方形 (2) 由四边形OECF 为 正方形∴OE//AC ,CE=CF=r∴△OED ∽△ACD ……………………………4分 ∴AC OE DC DE = ∴622r r =- ………………………5分解得:r=23 ……………………………6分(3) ⊙O 是Rt △ABC 的内切圆,由(2)得DE=21,设BD=x,则BE=BG=x+21 ∵AG=AF=29,∴AB=5+x ,由222AB AC BC =+ 得222)5(6)2(+=++x x ………………8分O GFE DCBA(第21解得:x=25 ……………………………9分 ∴AB =215…………………………………10分 (若设BG=x,则方程为222)29(6)23(+=++x x 得x=3) 26. (1)直线121+=x y 与y 轴交于点A 得A (0,1),将A (0,1)、B (1,0)坐标代入y=x 2+bx+c 得,解得,∴抛物线的解折式为y=x 2﹣x+1;……………………3分(2)满足条件的点P 的坐标为(,0)或(1,0)或(3,0)或(,0); (7)分(3)抛物线的对称轴为,……………………8分∵ B 、C 关于x=对称, ∴ MC=MB ,要使|AM ﹣MC|最大,即是使|AM ﹣MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM ﹣MB|的值最大. (9)分易知直线AB 的解折式为y=﹣x+1………………10分∴ 由,得⎪⎪⎩⎪⎪⎨⎧-==2123y x∴M(1.5,-0.5) ………………12分。
【2020年】广西中考数学试卷及答案

2020年广西中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106 5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab 3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax 2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a 2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BF=BC,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB?BC=OC?BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE =360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE =90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG?CE=CB?EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=?DQ?CH=CH?DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE?k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE?k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM?|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN?|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键。
广西壮族自治区桂林市广西2020年中考数学试卷及参考答案

一 、 选 择 题 ( 本 大 题 共 12小 题 , 每 小 题 3分 , 共 36分 .)
1. 有理数2,1,﹣1,0中,最小的数是( ) A . 2 B . 1 C . ﹣1 D . 0 2. 如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是( )
A . 60° B . 65° C . 70° D . 75° 11. 参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面 列出的方程正确的是( ) A . x(x+1)=110 B . x(x﹣1)=110 C . x(x+1)=110 D . x(x﹣1)=110
8. 直线y=kx+2过点(﹣1,4),则k的值是( )
A . ﹣2 B . ﹣1 C . 1 D . 2
9. 不等式组
的整数解共有( )
A . 1个 B . 2个 C . 3个 D . 4个 10. 如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是( )
?
25. 如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边 AB的中点,连接CD交AB于点E.
(1) 求证:A,B,C,D四个点在以点O为圆心的同一个圆上; (2) 求证:CD平分∠ACB; (3) 过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF. 26. 如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点 为D,对称轴DE交x轴于点E,连接EC.
2020年广西高考文科数学试题及答案

2020年广西高考文科数学试题及答案注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
答题卡:一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为 A .2 B .3 C .4 D .52.若)(1i 1i z +=-,则z = A .1–iB .1+iC .–iD .i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3)A .60B .63C .66D .695.已知πsin sin=3θθ++()1,则πsin =6θ+()A .12B C .23D 6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :()220y px p =>交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为 A .(14,0) B .(12,0) C .(1,0) D .(2,0)8.点(0)1-,到直线()1y k x =+距离的最大值为 A .1 B .2 C .3 D .29.如图为某几何体的三视图,则该几何体的表面积是A .2B .2C .3D .310.设a =log 32,b =log 53,c =23,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B = A 5B .5C .5D .512.已知函数f (x )=sin x +1sin x,则 A .f (x )的最小值为2 B .f (x )的图像关于y 轴对称 C .f (x )的图像关于直线x =π对称D .f (x )的图像关于直线2x π=对称 二、填空题:本题共4小题,每小题5分,共20分。
2020年广西数学高考试卷

2020年广西数学高考试卷
2020年广西数学高考试卷指的是在2020年广西地区用于高考的数学试卷,用于测试和评估考生的数学知识和技能。
以下是三道示例选择题:
1、函数 f(x) = 2x^2 - 4x 在区间 [-1, 3] 上的最大值和最小值分别为 ()
A. 最大值为 16,最小值为 0
B. 最大值为 16,最小值为 -2
C. 最大值为 16,最小值为 -8
D. 最大值为 16,最小值为 -12
2、已知等比数列 {an} 的前 n 项和为 Sn,且 S4 = 4a3,则公比 q = ()
A. -1
B. 1
C. -2
D. 2
3、若 a, b, c 是三个互不相等的正数,且 a > b > c,则下列正确的是 ()
A. ac > bc
B. a/c > b/c
C. ab > bc
D. a^2 > bc
总结:2020年广西数学高考试卷指的是在2020年广西地区用于高考的数学试卷,用以测试和评估考生的数学知识和技能。
广西2020数学高考真题

广西2020数学高考真题
2020年广西高考数学试卷已经于6月12日上午进行,以下是试卷
内容概述:
第一部分:选择题,共65分。
第二部分:解答题,共35分。
第一部分主要涵盖了整个高中数学的各个知识点,包括代数、函数、几何、概率与统计等内容。
考生需要根据题目的要求进行计算和分析,选择正确的答案。
整个选择题部分难度适中,涵盖面广,考察了考生
对数学知识的全面理解和灵活运用能力。
第二部分为解答题,主要分为解答题A、解答题B两个部分。
考生
需要根据题目要求进行推理、证明或解决问题,展示出扎实的数学基
础和解题能力。
解答题部分考察的是考生对数学问题的深度理解和思
考能力,需注重方法的合理性和条理性。
总体来看,2020年广西高考数学试卷难度适中,内容涵盖的知识点
较为全面,考察了考生对数学知识的掌握和运用能力。
希望广大考生
认真备考,发挥出自己的水平,取得令人满意的成绩。
祝愿所有参加
高考的同学们都能取得优异的成绩,实现自己的理想。
2020年广西高考数学试题

2020年广西高考数学试题数学作为一门学科,对于广大考生来说无疑是高考的重点和难点科目之一。
2020年广西高考数学试题作为当年考试的重要组成部分,对考生的数学知识应用能力和解题能力提出了较高的要求。
本文将对该年度广西高考数学试题进行详细的解析,逐步思考解题的过程并进行举例说明,旨在帮助考生更好地理解数学问题的解决方法。
一、题目分析本次广西高考数学试题涵盖了数学的各个知识点,包括代数、几何、函数等。
这些题目旨在考察考生对于数学知识的掌握情况以及解题思路的熟练程度。
下面,我们将一步步解析其中的几道题目。
已知函数f(x) = 3x + 2,g(x) = x^2 - 1,求f(g(x))的解析式。
解析:通过解析式f(x) = 3x + 2和g(x) = x^2 - 1,我们可以得出f(g(x)) = f(x^2 - 1)。
将g(x)代入f(x)的解析式中,则得到f(g(x)) = 3(x^2 - 1) + 2 = 3x^2 - 1。
因此,f(g(x))的解析式为3x^2 - 1。
某数列的前n项和为Sn = n^2 + 2n,已知S4 = 24,求数列的通项公式。
解析:根据题目给出的前n项和公式Sn = n^2 + 2n,我们可以列出n = 4时的方程:S4 = 4^2 + 2×4 = 24。
由此,我们可以得到4^2 + 2×4 = 24,整理得到4^2 + 2×4 - 24 = 0。
通过分解因式或使用求根公式,可以得到解为(n - 4)(n + 6) = 0,因此,n = 4 或 n =-6。
由于题目中已经给出了前n项和,因此我们可以确定n = 4。
将n = 4代入Sn = n^2 + 2n的公式中,可以得到S4 = 4^2 + 2×4 = 24。
因此,该数列的通项公式为an = n^2 + 2n。
已知直线l₁过点A(1, 2)且斜率为k,直线l₂过点B(3, -4)且斜率为-2,求k的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 求证: BD 面 PAC,
2 求二面角 P-BD-A 的大小 3 求点 C 到平面 PBD 的距离
是 正 方 形 , 且 PA 底 面 ABCD ,
P
A D
O B
C
28.(本小题满分 8 分) 如图,已知抛物线 y 2 2 px ( p 0),过它的焦点 F 的直线l 与其相交于 A,B 两点,O 为坐标原点。
26
C.y=sin (2x ) D. y=sin (2x )
6
( x )
26 3
13.已知平面向量a (2,1) , b (x,4) ,且 a b ,那么 x ( )
A 、 2 B 、 -2 C 、 8 D 、 -8 14.下列函数中既是奇函数,又在区间(0,+ )上单调递增的是( )
、简单随机抽样 B、系统抽样
C、分层抽样 D、先从老年人中剔除一人再分层抽样
9. x 1是 x2 1的( )
A、充分不必要条件 B、必要不充分条件 C、充要件 D、既不充分也不必要条件
1
10. 在 x 轴上的截距为 2 且倾斜角为 135°的直线方程为( )
A. y=-x+2 B. y=-x-2 C. y=x+2 D. y=x-2
2014 年 6 月广西壮族自治区普通高中学业水平考试 数学卷
一、选择题:本大题共 20 小题,每小题 3 分,满分 60 分。
1.已知集合 M={1,2},N={2,3},则 M N ( )
A.{1,2,3} B.{1,2} C.{1} D.{2}
2. i 是虚数单位, 2i3 ( ) 1i
A.1i B. 1i
y 1
A 3 B 1 C 3 D 3 2
20.函数 y 2x 2 (x 0) 的最小值为( ) x
A、 1 B 、 2 C 、 4 D 、 8 2
一、填空题:本大题共 4 小题,每小题 3 分,满分 12 分。请将答案填写在答题卷上。
21.已知函数
f
(x)
x(x 1), x x(1 x), x
C.1i D. 1i
3. 如图是一个物体的三视图,则此三视图所描述物体的直观图是( )
4.已知sin 3 ,且 cos 0 ,则 tan 等于( )
5
A. 3
4
B. 3 C.
4
4 D.
4
3
3
5.阅读如图所示程序框图.若输入 x 为 3,则输出的 y 的值为(
A.24
B.25
C.30
D.40
6.在等比数列an 中, an 0(n N *) 且 a 4 4, a 6 16,则数列 an的公比q 是 ( )
2
三、解答题:
25、解: S4
(4a1 2
a4
)
20
26、解:(1)P1
10 10000
1 1000
(2)
P2
10
20 80 10000
11 1000
27、解:
(1) PA 面ABCD, BD 面ABCD
PA BD, 又面ABCD是正方形AC BD
而PA AC A
BD 面PAC
A,y=sinx B,y=-x2 C,y=ex D,y=x3
15.直线 L:y=2x 和圆(x-2)2+(y+1)2=5 的位置关系是( ) A. 相 切 B. 相 交 C. 相 离 D. 不 确 定 16.函数 y cos2 x
sin2 x 的最小值是( )
A、0
B 、 1 C 、 -1
D 、 —1 2
1 若抛物线过点(1,2) ,求它的方程:
2 在(1)的条件下,若直线l 的斜率为 1,求 OAB 的面积; 3 若 OA OB 1, 求 p 的值
y A
F x
O B
4
参考答案 一、选择题: 1-5 ACDAD 6-10 BADAA 11-15 ACADA 16-20 CCDDC 二、填空题:
21 、 -12 22、 1 23、1 24、1
17.函数 y x2 2x 3 的零点为( )
A 1 B 3 C -1 或 3 D 2 或 1
18.双曲线 x2 y 2 1的渐近线方程为( ) 3
A 、 y1x B 、 y3x
3
2
C 、 y 3x D 、 y 3 x 3
2
y x 19.已知 x, y 满足x y 1,则 z 2x y 的最大值是( )
在等差数列an 中,已知a1 2, a4 8 ,求数列an 的前 4 项的和S4
26.(本小题满分 6 分) 在 10000 张有奖储蓄的奖券中,设有 10 个一等奖,20 个二等奖,80 个三等
奖,从中买 1 张奖券,求: 1 获得一等奖的概率; 2 中奖的概率
3
27.(本小题满分 8 分) 如 图 , 四 棱 锥 P-ABCD 中 , 底 面 ABCD
0 ,则 0
f
(3)
22.先后抛掷 2 枚均匀硬币,出现“1 枚正面,1 枚反面”的概率是
23.在 ABC 中,已知A 30, AC 1, AB 3, 则 BC
24.设函数 f(x)=ax3 -3x2 (a∈R),且 x=2 是 y=f(x)的极值点,求实数 a=
三、解答题:本大题共 4 小题,满分 28 分。解答应写出文字说明、推理过程或演算步骤。 25.(本小题满分 6 分)
(2)由(1)知BD 面PAC,PO 面PAC BD PO,又AC BD AOP是二面角P BD A的平面角
而 PAO是Rt ,AB=4AC=BD=4 2 AO 2 2,tan AOP PA 1
AO AOP 45,即二面角P BD A的大小为45
A.1 B.2 C.3 D.4
)
第5 题
7.下列函数中,最小正周期为2 的是( )
A y sin x B y sin 2x C y sin x D y cos 2x 2
8.某单位有老年人 28 人,中年人 54 人,青年人 81 人.为了调查身体状况, 需从他们中抽取一个容量为 36 的样本,最适合抽取样本的方法是( ) A
11.函数 y lg(x 2) 的定义域是( )
A 2, B 2, C 2, D 2, 12.把正弦函数 y=sinx(x∈R)
图象上所有的点向左平移 个长度单位,再 6
把所得函数图象上所有的点的横坐标缩短到原来的 1 倍,得到的函数是 2
()
A.y=sin (1 x ) B.y=sin 1