流体输送设备

合集下载

化工原理第二章流体输送设备

化工原理第二章流体输送设备

化工原理-第二章-流体输送设备一、选择题1、离心泵开动以前必须充满液体是为了防止发生()。

AA. 气缚现象;B. 汽蚀现象;C. 汽化现象;D. 气浮现象。

2、离心泵最常用的调节方法是()。

BA. 改变吸入管路中阀门开度;B. 改变压出管路中阀门的开度;C. 安置回流支路,改变循环量的大小;D. 车削离心泵的叶轮。

3、离心泵的扬程,是指单位重量流体经过泵后获得的()。

BA. 包括内能在内的总能量;B. 机械能;C. 压能;D. 位能(即实际的升扬高度)。

4、离心泵的扬程是()。

DA. 实际的升扬高度;B. 泵的吸液高度;C. 液体出泵和进泵的压差换算成液柱高度D. 单位重量液体出泵和进泵的机械能差值。

5、某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空计指示真空度很高,他对故障原因作出了正确判断,排除了故障,你认为以下可能的原因中,哪一个是真正的原因()。

CA. 水温太高;B. 真空计坏了;C. 吸入管路堵塞;D. 排出管路堵塞。

6、为避免发生气蚀现象,应使离心泵内的最低压力()输送温度下液体的饱和蒸汽压。

AA. 大于;B. 小于;C. 等于。

7、流量调节,离心泵常用(),往复泵常用()。

A;CA. 出口阀B. 进口阀C. 旁路阀8、欲送润滑油到高压压缩机的气缸中,应采用()。

输送大流量,低粘度的液体应采用()。

C;AA. 离心泵;B. 往复泵;C. 齿轮泵。

9、1m3气体经风机所获得能量,称为()。

AA. 全风压;B. 静风压;C. 扬程。

10、往复泵在启动之前,必须将出口阀()。

AA. 打开;B. 关闭;C. 半开。

11、用离心泵从河中抽水,当河面水位下降时,泵提供的流量减少了,其原因是()。

CA. 发生了气缚现象;B. 泵特性曲线变了;C. 管路特性曲线变了。

12、离心泵启动前____ ,是为了防止气缚现象发生。

DA 灌水;B 放气;C 灌油;D 灌泵。

13、离心泵装置中____ 的滤网可以阻拦液体中的固体颗粒被吸入而堵塞管道和泵壳。

11流体输送设备控制

11流体输送设备控制
22
容积式泵控制
• 容积式泵又称定排量式泵, 有各种类型。 • 根据机械运动方式的不同可分为往复式泵和旋转 式泵两大类。 • 往复式泵有活塞式、柱塞式等,旋转式泵有椭圆 齿轮式、螺杆式等。 • 容积式泵的运动部件与机壳之间的间隙很小(理 论上没有空隙),流体不能在缝隙中流动。因此 排量的大小只与泵的工作有关,而与管路系统特 性无关。 • 往复式泵只取决于它的冲程大小和单位时间内的 活塞往复运动次数,旋转式泵则仅取决于转速。
20
变频调速流量控制
• 采用变频调速控制方案时,在液体输送管线上 不安装控制阀,因此不存在阀门阻力损耗、机 械效率高,节能效果显著。 • 但采用变频调速,流量控制精度低。适合大功 率离心泵,并对流量控制要求低的场合使用。 • 这种方案技术较复杂,所需设备费用亦较高。 但由于节能效果显著,应用越来越多。 • 为提高采用变频调速流量控制精度,也可在管 道上串联控制阀。
H h1 hp h f hv
• H与离心泵输出流量Q之间的关系如图(b)中实线所示。
13
离心泵的工作点
• 管路特性与离心泵工作特性的交点 (A、B)是 离心泵的工作点。 • 随着控制阀开度的变化,管路特性也变化。 • 当控制阀开度增大时,阀门两端压差变小, 工作点从A向B移动[见图(b)],排出流量增大, 压头下降;反之,工作点从B向A移动
19
调节泵转速的流量控制
•上两种控制方案共同的特点是简单,但都存在泵效率 低、能耗大的问题,因此适合小功率应用场合。 •为提高泵效率,采用改变泵的转速的控制方案,即调 速控制。 •可采用的调速方法有: (1)当汽轮机为原动机时,采用调节导向叶片角度或 蒸汽流量。 (2)当用直流电动机为原动机时,采用电动调速装置。 (3)用交流电动机为原动机时,采用变频调速器。

化学工程手册.第6篇 .流体输送机械及驱动装置

化学工程手册.第6篇 .流体输送机械及驱动装置

化学工程手册.第6篇 .流体输送机械及驱动装置全文共四篇示例,供读者参考第一篇示例:化学工程是一门涉及化学反应、传热传质和流体输送等多方面知识的学科,其中流体输送机械及驱动装置是化学工程中至关重要的一部分。

流体输送机械主要包括泵、阀、管道等设备,其作用是将化工生产中需要输送的各种液体、气体或固体颗粒等介质从生产设备输送至下一个设备或储存容器中。

一、流体输送机械的种类1. 泵:泵是最常见的流体输送机械,其作用是将流体从低压区域输送至高压区域。

根据其工作原理和结构不同,泵可分为离心泵、容积泵等多种类型。

2. 阀:阀是控制流体流动的装置,根据阀门的不同结构和功能,可分为截止阀、调节阀、止回阀等。

3. 管道:管道是连接泵、阀、容器等设备的重要部件,主要起到传输介质、减少阻力和防止泄漏等作用。

二、流体输送机械的选型及运行原理1. 选型原则:在选择流体输送机械时,需要考虑介质的性质(如温度、粘度、腐蚀性等)、流量要求、压力要求、工作环境等因素,选择适合的设备。

2. 运行原理:泵主要通过机械转动或电动装置产生的动力,使叶轮旋转,吸入流体并通过管道输送;阀通过控制阀门的开闭状态来控制流体的流动;管道通过设计合理的布局和降低阻力来保证流体的顺畅输送。

三、传动装置的作用及种类1. 传动装置:传动装置是流体输送机械中的重要组成部分,其作用是将原动力(如电机、发动机等)的旋转运动转换成泵、阀等设备所需的线性或旋转运动。

2. 传动配件:传动装置主要包括齿轮传动、链传动、带传动等多种形式,其中齿轮传动常用于工作负载较大的场合,链传动适用于长距离输送,带传动适用于噪音和振动要求较高的场合。

流体输送机械及驱动装置在化工生产中发挥着不可替代的作用,正确选型和运行维护对于保证生产的顺利进行至关重要。

在化学工程手册中,对于流体输送机械及驱动装置的设计原理、选型方法、使用技巧等内容进行了详细的介绍,帮助工程师们更好地理解和运用这些设备,提高生产效率和安全性。

化工原理流体输送机械

化工原理流体输送机械

化工原理流体输送机械1. 引言化工过程中,涉及到大量的流体输送工作。

流体输送机械是一类用于输送、泵送、搅拌、混合等操作的设备。

本文将介绍化工原理中常用的流体输送机械,包括离心泵、齿轮泵、隔膜泵、搅拌器等。

2. 离心泵离心泵是一种常用的流体输送机械,它利用离心力将流体从低压区域输送到高压区域。

离心泵的工作原理是通过转子的旋转使得流体在离心力的作用下产生压力差,从而实现输送效果。

离心泵具有结构简单、造价低廉、输送流量大的优点,广泛应用于化工领域。

2.1 离心泵的结构离心泵主要由叶轮、泵壳、轴和轴承等部分组成。

叶轮是离心泵中最关键的部件,它负责将流体由低压区域吸入并输出到高压区域。

泵壳是离心泵的外壳,起到固定叶轮和导向流体的作用。

轴和轴承用于传输转子的动力,并保证转子的平稳运转。

2.2 离心泵的工作原理离心泵的工作原理是基于离心力的作用。

当叶轮旋转时,流体将沿着叶轮的轴向方向进入泵壳,然后受到叶轮的离心力的作用,沿着辐射方向产生压力差。

高压区域的流体将通过出口管道输出,形成流动。

离心泵的输出流量取决于叶轮的转速和叶片的数目,可以通过调节叶轮的转速和叶片的数目来控制流量大小。

3. 齿轮泵齿轮泵是一种常用的流体输送机械,它利用齿轮的旋转来实现流体的输送。

齿轮泵的工作原理是通过两个或多个齿轮的啮合来产生压力差,从而将流体从低压区域输送到高压区域。

齿轮泵具有结构紧凑、输送流量稳定的优点,适用于输送高粘度的流体。

3.1 齿轮泵的结构齿轮泵由齿轮、泵体和轴等部分组成。

齿轮是齿轮泵中最关键的部件,它负责将流体从低压区域吸入并输出到高压区域。

泵体是齿轮泵的外壳,起到固定齿轮和导向流体的作用。

轴用于传输齿轮的旋转动力。

3.2 齿轮泵的工作原理齿轮泵的工作原理是基于齿轮的旋转和啮合作用。

当齿轮旋转时,流体将被齿轮齿槽所包围,形成封闭的空间。

齿轮的旋转使得空间逐渐缩小,流体被压缩,并在齿轮齿槽的作用下产生压力差。

高压区域的流体将通过出口管道输出,形成流动。

《流体输送设备》课件

《流体输送设备》课件

控制系统 的组成: 包括传感 器、控制 器、执行 器等
传感器的 作用:检 测流体输 送设备的 运行参数, 如压力、 温度、流 量等
控制器的 作用:根 据传感器 检测到的 参数,控 制执行器 的动作, 实现对流 体输送设 备的控制
执行器的 作用:根 据控制器 的指令, 执行相应 的动作, 如调节阀 门开度、 改变泵转 速等
输送和储存
食用油输送: 使用流体输送 设备进行食用 油的输送和储

其他行业的应用案例
食品行业:输送牛奶、果汁、饮料 等 化工行业:输送化学原料、溶剂等
制药行业:输送药物、疫苗等
石油行业:输送原油、成品油等 建筑行业:输送混凝土、砂浆等 农业行业:输送肥料、农药等
01
流体输送设备的常见问题及解决方 案
流体输送设备的应用领域
石油化工行业:输送原油、成品油、天然 气等
食品饮料行业:输送果汁、牛奶等
电力行业:输送冷却水、循环水等
制药行业:输送药物、试剂等
冶金行业:输送铁矿石、钢水等
环保行业:输送污水、污泥等
流体输送设备的发展趋势
智能化:设备将具备自我诊断、自我调整和自我修复功能 节能化:设备将更加注重节能降耗,提高能源利用效率 环保化:设备将更加注重环保,减少对环境的污染 集成化:设备将更加注重集成化,提高设备的集成度和自动化程度
公司
流体输送设备PPT 课件大纲
单击此处添加副标题
汇报人:
目录
单击添加目录项标题
01
流体输送设备概述
02
流体输送设备的工作原理
03
流体输送设备的组成结构
04
流体输送设备的安装与调试
05
流体输送设备的应用案例

流体输送设备简介

流体输送设备简介

流体输送设备简介引言流体输送设备是一种用于将液体、气体或粉末等物质从一处转移到另一处的工程设备。

它们在许多工业领域中发挥着重要的作用,包括石油化工、能源、冶金、食品加工等行业。

本文将介绍流体输送设备的常见类型、基本原理和应用领域等方面的内容。

常见类型流体输送设备可以根据输送介质的形态和性质的不同,分为以下几种类型:1.泵:泵是将液体或气体从一处输送到另一处的设备。

常见的泵包括离心泵、容积泵和轴流泵等,它们通过旋转或压缩来提供动力,将介质推向输送管道。

2.阀门:阀门是一种控制流体流动的装置,在流体输送系统中起着重要作用。

常见的阀门类型包括截止阀、调节阀和安全阀等,它们通过打开或关闭来控制流量、压力和流体方向。

3.输送管道:输送管道是将液体、气体或粉末等物质从一处输送到另一处的通道。

它们可以是由金属、塑料或复合材料制成的管道,具有一定的耐压和耐腐蚀能力。

4.空气压缩机:空气压缩机是将气体压缩到一定压力的设备,常用于工业生产中的动力源。

它们通过旋转式或往复式压缩机将大量气体压缩为高压气体,用于供应给其他设备或使用。

基本原理流体输送设备的工作原理是根据流体力学和热力学定律进行设计和操作的。

以下是常见流体输送设备的基本原理:1.泵的工作原理:泵通过转动叶轮或柱塞等装置,将液体或气体从低压区域吸入,然后通过增加压力将其推向高压区域。

这种压力差驱动液体或气体在管道中流动,从而实现输送的目的。

2.阀门的工作原理:阀门通过改变阀门的开启程度来调节流体的流量和压力。

当阀门打开时,流体可以自由通过;当阀门关闭时,流体被阻断,阻止其流动。

3.管道的工作原理:管道是流体输送的通道,其内部设计使流体能够顺畅地流动。

管道通常具有一定的直径、长度和角度,以确保流体在输送过程中没有太大的阻力。

4.空气压缩机的工作原理:空气压缩机通过旋转或往复运动的活塞将气体压缩成高压气体。

压缩机内部的气体流动和压力变化使气体的温度升高,从而提供了输送和供应的能力。

流体输送设备

流体输送设备

流体输送设备第2章流体输送设备2.1 概述流体输送机械:为流体提供能量的机械或装置流体输送机械在化⼯⽣产的作⽤:从低位输送到⾼位,从低压送⾄⾼压,从⼀处送⾄另⼀处。

2.1.1 对流体输送机械的基本要求(1)满⾜⼯艺上对流量和能量的要求(最为重要);(2)结构简单,投资费⽤低;(3)运⾏可靠,效率⾼,⽇常维护费⽤低;(4)能适应被输送流体的特性,如腐蚀性、粘性、可燃性等。

2.1.2 流体输送机械的分类按输送流体的种类不同泵(液体):离⼼泵、往复泵、旋转泵风机(⽓体):通风机、⿎风机、压缩机,真空泵按作⽤原理不同:离⼼式、往复式、旋转式等本章主要讲解:流体输送机械的基本构造、作⽤原理、性能及根据⼯艺要求选择合适的输送设备。

2.2 离⼼泵离⼼泵是化⼯⽣产中最常⽤的⼀种液体输送机械,它的使⽤约占化⼯⽤泵的80~90%。

2.2.1 离⼼泵的⼯作原理和主要部件基本结构:蜗形泵壳,泵轴(轴封装置),叶轮启动前:将泵壳内灌满被输送的液体(灌泵)。

输送原理:泵轴带动叶轮旋转→液体旋转→离⼼⼒(p,u)→泵壳,A↑u↓p↑→液体以较⾼的压⼒,从压出⼝进⼊压出管,输送到所需的场所。

→中⼼真空→吸液⽓缚现象:启动前未灌泵,空⽓密度很⼩,离⼼⼒也很⼩。

吸⼊⼝处真空不⾜以将液体吸⼊泵内。

虽启动离⼼泵,但不能输送体。

此现象称为“⽓缚”。

说明离⼼泵⽆⾃吸能⼒。

防⽌:灌泵。

⽣产中⼀般把泵放在液⾯以下。

底阀(⽌逆阀),滤⽹是为了防⽌固体物质进⼊泵内。

2.2.2 离⼼泵的主要部件1. 叶轮叶轮是离⼼泵的最重要部件。

其作⽤是将原动机的机械能传给液体,使液体的静压能和动能都有所提⾼。

按结构可分为以下三种:开式叶轮:叶轮两侧都没有盖板,制造简单,效率较低。

它适⽤于输送含杂质较多的液体。

半闭式叶轮:叶轮吸⼊⼝⼀侧没有前盖板,⽽另⼀侧有后盖板,它适⽤于输送含固体颗粒和杂质的液体。

闭式叶轮:闭式叶轮叶⽚两侧都有盖板,这种叶轮效率较⾼,应⽤最⼴。

流体输送设备讲义

流体输送设备讲义

流体输送设备讲义一、流体输送设备的概念流体输送设备是一种用来输送液体或气体的机械设备,它们能够将流体从一处输送到另一处,以满足工业生产过程中的流体输送需求。

二、流体输送设备的分类1. 泵:泵是一种用来输送液体的设备,通过机械或电力的作用,将液体从低压区域抽送至高压区域。

2. 阀门:阀门是用来控制流体流动的设备,通过打开或关闭阀门来控制流体的流量和流速。

3. 管道:管道是用来输送液体或气体的通道,一般由金属、塑料或橡胶等材料制成,通过连接多段管道来完成流体输送的功能。

4. 压缩机:压缩机是一种用来压缩气体的设备,将气体从低压区域压缩至高压区域,以便于输送和使用。

三、流体输送设备的应用1. 工业生产:在化工、石油、食品、制药等行业中,流体输送设备被广泛应用于液体和气体的输送和控制。

2. 建筑工程:在建筑工程中,流体输送设备用于建筑物的供水、供暖和空调系统中。

3. 农业灌溉:在农业生产中,流体输送设备被用于灌溉系统的设计和建设,确保农田得到合适的水源供给。

四、流体输送设备的选型和维护1. 选型:根据具体的输送需求和流体性质,选择适合的泵、阀门、管道和压缩机,以确保流体输送设备能够满足工业生产需求。

2. 维护:定期检查和维护流体输送设备,保证其正常运行,避免故障和漏漏。

五、流体输送设备的发展趋势1. 智能化:流体输送设备的智能化趋势明显,通过传感器和控制系统实现设备的自动化操作和监控。

2. 节能环保:随着节能环保理念的普及,流体输送设备的设计和制造越来越注重节能和环保性能。

3. 高效化:流体输送设备的技术水平不断提高,以提高设备的输送效率和可靠性。

六、未来发展趋势随着科学技术的不断进步和工业生产的快速发展,流体输送设备将面临着新的挑战和机遇。

未来,流体输送设备有望在以下几个方面取得进一步发展:1. 新材料应用:随着新材料科技的不断发展,具有高强度、耐腐蚀和耐高温性能的新型材料将逐渐应用于流体输送设备的制造中,以提高设备的耐久性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章流体输送设备2.1 概述流体输送机械:为流体提供能量的机械或装置流体输送机械在化工生产的作用:从低位输送到高位,从低压送至高压,从一处送至另一处。

2.1.1 对流体输送机械的基本要求(1)满足工艺上对流量和能量的要求(最为重要);(2)结构简单,投资费用低;(3)运行可靠,效率高,日常维护费用低;(4)能适应被输送流体的特性,如腐蚀性、粘性、可燃性等。

2.1.2 流体输送机械的分类按输送流体的种类不同泵(液体):离心泵、往复泵、旋转泵风机(气体):通风机、鼓风机、压缩机,真空泵按作用原理不同:离心式、往复式、旋转式等本章主要讲解:流体输送机械的基本构造、作用原理、性能及根据工艺要求选择合适的输送设备。

2.2 离心泵离心泵是化工生产中最常用的一种液体输送机械,它的使用约占化工用泵的80~90%。

2.2.1 离心泵的工作原理和主要部件基本结构:蜗形泵壳,泵轴(轴封装置),叶轮启动前:将泵壳内灌满被输送的液体(灌泵)。

输送原理:泵轴带动叶轮旋转→液体旋转→离心力(p,u)→泵壳,A↑u↓p↑→液体以较高的压力,从压出口进入压出管,输送到所需的场所。

→中心真空→吸液气缚现象:启动前未灌泵,空气密度很小,离心力也很小。

吸入口处真空不足以将液体吸入泵内。

虽启动离心泵,但不能输送体。

此现象称为“气缚”。

说明离心泵无自吸能力。

防止:灌泵。

生产中一般把泵放在液面以下。

底阀(止逆阀),滤网是为了防止固体物质进入泵内。

2.2.2 离心泵的主要部件1. 叶轮叶轮是离心泵的最重要部件。

其作用是将原动机的机械能传给液体,使液体的静压能和动能都有所提高。

按结构可分为以下三种:开式叶轮:叶轮两侧都没有盖板,制造简单,效率较低。

它适用于输送含杂质较多的液体。

半闭式叶轮:叶轮吸入口一侧没有前盖板,而另一侧有后盖板,它适用于输送含固体颗粒和杂质的液体。

闭式叶轮:闭式叶轮叶片两侧都有盖板,这种叶轮效率较高,应用最广。

闭式或半开式叶轮的后盖板与泵壳之间的缝隙内,液体的压力较入口侧为高,这使叶轮遭受到向入口端推移的轴向推力。

可在后盖板上钻几个小孔,称为平衡孔平衡孔作用:消除轴向推动力。

(泵的效率有所下降)2. 泵壳离心泵的外壳多做成蜗壳形,其内有一个截面逐渐扩大的蜗形通道。

泵壳的作用:(1)汇集液体;(2)使部分动能有效地转化为静压能。

动能→静压能。

3. 轴封装置轴封装置的作用:避免泵内高压液体沿间隙漏出,或防止外界空气从相反方向进入泵内。

离心泵的轴封装置有填料密封和机械密封。

机械密封的效果好于填料密封。

2.2.3 离心泵的主要性能参数1. 流量(送液能力):单位时间内泵所输送的液体体积。

q v ,m 3/s ,m 3/h。

与叶轮尺寸、转速、管路特性有关。

2. 扬程(压头):单位重量液体流经泵后所获得的能量,H,m 。

与泵的结构、转速及流量有关。

H 用实验测定,3. 效率泵的效率就是反映能量损失的大小。

能量损失的原因(1)容积损失:泵的泄漏造成的。

容积效率η1。

(2)水力损失:由于流体流过叶轮、泵壳时产生的能损失。

水力效率η2。

(3)机械损失:泵在运转时,在轴承、轴封装置等机械部件接触 处由于机械磨擦而消耗部分能量,机械效率η3。

f H gu u g p p z z H ∑+-+-+-=2)(21221212ρ012h z z =-gp p h H ρ120-+=泵的总效率η(又称效率) η=η1×η2×η3对离心泵来说,一般0.6~0.85左右,大型泵可达0.904. 轴功率轴功率:泵轴所需要的功率,P kW有效功率:单位时间内液体从泵的叶轮所获得的有效能量。

PeP e = q v H ρgq v —泵的流量,m3/s ; H —泵的压头,m ;ρ—液体的密度,kg/m 3; g —重力加速度,m/s 2。

泵在运转时可能发生超负荷,所配电动机的功率应比泵的轴功率大。

在机电产品样本中所列出的泵的轴功率,除非特殊说明以外,均系指输送清水时的数值。

例2-1 某离心泵以20℃水进行性能实验, 测得体积流量为720m 3/h ,泵出口压力表数为3.82kgf/cm 2,吸入口真空表读数为210mmHg ,压力表和真空表间垂直距离为410mm ,吸入管和压出管内径分别为350mm 及300mm 。

试求泵的压头。

(能量损失可以忽略)2.2.4 离心泵的特性曲线及其影响因素1. 离心泵的特性曲线压头、流量、功率和效率之间的关系在一定转速下(1) H~ q v q v ↑, H ↓(2) P~ q v q v ↑, P ↑;q v =0 P=P min※启动离心泵时,为了减小启动功率,应将出口阀关闭。

(3) η~ q v q v =0 , η=0;离心泵的设计点:效率最高点。

高效率区: ηmax ×92% 铭牌:最高效率下的流量、压头和功率2. 影响离心泵性能的主要因素(1)液体物性对离心泵特性的影响①密度的影响 离心泵的压头、流量、效率均与液体的密度无关。

所以离心泵特性曲线中的H —q v 及η—q v 曲线保持不变。

但泵的轴功率与输送液体的密度有关。

密度 轴功率②粘度的影响 若被输送液体的粘度大于常温下清水的粘度,则泵体内部液eP P η=体的能量损失增大,因此泵的压头、流量都要减小,效率下降,而轴功率增大。

对小型泵的影响尤为显著。

(2)转速对离心泵特性的影响离心泵的特性曲线是在一定转速n 下测定的,当n 改变时,泵的流量、压头及功率也相应改变。

适用条件:同一型号泵、同一种液体,在效率η不变的前提下。

(3)叶轮直径对离心泵特性的影响当离心泵的转速一定时,通过切割叶轮直径D ,使其变小,也能改变特性曲线。

(称为切割定律)适用条件:同一型号泵、同一液体、同一转速 下直径D 的切割量小于5%。

例2-2 一水泵的铭牌上标有:流量36.2m 3/h ,扬程12m ,轴功率1.82kw ,效率65%,配用电机容量2.8kw ,转数1400rpm 。

今欲在以下情况下使用是否可以?如不可以,采用什么具体措施才能满足要求?(计数说明)(1)输送密度为1800kg/m3的溶液,流量为33m 3/h ,扬程为12m ;(2)输送密度为800kg/m 3的油品,流量为50m 3/h ,扬程为24m 。

2.2.5 离心泵的工作特点与流量调节1. 管路特性曲线——管路特性曲线2.工作点工作点:泵的特性曲线H-q v 与管路的特性曲线H- q v 的交点。

适宜工作点:工作点所对应效率在最高效率区。

3. 流量调节调节流量实质:改变离心泵的特性曲线或管路特性曲线,从而改变泵 的工作点的问题。

(1)改变管路特性曲线比例定律 312122121212)(,)(,12n n p p n n H H n n q q V V ===312122121212)(,)(,12D D P P D D H H D D q q V V ===f H g u g p z H ∑+∆+∆+∆=22ρg p z A ρ∆+∆=022≈∆gu f H A H ∑+=22e f l l u H d g λξ+∑⎛⎫∑=+∑ ⎪⎝⎭2452)(8V e f q d d l l g H ξλπ∑+∑+=∑2V f Bq H =∑2V Bq A H +=阀门开小:B↑曲线变陡q v↓H↑阀门开大:B↓曲线变平坦q v↑H↓特点:应用灵活,流量连续变化,能量损失大。

(2)改变泵的特性曲线——改变离心泵的转速或改变叶轮直径n ↑泵特性曲线向上移q v↑H ↑n ↓泵特性曲线向下移q v↓H↓(3)离心泵的并联与串联①离心泵的并联设将两台型号相同的泵并联于管路系统中,且各自的吸入管路相同。

在同一压头下,并联泵的流量为单台泵的两倍。

并联泵的工作点由并联特性曲线与管路特性曲线的交点决定。

并联后的总流量必低于单台泵流量的两倍,而且并联压头略高于单台泵的压头②离心泵的串联两台型号相同的泵串联操作时,每台泵的流量和压头也各自相同。

两台泵串联操作的总压头必低于单台泵压头的两倍。

③离心泵组合方式的选择对于管路特性曲线较平坦的低阻力型管路,采用并联组合方式可获得较串联组合方式为高的流量和压头;反之,对于管路特性曲线较陡的高阻力型管路,则宜采用串联组合方式。

P57例2-3,2-42.2.6 离心泵的汽蚀现象与安装高度1. 汽蚀现象当泵入口处的压力等于或低于输送温度下液体的饱和蒸汽压时,液体将在该处汽化,产生气泡。

含气泡的液体进入叶轮高压区后,气泡就急剧凝结或破裂。

因气泡的消失产生局部真空,此时周围的液体以极高的速度流向原气泡占据的空间,产生了极大的局部冲击压力。

在这种巨大冲击力的反复作用下,导致泵壳和叶轮被损坏,这种现象称为汽蚀现象。

汽蚀:当p1≤饱和蒸汽压危害:噪音、震动,流量、扬程明显下降避免:最低点压强>饱和蒸汽压产生原因:①Hg 高; ②泵吸入管路局部阻力过大 ; ③液体温度高 在0-0、1-1截面间列柏努力方程2. 离心泵的最大安装高度为了避免气蚀的发生,泵的安装高度不能太高,采用以下两种抗气蚀性能指标来限定泵吸入口附近的最低压力。

(1)气蚀余量(2)离心泵的允许吸上真空度Δh 和 :厂家——20℃清水做实验实际安装高度:应小于计算的(0.5-1)m 左右。

负值:表示在液面下。

提高H g :减少∑H f (吸入管阻力,减少弯头、阀门、增大吸入管直径) P61例2-5例2-3 用某台离心泵输送敞口水槽中40℃清水,泵入口中心线距水面以上4m ,泵入口管路的压头为1mH2O 。

所选用的泵汽蚀余量为2mH2O 。

当地大气压为0.1MPa 。

试问这个泵能否正常工作?解:40℃水饱和蒸汽压p ν=7.377kPa ,密度ρ=992.2kg/m3实际安装高度Hg=4m <6.51m ,故能正常工作例2-4若例2-2中的敞口水槽改为密闭水槽,槽内水面上压力为30 kPa ,试问这个泵能否正常工作?实际安装高度Hg=4m >-0.67m ,故不能正常工作g p g u g p h sρρ-+=∆)2(211f s H h g p g p Hg ∑-∆--=ρρ0max g p p H a s ρ1-='f s g H g u H H ∑--'=221max S H '2.2.7 离心泵的类型与选用1. 离心泵的类型按输送介质分:清水泵、耐腐蚀泵、油泵、杂质泵。

按叶轮吸入方式:单吸泵、双吸泵。

按叶轮数目:单级泵、多级泵。

(1)清水泵(IS型、D型、Sh型)输送物理、化学性质与清水类似的液体。

IS50-32-250 :IS——单级单吸悬臂式离心泵;50——泵吸入口直径(mm);32 ——泵出口直径(mm);250——叶轮直径(mm);适用:t≤80℃、q v:4.5—360m3/h、H:8—98m。

相关文档
最新文档