钣金展开相关知识及计算方法

合集下载

钣金展开长度及系数计算方式

钣金展开长度及系数计算方式
ห้องสมุดไป่ตู้
二:钣金展开计算公式
如图2中钣金的展开长度 L=L1+L2+L3 L2=(π/2*R+Y*T)θ/90 其中π=3.1415,R为钣金内侧折弯半径,T为钣金厚度,θ为折弯角度(单位度)
图2:
三:常用材料Y因子和K因子数值 •材料:软黄铜、铜,Y因子:0.55,K因子:0.35。 •材料:硬黄铜、铜、软钢、铝,Y因子:0.64,K因子:0.41。 •材料:硬铜、青铜、冷轧钢、弹簧钢,Y因子:0.71,K因子:0.45。
钣金展开长度 及系数计算方 式
钣金的展开长度和钣金的厚度、折弯半径、折弯角度,以及钣金材料属性(通过Y和K因 子来表示)有关系。
一:首先介绍Y因子和K因子
1. K因子为钣金内侧边到折弯中线距离和钣金厚度的比值,如图1中K因子的方程式:K=A/T。
图1:
2. Y因子是根据折弯中线相对于钣金厚度计算出来的比值,Y因子公式:Y=K*(π/2)。Proe 中Y因子默认为0.5。

钣金件展开计算方法及工艺处理

钣金件展开计算方法及工艺处理

钣金展开计算方法及工艺处理一、钣金件展开方法:1、展开的计算原理:板材在弯曲过程中外层客观存在到拉应力,内层受以压应力,从拉到压之间有一既不受拉力又不受压力的过渡层——中性层,中性层的长度在弯曲后与弯曲前一样,保持不变,所以中性层是计算折弯件展开长度的基准。

中性层位置与变形程度有关,当弯曲半径(下图所示的R角)较大,折弯角度(下图所示θ角)增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动,中性层到板料内层的距离用<90时)2.计算方法:2.1展开的基本公式:展开长度=料内+料内+补偿量展开长度=料外+料外-补偿量2.2.标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值3、预开底孔3.1.展开过程中,除了对外形展开以外,对一些比如抽牙(翻边)攻丝,攻牙(挤牙.切削)翻边胀铆螺母(Z类产品).花齿压铆螺母(S类产品).压铆螺钉(FH类产品).压铆螺钉(NY类产品). 压铆螺母柱(SO、BSO、SOO、SOPC类产品)(注意3.5M3与M3底孔的差异).展开过程中,要先进行预开底孔(详细见附表五)4.开工艺孔:对于一些精度要求不高,需焊接打磨的产品,折弯转角处我们可以开一个折弯工艺孔,大小由板厚来决定,要比板厚大一些,也不宜过大,编程过程中尽量选用已使用过的合适的模具。

(便于减少模具及加工时间)。

4.1图有三种情况:全包、半包、搭边。

①所有搭边关系的,无需开工艺孔;②对于有包边板厚T〈1.5mm,无需开工艺孔;③对于有包边且板厚T≥1.5mm,需在转角处加开工艺孔。

工艺孔有两种方式:圆和U形;长圆孔的圆心在折弯线上。

如图a.b所示1.展开后为线段的部分,将其处理成下图所示工艺孔形式:如图c所示工艺孔宽度取0.5(LASER)或2.0(NCT)。

3当抽形边缘与折弯边(内尺寸)距离小于2.0mm,则会影响折弯加工,此时,相应折弯变形区作割孔处理或更改抽形尺寸,如附图e所示:1)在下列情况下,一律不允许开工艺孔:①有外观面或装配关系要求,未经客户允许的工件;②单独出货,未经客户允许的散件。

常用的钣金展开计算方法与技巧,绝对好宝典,好好收藏吧

常用的钣金展开计算方法与技巧,绝对好宝典,好好收藏吧

常用的钣金展开计算方法与技巧,绝对好宝典,好好收藏吧展开计算原理板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层—中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。

中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用λ表示.展开的基本公式:展开长度=料内+料内+补偿量1.1 中性层系数注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V 形弯曲.但通常我们习惯取K2值。

1.2 压弯90度角的修正系数a值注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。

1.3 其余图形展开计算方法:1.4 当折弯角度为90度,r=0(俗称“90度清角”)时,各材料厚度对应的经验值:r/t≦0.5时,均可按90度清角计算展开长度.展开注意事项为了防止产品展开过程中的失误,造成下料模的多次修改, 特制定下料模的制作方式.(1). 凡对一些展开存在不确定因素的产品, 例如, 有拉伸性质的展开, 多次折弯, Z折,有拉料现象等产品的下料模, 经工程分析有必要先试模的, 其制作方式如下:A. 下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工.B. 成型模先做, 试模时先镭射(按下料模展开尺寸)试模, 产品先做实测, 不合格时修正展开尺寸再镭射,一直修到合格为止, 合格样品送客户先承认.C. 样品经客户承认后, 按修正展开尺寸整理下料模, 进行下料模的线割加工.(2). 对展开较直观的, 可基本控制的产品, 一般只要经俩人展开核对无误,下料模可按正常方式加工。

(完整版)钣金展开计算方法

(完整版)钣金展开计算方法
=A+B-2T+0.5T
上式中取:λ=T/3
K=λ*π/2
=T/3*π/2
=0.5T
3 R≠0 θ=90°
L=(A-T-R)+(B-T-R)+(R+λ)*π/2
当R ≧5T时 λ=T/2
1T≦ R <5T λ=T/3
0 < R <t λ=t 4<="" p=""></t λ=t>
(实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)
D/2={(r+T/3)2
+2(r+T/3)*(h+T/3)
-0.86*(Rd-2T/3)*[(r+T/3)
+0.16*(Rd-2T/3)]}1/2
12卷圆压平
图(a): 展开长度
L=A+B-0.4T
图(b): 压线位置尺寸 A-0.2T
图(c): 90°折弯处尺寸为A+0.2T
图(d): 卷圆压平后的产品形状
4 R=0 θ≠90°
λ=T/3
L=[A-T*tan(a/2)]+[B
-T*tan(a/2)]+T/3*a
(a单位为rad,以下相同)
5 R≠0 θ≠90°
L=[A-(T+R)* tan(a/2)]+[B
-(T+R)*tan(a/2)]+(R+λ)*a
当R ≧5T时 λ=T/2
1T≦ R <5T λ=T/3
以下Hmax取值原则供参考.
当R≧4MM时:
材料厚度T=1.2~1.4取Hmax =4T

钣金展开计算原理及计算方法!

钣金展开计算原理及计算方法!

一、展开计算原理板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层,中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准。

中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大。

中性层位置逐渐向弯曲中心的内侧移动。

中性层到板料内侧的距离用A表示(图1)。

二、折弯方法的确定折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法。

单发冲床模具折弯的方式及精度是由模具来实现的。

因此只要做出合格的模具,就能够生产出合格的折弯产品。

而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数。

因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法。

1.一次一道弯。

此种折弯由普通通用折弯模来完成。

包括折直角,钝角和锐角(图2)。

2. 一次折两道弯——压锻差。

此种折弯由专用特殊模来完成,但折弯难度比普通折弯大(图3)。

3. 压死边。

此种折弯也须用特殊模来完成(图4)。

4.大R圆弧折弯。

些种折弯如R在一定范围内,可用专用R模压成形,如R值过大,则须用小R模多次压制成形(图5)。

这四种折弯的展开计算是不同的。

因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。

其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍。

如采用一次折一道弯的方法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1,如图6所示。

折弯高度H的经验值根据产品形状有如下三种(以90度为例,钝角和锐角与直角相近相似)。

1.简单的90度单边折弯(图7)。

如图7所示,此种折弯只需考虑下模V形槽中心到折弯机定位挡块的距离即可确定。

通常H值为H≥3.5 T + R (R 在1mm 以下)。

(完整版)钣金件的展开计算---准确计算

(完整版)钣金件的展开计算---准确计算

精心整理钣金中的展开计算一、钣金的计算方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。

其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。

通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。

总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。

为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点:1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法3、K 因子的定义,实际中如何利用K 因子,包括用于不同材料类型时K 因子值的适用范围二、折弯补偿法为更好地理解折弯补偿,请参照图 1 中表示的是在一个钣金零件中的单一折弯。

图2是该零件的展开状态。

折弯补偿算法将零件的展开长度(LT) 描述为零件展平后每段长度的和再加上展平的折弯区域的长度。

展平的折弯区域的长度则被表示为“折弯补偿”值(BA) 。

因此整个零件的长度就表示为方程(1):LT=D1+D2+BA(1)折弯区域(图中表示为淡 *** 的区域)就是理论上在折弯过程中发生变形的区域。

简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考:1、将折弯区域从折弯零件上切割出来2、将剩余两段平坦部分平铺到一个桌子上3、计算出折弯区域在其展平后的长度4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件图 15.K- 因子法K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值。

也是一个用于计算在各种材料厚度、折弯半径 /折弯角度等广泛情形下的弯曲补偿 (BA) 的一个独立值。

图 4 和图 5 将用于帮助我们了解 K-因子的详细定义。

钣金折弯展开的计算方法

钣金折弯展开的计算方法钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料厚度、材料热处理及加工折弯的角度。

展开计算原理:1.板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。

2.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示。

展开计算的基本公式:展开长度=料内+料内+补偿量1)一般折弯:(R=0,θ=90°)L=A+B+K1.当0≤T≤0.3时,K=02.对于铁材:a.当0.3≤T≤1.5时,K=0.4Tb.当1.5≤T≤2.5时,K=0.35Tc.当T>2.5时,K=0.3T3.对于其它有色金属材料如AL,CU:当T<0.3时,K=0.4T注:R≤2.0时,按R=0处理.2)一般折弯(R≠0θ=90°)L=A+B+K K值取中性层弧长1.当T≤1.5时λ=0.5T2.当T>1.5时λ=0.4T3)一般折弯(R=0θ≠90°)L=A+B+K’1.当T≤0.3时K’=02.当T<0.3时K’=(u/90)*K注:K为90∘时的补偿量4)一般折弯(R≠0θ≠90°)L=A+B+K1.当T≤1.5时λ=0.5T2.当T>1.5时λ=0.4TK值取中性层弧长注:当R≤2.0,且用折刀加工时,则按R=0来计算,A﹑B依倒零角后的直边长度取值5)Z折1(直边段差)1.当H>5T时,分两次成型时,按两个90°折弯计算2.当H≤5T时,一次成型,L=A+B+KK值依附件中参数取值6)Z折2(斜边段差)1.当H≤2T时,按直边段差的方式计算,即:展开长度=展开前总长度+KK=0.22.当H>2T时,按两段折弯展开(R=0θ≠90°).7)抽孔抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;一般抽孔,按下列公式计算,式中参数见右图(设预冲孔为X,并加上修正系数–0.1):1.若抽孔为抽牙孔(抽孔后攻牙),则S按下列原则取值:T≦0.5时取S=100%T0.5<T<0.8时取S=70%TT≧0.8时取S=65%T一般常见抽牙预冲孔按附件一取值2.若抽孔用来铆合,则取S=50%T,H=T+T’+0.4(注:T’是与之相铆合的板厚,抽孔与色拉孔之间隙为单边0.10~0.15)3.若原图中抽孔未作任何标识与标注,则保证抽孔后内外径尺寸4.当预冲孔径计算值小于1.0时,一律取1.08)反折压平L=A+B-0.4T1.压平的时候,可视实际的情况考虑是否在折弯前压线,压线位置为折弯变形区中部;2.反折压平一般分两步进行V折30°反折压平故在作展开图折弯线时,须按30°折弯线画。

(完整版)钣金件的展开计算---准确计算

图1
5. K-因子法
K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值。也是一个用于计算在各种材料厚度、折弯半径/折弯角度等广泛情形下的弯曲补偿(BA)的一个独立值。图4和图5将用于帮助我们了解K-因子的详细定义。
我们可以肯定在钣金零件的材料厚度中存在着一个中性层或轴,钣金件位于弯曲区域中的中性层中的钣金材料既不伸展也不压缩,也就是在折弯区域中唯一不变形的地方。在图4和图5中表示为粉红区域和蓝色区域的交界部分。在折弯过程中,粉红区域会被压缩,而蓝色区域则会延伸。如果中性钣金层不变形,那么处于折弯区域的中性层圆弧的长度在其弯曲和展平状态下都是相同的。所以,BA(折弯补偿)就应该等于钣金件的弯曲区域中中性层的圆弧的长度。该圆弧在图4中表示为绿色。钣金中性层的位置取决于特定材料的属性如延展性等。假设中性钣金层离表面的距离为“t”,即从钣金零件表面往厚度方向进入钣金材料的深度为t。因此,中性钣金层圆弧的半径可以表示为(R+t).利用这个表达式和折弯角度,中性层圆弧的长度(BA)就可以表示为:
例如,如果在某些手册或文献中描述中性轴(层)为“定位在离钣料表面0.445x材料厚度”的地方,显然这就可以理解为K因子为0.445,即K=0.445。这样如果将K的值代入方程(8)后则可以得到以下算式:
BA=A(0.01745R+0.00778T)
如果用另一种方法改造一下方程(8),把其中的常量计算出结果,同时保留住所有的变量,则可得到:
BA=A(0.01745R+0.01745K*T)
比较一下以上的两个方程,我们很容易得到:0.01745xK=0.00778,实际上也很容易计算出K=0.445。
仔细地研究后得知,在SolidWorks系统中还提供了以下几类特定材料在折弯角为90度时的折弯补偿算法,具体计算公式如下:

钣金折弯展开料尺寸的计算与钣金折弯展开计算方法

摘要总结常用的银金折弯展开料计算方法,运用软件结合计算分析这些常用方法的原理。

深入解析不同材料、不同折弯角度和不同折弯半径的银金折弯情况,得出公式精准计算各种展开料尺寸。

Ol序言银金工艺通常用于厚度6mm以下的金属板材加工。

要想折出尺寸精度较高的银金件,展开料尺寸的计算至关重要。

最常用的银金折弯都是90。

折弯,折弯内角半径通常等于板厚。

02展开料尺寸的第一种计算方法展开料尺寸的第一种计算公式为:展开料尺寸=折弯件的各边外形尺寸和一1.645x 板厚X折弯个数。

其中,1.645是折弯系数。

其适用于6mm以下金属板90。

折弯展开料尺寸计算(折弯内角半径等于板厚)。

我们在实际生产中曾多次验证过这个计算公式,使用不同的板材,折出来的零件尺寸公差都在零点几毫米以内,基本满足需求。

03展开料尺寸的第二种计算方法展开料尺寸的第二种计算公式为:展开料尺寸=折弯件各边内尺寸相加+QX折弯个数。

其中,Q为另一种折弯系数。

不同厚度板材的Q值不同(见表1)。

当TVlmm时,Q忽略不计。

表1板厚T和折弯系数Q对照表第二种计算方法同样能计算6mm以下金属板90。

折弯展开料尺寸(折弯内角半径等于板厚)。

04计算实例用两种方法计算图1所示同一折弯件的展开料尺寸,计算过程如下。

(1)方法一展开料尺寸=20+20—1.645x3x1=40-4.935=35.065(mm)。

(2)方法二展开料尺寸=17+17+lxl=35(mm)。

计算结果基本一样。

两种方法都可以用来快速计算90。

折弯,并广泛应用于生产实践中。

图1折弯件尺寸05运用三维软件模拟计算与分析为什么用这些方法能够算出展开料尺寸?是否能够更精确地计算出不同材料的展开料尺寸?我们知道,金属板材在折弯过程中,折弯角都要发生塑性变形,折弯的外圆角是拉伸,内圆角是挤压,这就使得在板材厚度方向上存在一个层,其在折弯过程中既不挤压,也不拉伸,折弯后的尺寸和展开尺寸一样,这一层叫做中性层。

钣金折弯展开的计算方法

钣金折弯展开的计算方法钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料厚度、材料热处理及加工折弯的角度。

展开计算原理:1、钣金在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。

2、中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动,中性层到板料内侧的距离用λ表示。

展开计算的基本公式:展开长度=料内+料内+补偿量1、一般折弯(R=0,θ=90°)L=A+B+K1)当0≤T≤0.3时,K=02)对于铁材:a、当0.3≤T≤1.5时,K=0.4Tb、当1.5≤T≤2.5时,K=0.35Tc、当T>2.5时,K=0.3T3)对于其它有色金属材料如Al,Cu:当T<0.3时,K=0.4T注:R≤2.0时,R=0处理2、一般折弯(R≠0,θ=90°)L=A+B+K,K值取中性层弧长1)当T≤1.5时,λ=0.5T2)当T>1.5时,λ=0.4T3、一般折弯(R=0,θ≠90°)L=A+B+K’1)当T≤0.3时,K’=02)当T>0.3时,K’=(u/90)*K注:K为90°时的补偿量4、一般折弯(R≠0,θ≠90°)L=A+B+K1)当T≤1.5时,λ=0.5T2)当T>1.5时,λ=0.4TK值取中性层弧长注:当R≤2.0,且用折刀加工时,则按R=0来计算,A、B依倒零角后的直边长度取值5、Z折1(直边段差)1)当H>5T时,分两次成型时,按两个90°折弯计算2)当H≤5T时,一次成型,L=A+B+KK值依附件中参数取值6、Z折2(斜边段差)1)当H≤2T时,按直边段差的方式计算,即:展开长度=展开前总长度+KK=0.22)当H>2T时,按两段折弯展开(R=0,θ≠90°)7、抽孔抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钣金展开相关知识及计算方法
一、展开计算原理
板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层,中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准。

中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大。

中性层位置逐渐向弯曲中心的内侧移动。

中性层到板料内侧的距离用A表示。

(图1)
二、折弯方法的确定
折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法。

单发冲床模具折弯的方式及精度是由模具来实现的。

因此只要做出合格的模具,就能够生产出合格的折弯产品。

而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数。

因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法。

1.一次一道弯。

此种折弯由普通通用折弯模来完成。

包括折直角,钝角和锐角。

(如图2)
2. 一次折两道弯--------压锻差。

此种折弯由专用特殊模来完成,但折弯难度比普通折弯大。

(如图3)
3. 压死边。

此种折弯也须用特殊模来完成。

(如图4)
4.大R圆弧折弯。

些种折弯如R在一定范围内,可用专用R模压成形,如R值过大,则须用小R模多次压制成形。

(如图5)
图5
这四种折弯的展开计算是不同的。

因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。

一般使用的NC数控折弯设备都是日本AMADA(天田)公司所生产的。

其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍。

如采用一次折一道弯的方法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1。

如图6:
折弯高度H的经验值根据产品形状有如下三种(以90度为例,钝角和锐角与直角相近相似):
1.简单的90度单边折弯。

(如图7)
如图7,此种折弯只需考虑下模V形槽中心到折弯机定位挡块的距离即可确定。

通常H值为
H≥3.5 T + R (R 在1mm 以下)
2.U形折弯。

如图8此种折弯的尺寸如过小,极易因无合适折弯模具而形成干涉。

因此两竖边的宽度L不能太小。

其一边竖边高度H也不能太大。

实际中可根据使用折弯模的形状做模拟确定,L,H值参考如下:
3.Z形折弯
如图9。

第一道弯曲后,折第二道弯曲时,折弯线到折弯机定位挡块的距离须大于等于V形槽中心到模具外侧距离L1和板厚t之和。

故H值为:
H≥5t+R(R在1mm 以下)
三、展开计算方法
1.90°折弯(一般折弯)
展开的长度为:L=LL+LS-2t +系数a
图11
如图11。

压死边是两层重叠在一起的折弯形状,通常用来起加强作用,因此2。

0mm以上的板很少见压死边。

它也需要用特殊折弯模具成形,而且要分为两道以上的工序才能成形,压死边折弯的展开长度计算公式为:
3.压筋
1)倾斜压筋
图12
如图12此压筋为一斜面,一般H值较小,其展开长的计算式
为:
L = A+B+C+0.2
注:A 、B 、C = 内尺寸,0.2=补偿值
2)直角压筋
图13
如图13压筋边为直立边,一般其C 值较大,展开长的计算式
为:
L = A+B+C-4T+2a+0.5
注: A 、B = 外尺寸
C = 包括两层板厚的高度
a = 90°折弯的系数
0.5 = 补偿值
3)平行压筋
图14
如图14,压筋最大值仅为H=2t ,其展开长度的计算式为:L =
A+B+H+0.2 注:A 、B =
内尺寸;
H = 压筋高度;
0.2= 补偿值。

*由于压筋高度主要靠增减压筋模具的调整片来保证,并且操作
员各自的经验不尽相同,因此有时会出现折弯后虽然高度达到要
求,但整体展开尺寸过大或过小的情况,这时要根据实际的偏差来调整。

4.锐角折弯
如图15,经验公式是一种内径算法,但此处的内径是折弯边内侧两面的虚交点到另一端的距离。

展开系数计算式如下:
K= 0。

4t x δ/90° (t<2.5)
但当t≥2。

5时,应用下列公式:
K= 0。

5t x δ/90° (t≥2.5)
故展开计算式为:
L= L1+L2+K
注:
L = 展开长度
L1、L2 = 内径尺寸
K= 展开系数
5.钝角折弯
图16
如图16,外尺寸b实际上等于内尺寸a 加上内侧角顶点到外侧顶点的一段平行距离l。

根据三角函数,l 的计算式为:
l = tg θ/2x t
故外径为:b = a + l
展开系数K的计算式为:
内径:K =θ/90°x 0.4t (t<2.5)
外径:K =δ/90°x 0.4t (t<2.5) 但当t≥2。

5时,应用下列公式:
内径:K =θ/90°x 0.5t (t≥2.5)
外径:K =δ/90°x 0.5t (t≥2.5)
6.圆弧R折弯
图17
如图17,R折弯的三种形状,其展开系数K的计算式如下:K= (2R·tanθ/2)-[лθ·( 2R - t)/360°] 注:
R= 折弯外径(外侧半径)
θ= 外侧角(180°-折弯角度)
л= 圆周率(取3.14)
t = 板厚
当θ=90°时,tanθ/2=l,因此上述公式可以简化如下:
K= 2R –л(2R-t)/4
求得展开系数K后,圆弧折弯的展开长度L计算公式为:
L=L1+L2+(L3+L4+···)-K
注:
L1、L2、L3、L4 =外径(到外侧虚交点的距离,切点到虚交点的距离可通过三角定律算出)
R折弯中有一种U形折弯,如下图,其形状我们可以将其看成两个90°R折弯的组合。

图18
因此,U形折弯的展开长度L的计算公式为:
L=L1+L2-2K
说明:R折弯的计算式只适用于铁板。

相关文档
最新文档