数值分析 期末复习(整理版)

合集下载

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

(完整版),数值分析笔记期末复习汇总,推荐文档

(完整版),数值分析笔记期末复习汇总,推荐文档

x
*n )
e(x *1)
f
(x *1,
x *2 ,, xn
x *n
)
e(x *n )
n i 1
f
(x *1, x *2 ,, x *n ) xi
e(x *i )
9、加减乘除运算的误差估计
加法

对 误
e(x1 x2 ) e(x1) e(x2 )



误 (x1 x2 ) (x1) (x2 )
x1
b
sign(b) 2a
b2 4ac 109
x1
x2
c a
x2
c a x1
109 109
1
求和时从小到大相加,可使和的误差减小。若干数相加,采用绝对值较小者先加的算法,
结果的相对误差限较小
y 54321100 0.4100 0.3100 0.4100 54322
(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)
则称 r (x*) 为近似值 x*的相
对误差限。 (2)性质:
当|| er (x*) | 较小时,可用下
是有量纲的。 (2)绝对误差限是正的,有无穷
常取
er
( x*)
e( x*) x*
式计算
绝对误差是误差的绝对值? 多个【则比 * 大的任意正数均
(错)
是绝对误差
限】
r
( x*)
(x*) | x |

x2* =3.14
作为 π 的近似值,则 | e2
| 0.00159
1 102 :三个有效数字 2

x3* =3.1416 作为 π 的近似值,则 | e3
| 0.00000734

数值分析期末复习

数值分析期末复习
18
有效数字
x=p =3.14159265…
按照四舍五入的原则可以得到x的前几位.
取3位x3*=3.14, e3*≤0.002, 取5位x5*=3.1416, e5*≤0.000008,
一般地,误差小于末位数字的半个单位
|p-3.14|≤0.5×10-2, |p -3.1416|≤0.5×10-4
28
引言
如果要求近似函数取给定的离散数据,则称之 为插值函数.实用上,我们常取结构相对比较简 单的代数多项式作为插值函数,这就是所谓的 代数插值. 本章先讨论代数插值,然后在此基础上进一步 研究所谓的样条插值.
29
引例
三角函数表的构造 如何用初等方法给出sin x在一系列点处的函 数值? 已知sin x在x=0,p/6,p/4,p/3,p/2等处的函数值. 将这些点处的函数值在图形上标出.
38
线性插值
问题 求作一次式 L1(x),满足条件 L1(xk)=yk, L1(xk+1)=yk+1, 从几何图形上看,y= L1(x)表示过两点(xk,yk), (xk+1,yk+1)的直线,因此可表为如下对称形式: L1(x)=yklk(x)+yk+1lk+1(x) 其中
En In In (1 nIn1) (1 nIn1)
n( In1 In1 )
nEn1
因此有En=(-1)nn!E0. 这说明第n步的误差是初始误差的n!倍. 下面的表给出了实际的误差.
12
例1的误差分析
n
In
En
n In
En
0 0.6321 2.056 10–5 5 0.1480 –2.467 10–3

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

数值分析_期末总复习-习题课.

数值分析_期末总复习-习题课.

2 0 2
矩阵A的特征值为 1 0, 2 1, 3 3
所以谱半径 A max0,1,3 3
简述题
1. 叙述在数值运算中,误差分析的方法与原则 是什么?
解:数值运算中常用的误差分析的方法有:概 率分析法、向后误差分析法、区间分析法等。
误差分析的原则有:1)要避免除数绝对值远 远小于被除数绝对值的除法;2)要避免两近数 相减;3)要防止大数吃掉小数:4)注意简化 计算步骤,减少运算次数。
,
(
x( A) 2
0).
1. 下列各数
都是经过四舍
五入得到的近似值,试指出它们有几位有效数字,
并给出其误差限与相对误差限。
解: 有 5 位有效数字,其误差限
,相对
误差限
有 2 位有效数字,
有 5 位有效数字,
例2 设有三个近似数 a 2.31,b 1.93,c 2.24,
它们都有三位有效数字。试计算 p=a+bc 的误差界, 并问 p 的计算结果能有几位有效数字?
n
Ln( x) f (xk) l k( x) k0
Rn(x)
f (x) Ln(x)
f (n1) ( ) (n 1)!
n1(
x),
其中lk(x)
n
j0
x xj xk xj
(k 0,1,...n)
jk
显然,如此构造的L(x) 是不超过n次多项式。当n=1时,称为线性插值。当n=2时,
称为抛物线插值。
解 pA 2.311.93 2.24 6.6332, 于是有误差界
(pA)
(a
A)
(bAc

A
(aA) bA (cA) cA (bA)
0.005 0.00( 5 1.93 2.24) 0.02585

数值分析笔记期末复习

数值分析笔记期末复习

第一章引论1、数值分析研究对象:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

2、数值分析特点:①面向计算机,要根据计算机特点设计切实可行的有效算法②有可靠的理论分析,能任意逼近并达到精度要求,对近似计算要保证收敛性和数值稳定性③要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存贮量,这也是建立算法要研究的问题。

④要有数值试验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。

3、数值分析实质:是以数学问题为研究对象,不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及理论。

4、用计算机解决科学计算问题通常经历以下过程实际问题--数学模型(应用数学)--数值计算方法--程序设计--上机计算结果(计算数学)5、误差来源及分类1.模型误差——从实际问题中抽象出数学模型2.观测误差——通过测量得到模型中参数的值(通常根据测量工具的精度,可以知道这类误差的上限值。

)要用数值计算方法求它的近似解,由此产生的误差称为(截断误差)或(方法误差)原始数据的输入及浮点数运算过程中都有可能产生误差,这样产生的误差称为舍入误差6、五个关于误差的概念5.有效数字(1)定义:若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。

注意:近似值后面的零不能随便省去!2≤⨯1102≤⨯10.00000734102≤⨯(3)性质:(1)有效数字越多,则绝对误差越小 (2)有效数字越多,则相对误差越小有效数字的位数可刻画近似数的精确度! 6、一元函数的误差估计问题:设y =f (x ),x 的近似值为x *,则y 的近似值 y *的误差如何计算?(*)(*)(*)(*)e y dy f x dx f x e x ''≈=≈ (*)(*)(*)e y f x e x '≈ *(*)(*)(*)(*)r r x e y f x e x f x '≈故相应的误差限计算如下(*)(*)(*)y f x x εε'≈ *(*)(*)(*)(*)r r x y f x x f x εε'≈ 7、二元函数的误差估计问题:设y=f(x1, x2), x1, x2的近似值为x1*, x2* ,则y 的误差如何计算?**121212(*)*(,)(,)(*,*)e y y y f x x f x x df x x =-=-≈12121212(*,*)(*,*)(*)(*)f x x f x x e x e x x x ∂∂=+∂∂(*)(*)*(*)(*)(*)(*)(*)r r dy f x e x x e y f x e x y f x f x ''≈≈=1212121212121212(,)(,)(*,*)(*,*)(*)()()(*)(*)f x x f x x f x x f x x e y e x e x e x e x x x x x ∂∂∂∂=+≤⋅+⋅∂∂∂∂故绝对误差限为12121212(*,*)(*,*)(*)(*)(*)f x x f x x y x x x x εεε∂∂=+∂∂8、多元函数的误差估计121211121(*,*,,*)(*,*,,*)(*)*(*)(*)(*,*,,*)(*)n n n nnn i i i f x x x f x x x e y y y e x e x x x f x x x e x x =∂∂=-=++∂∂∂=∂∑9、加减乘除运算的误差估计(1)定义:初始数据的误差或计算中的舍入误差在计算过程中的传播,因算法不同而异。

数值分析期末复习(整理版)

数值分析期末复习(整理版)

Chapter 1 误差误差限计算、有效数字分析•绝对课差址t洵准确俏”*为工的-个近似偵「称T —工対近似偵.T '的絶村谋差,简厳供邛*可简记为E.|g(T)|=| T —*|兰£(/)数值貞门称为T的11绐对误差限或误差限*l『*、F(x ) x —x E© ) = —=——为近似值/的担zt溟誉可简{己址•有效数字若才作加的近tilt其鲍对误差的绝对值不超过某一位数字的半个单恆,而该位数字到F的第—位非零数字共有斤位關称用F近恤时具有血有效做字'简称丫有畀位有效数字.Chapter 2插值法差值条件(唯一性)1、拉格朗日差值a) 插值基函数b) 差值余项2.2拉格朗曰抽值2.2.1基函数考虑最简单、晟舉本的骼值问起+ 求押次插值家项式『低)…肋,便加滿足播值条伸可知,除斗点外.其余都星”.巧的零点■械可诛< (A) ^.4(X 一%[…(-V址 d 為"* <A -A;)X)=A(X - J- (A- - \_, )(.Y -J)其中M为常數.由&工戶1町得』=-------------------- -----------------(閔円)心7冷K%-咖卜-a -斗)和対讼>:T^V为准确血"为玄的一个近似伉称relativeerror称之为拉厳朗LI垒曲绘都是M次帝项武.. 2.1.2拉榕朗n插佢雾项式利用拉辭朗H皋啦数/态人构造次数不趙过"的雾项式£(巧二必机朗+^( v) + •…I J;/,(.v) = £昭(曰可知其搆足7韩为拉格阴Id插说饕砂式.再由插菽牟嘶的唯亠杵“ 鲁 D I特别地*造时又叫钱件擂僮其几何童又为过两点的直级-当*匸2时又叫拋物<线)掩值•具几何鳶义为过三点的拋物线.滾丘阖淘若取人1).伸伏=札1*…飒由插痕参项式的唯一性有£址工)# =x\ k= 0」厂』特别当k-OfiL就得到£佃-1□则铉格朗U的丄抚抽值雾项式为V)= j^(j(X> + I'Jj (x> + j/2(.v) * MQO=(2)弓…仗扣讪—协-町H^)xll(A + l)(r-JX^ 4}+3x —(x H)(x-LXx-3) 8 15■裁1M T-3X V-4)+^X HX A-1M A4)+ l(.v+lX.v-lXr-3)+ 3)a 1已知$ =五,耳=4眄=S.用皴件插值f即一次插惟藝坝如历的近似值.解片=2・曲=3•菇函数付别为:t-9 1 x-4 I4(J)=——=—(x-9j, Zjx)=——= -{x -4)砂14-9 5尸门9-4 5播債孝项式为V)-片fj.i) +」'占(巧-2x^(.v 夕”:(* 4)---(.V 4 J -4)(- (X + fr))所以乔金厶⑺二空R点5使2求过啟-1,-毎川』人(乱-创*(4」)的抛物线播值(即三次插値务项式).蔦-U 斗=-t t A|二L x2=3»A3- 4以为苗点加墓函.数分别为:厶何」匸迪住1±J (.r +lXA -3}(x-4)1(1 ► 1)(1-3)(1- 4J 12心)」:十汽-1年¥二Uw心一ncz (34-1X3-1X3-4) K=⑴】心-叭7= *十叫讣7】(4 + IX4-1X4-3) 152.23極値肇项M tt'r滾^Ji n(x)=f(x)兀糾也称为"次1川甘"叱插伯赛境式的余坝。

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 1 误差
误差限计算、有效数字分析
Chapter 2 插值法
差值条件(唯一性)
1、拉格朗日差值
a)插值基函数
b)差值余项
2、牛顿插值
构造差商表
3、埃尔米特插值
构造三次埃尔米特插值多项式如下
4、分段低次插值
5、三次样条插值(概念)
Chapter 3 函数逼近与曲线拟合(送分)1、最小二乘法写出法方程
2、范式计算(向量、矩阵)Chapter 4 数值积分与数值微分
1、梯形公式、辛普森公式
2、代数精度判断
3、龙贝格求积公式
4、高斯求积公式
5、高斯-勒让德求积公式
6、数值微分了解即可
Chapter 5解线性方程组的直接方法
1、消元法
2、LU分解法
Chapter 6解线性方程组的迭代法
1、雅克比迭代法、高斯-塞德尔迭代法公式(会写)
2、给迭代公式,判断收敛性,谱半径。

Chapter 7非线性方程求根
1、二分法(先判断有根区间)
2、迭代的收敛性
3、牛顿迭代法(代公式)
Chapter 9常微分方程初值问题数值解法
1、公式计算:四种,欧拉公式、改进的欧拉公式、隐式、梯形公式
2、判断局部截断误差(泰勒公式)
3、单步法的收敛性和稳定性分析
4、。

相关文档
最新文档