【冀教版】九年级上册数学:第23章-数据分析导学案 23.1平均数与加权平均数(2)
九年级数学上册 23.1 平均数与加权平均数课堂导学案 (新版)冀教版

23.1 平均数与加权平均数能力点1求一组数据的平均数题型导引根据平均数的定义,求一组数据的平均数,或利用平均数求一组数据中的某一个未知数据.【例1-1】求下列各组数据的平均数. (1)5,3,7,8,2;(2)71,69,72,74,66,65,70,73.分析:(1)组中的几个数,大小比较分散,可选用定义法; ( 2 )组中的数均接近70 , 可用新数据法.解:(1)=15×(5+3+7+8+2)=15×25=5.(2)把这组数据中的每个数据都减去70,则得到一组新数据:1,-1,2,4,-4,-5,0,3.则=70+1-1+2+4-4-5+0+38=70+0=70.规律总结当一组数据中的各个数的大小比较分散时,可选择定义法;当一组数据中的各个数都接近某一数值时,可先计算出每个数与该数的差的平均数,然后再加上该数,即为所求的平均数.【例1-2】某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89,92,92,95,95,96,97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为________.解析:先将最高分97分和最低分89分去掉,然后求剩余数的平均数为: 92×2+95×2+96×12+2+1=94(分).答案:94分规律总结具体问题中的平均数,我们要根据题意选取合适的数据,然后利用平均数的概念,进行计算.【例1-3】数据1,2,x ,-1,-2的平均数是0,则x 的值是( ) A .0B .2C .3D .4解析:由已知得1+2+x -1-25=0,解得x =0.答案:A规律总结已知一组数据的平均数,求其中的未知数据时,常采用方程思想,在本题中根据平均数的计算公式列方程,从而求出x 的值即可.变式训练1.(1)15,23,17,18,22的平均数是________.(2)在一次实验中,10架某种飞机的最大飞行速度分别是(单位:m /s)422,423,412,431,418,417,425,428,413,441.这些飞机的平均最大飞行速度是________.2.某歌曲比赛初选中,10名评委给一位歌手打分如下:9.79,9.67,9.87,9.95,9.78,9.68,9.57,9.89,9.85,9.82.若去掉一个最高分和一个最低分,这名歌手最后得分是( )A .9.80B .9.79C .9.78D .9.763.已知一组数据7,6,x ,9,11的平均数是9,那么数x 等于( ) A .3 B .10C .12D .9分析解答1.(1)解析:利用算术平均数的一般解法计算即可. 由平均数定义得=15(15+23+17+18+22)=19. 答案:19(2)解析:我们观察数据发现,这些数据都在420左右波动,我们不妨把原数据都减去420得到一组新数据:2,3,-8,11,-2,-3,5,8,-7,21,这些新数据的平均数容易求得,′=110×(2+3-8+11-2-3+5+8-7+21)=3,于是原数据的平均数为=′+420=423(m /s). 答案:423m /s2.解析:去掉一个最高分和一个最低分,该选手的有效分数为8个评委给出,计算8个人的平均分为(9.79+9.67+9.87+9.78+9.68+9.89+9.85+9.82)÷8≈9.79(分).答案:B3.解析:15×(7+6+x +9+11)=9,解得x =5×9-7-6-9-11=12.答案:C能力点2用加权平均数解决问题题型导引对于一组数据,如果其权重不同,所关注的方面不同,得到的结论是不同的.【例2】一家外贸公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩如下:应试者听说读写甲73 80 85 82乙85 83 78 75(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,应该录用谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按2∶2∶3∶3的比确定,应该录用谁?分析:(1)这家公司按照3∶3∶2∶2的比确定听、说、读、写的成绩,说明各项成绩的“重要程度”有所不同,听、说的成绩比读、写的成绩更加“重要”,计算两名候选人的平均成绩,实际上是求听、说、读、写四项成绩的加权平均数,3,3,2,2,分别是它们的权.(2)由于录取时侧重考虑笔译能力,所以在四项成绩的权的分配上与(1)有所不同,读、写的权大一些.解:(1)听、说、读、写的成绩按照3∶3∶2∶2的比确定,则甲的平均成绩为73×3+80×3+85×2+82×2=79.3(分),3+3+2+2乙的平均成绩为85×3+83×3+78×2+75×2=81(分).3+3+2+2显然,乙的成绩比甲的成绩高,所以从成绩看,应该录取乙.(2)听、说、读、写的成绩按照2∶2∶3∶3的比确定,则甲的平均成绩为73×2+80×2+85×3+82×3=80.7(分),2+2+3+3乙的平均成绩为85×2+83×2+78×3+75×3=79.5(分).2+2+3+3显然甲的成绩比乙的成绩高,所以从成绩看,应该录用甲.规律总结加权平均数,侧重不同的权重,计算的加权平均数的值不同,数据的权能够反映出数据的相对“重要程度”.变式训练1.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容∶演讲能力∶演讲效果=5∶4∶1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手 演讲内容 演讲能力 演讲效果 A 85 95 95 B958595请确定出两人的名次.2.某校规定学生期末数学总评成绩由下列三部分组成:考试成绩、课外作业、平时成绩,三部分所占比例如图所示.若小丽的这三项得分依次是94分,80分和86分,则她这个学期期末数学总评成绩是多少?分析解答1.分析:这个问题可以看成是求两名选手三项成绩的加权平均数,演讲内容∶演讲能力∶演讲效果=5∶4∶1,说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,5、4、1分别是三项成绩的权.解:选手A 的最后得分为:85×5+95×4+95×15+4+1=90.选手B 最后得分为95×5+85×4+95×15+4+1=91.可知选手B 获得第一名,选手A 获得第二名. 2.解:因为94×70%+80×10%+86×20%=91(分), 所以她这个学期期末数学总评成绩是91分.。
冀教版数学九年级上册23.1《平均数与加权平均数》教学设计

冀教版数学九年级上册23.1《平均数与加权平均数》教学设计一. 教材分析冀教版数学九年级上册23.1《平均数与加权平均数》是本册教材中的重要内容,主要让学生理解平均数的含义,掌握求平均数的方法,并引入加权平均数的概念。
通过本节课的学习,使学生能够熟练运用平均数和加权平均数解决实际问题。
二. 学情分析九年级的学生已经掌握了基本的数学运算能力和一定的解决问题的能力。
但是,对于平均数和加权平均数的概念和应用可能还比较陌生,需要通过实例和练习来加深理解和掌握。
三. 教学目标1.理解平均数的含义,掌握求平均数的方法。
2.引入加权平均数的概念,掌握加权平均数的求法。
3.能够运用平均数和加权平均数解决实际问题。
四. 教学重难点1.重点:平均数和加权平均数的求法。
2.难点:理解加权平均数的概念,掌握求加权平均数的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过实例和讨论来理解和掌握平均数和加权平均数的概念和应用。
六. 教学准备1.准备相关的实例和练习题。
2.准备课件和教学材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引入平均数的概念,例如:某班有30名学生,他们的身高分别是165cm,170cm,168cm,169cm,172cm,167cm,求该班学生的平均身高。
引导学生思考如何求解这个问题,从而引出平均数的概念。
2.呈现(10分钟)通过课件和讲解,呈现平均数的定义和求法,以及加权平均数的概念和求法。
举例说明,加深学生的理解。
3.操练(10分钟)让学生分组进行练习,每组选一个实例,求解平均数和加权平均数。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固所学知识。
教师选取一些题目进行讲解,纠正学生的错误。
5.拓展(10分钟)让学生思考如何将平均数和加权平均数应用到实际问题中,例如:统计学中的样本平均数、经济学中的加权平均成本等。
引导学生进行讨论,分享自己的观点。
九年级数学上册第23章数据分析23.1平均数与加权平均数(2)教案(新版)冀教版

23.1 平均数与加权平均数(2)教学目标【知识与能力】1.理解加权平均数的意义,了解“权”的含义.2.会计算一组数据的加权平均数.3.能说出算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.【过程与方法】1.在实际问题情境中理解加权平均数的意义,体会数学与生活之间的密切联系.2.通过利用平均数解决实际问题,发展数学应用能力.3.通过探索算术平均数和加权平均数的联系和区别,发展求同和求异思维.【情感态度价值观】1.通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.2.通过小组合作活动,培养学生的合作意识,激发学生学习兴趣,体验成功的快乐.教学重难点【教学重点】加权平均数的计算及算术平均数与加权平均数的区别和联系.【教学难点】探索算术平均数和加权平均数的联系和区别.课前准备多媒体课件.教学过程一、新课导入:导入一:复习提问:1.什么叫算术平均数?2.如何求一组数据的平均数?3.当一组数据中同一个数据出现多次时常采用什么简便方法计算?【师生活动】学生思考回答,教师点评.导入二:【课件展示】在一次数学考试中,八年级(1)班和(2)班的考生人数和平均成绩如下表:班级1班2班人数46 54平均成绩/分86 80【问题】1.表格中“86分”所反映的实际意义是什么?2.求这两个班的平均成绩.【师生活动】学生思考后小组合作交流,小组代表发言,教师展示学生可能出现的两种解法,引导学生对比、思考,得出正确的解法,教师导出新课.[设计意图]通过复习算术平均数的概念,做好新旧知识的衔接,以贴近学生实际生活的实例导入新课,渗透“权”的意义,激发学生的学习兴趣,体会数学与生活之间的密切联系,迈上从“算术平均数”到“加权平均数”的一个台阶,让学生顺利完成新知识的构建,为本节课的学习做好铺垫.二、新知构建:共同探究加权平均数的概念【课件展示】假期里,小红和小惠结伴去买菜,三次购买的西红柿价格和数量如下表:单价/(元/千克) 4 3 2 合计小红购买的数量/kg1 2 3 6小惠购买的数量/kg2 2 2 6从平均价格看,谁买的西红柿要便宜些?思路一【师生活动】学生思考后小组合作交流解题思路,独立完成解答过程,小组代表展示,教师点评.【课件展示】解:x̅小红=4×1+3×2+2×31+2+3=166≈2.67(元/千克),x̅小惠=4×2+3×2+2×22+2+2=186=3(元/千克).从平均价格看,小红买的西红柿要便宜些.追加提问:1.有的同学认为每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克).这样解答是否正确?为什么?2.有的学生是这样思考的:购买的总量虽然相同,但小红花了16元,小惠花了18元,所以平均价格不一样,小红买的西红柿要便宜些.这样的想法正确吗?为什么?3.如果小红三次购买的数量分别为2,1,3,小惠三次购买的数量分别为1,3,2,她们购买的西红柿的平均价格分别是多少?4.通过上面的计算,小红和小惠每次购买西红柿的数量不同,所求的平均数是否相同?【师生活动】学生思考、计算、回答,教师点评,引导出“权”的概念.思路二【课件展示】思考小亮和小明的下列说法,你认为他们谁说得对?为什么?小亮的说法:每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克).小明的说法:购买的总量虽然相同,但小红花了16元,小惠花了18元,所以平均价格不一样,小红买的西红柿要便宜些.【师生活动】小组内合作交流,判断两个人的说法谁正确,教师对学生的回答进行点评,并引导学生通过计算平均数比较谁买的西红柿更便宜,学生独立完成计算平均数的过程,教师点评.【课件展示】小红购买不同单价的西红柿的数量不同,所以平均价格不是三个单价的平均数.实际上,平均价格是总花费金额与购买总量的比,因此,x̅小红=4×1+3×2+2×31+2+3=166≈2.67(元/千克),x̅小惠=4×2+3×2+2×22+2+2=186=3(元/千克).从平均价格看,小红买的西红柿要便宜些.追加思考:1.如果小红三次购买的数量分别为2,1,3,小惠三次购买的数量分别为1,3,2,她们购买的西红柿的平均价格分别是多少?2.通过上面的计算,小红和小惠每次购买西红柿的数量不同,所求的平均数是否相同?【师生活动】学生思考、计算、回答,教师点评,引导出“权”的概念.[设计意图]通过解决生活实际问题,引导学生思考重要性的差异对平均数的影响,为加权平均数概念的形成做好铺垫,在探究过程中,充分发挥学生的主观能动性,让学生积极思考,合作交流,在数学活动中逐步形成概念.形成概念【课件展示】已知n个数x1,x2,…,x n,若w1,w2,…,w n为一组正数,则把x1w1+x2w2+…+x n w nw1+w2+…+w n叫做n个数x1,x2,…,x n的加权平均数,w1,w2,…,w n分别叫做这n个数的权重,简称为权.教师提问:1.在“共同探究”中,加权平均数是多少?哪些数是权?(小红购买的西红柿平均价格约为2.67元/千克,它是数4,3,2的加权平均数,三个数的权分别为1,2,3)2.你能举出用加权平均数计算平均数的生活实例吗?【师生活动】学生小组合作交流,创设不同的求平均数的生活情境,小组代表展示问题后,其他学生完成解答,教师进行点评,以鼓励学生的参与为主.[设计意图]教师设计开放性题目,学生通过合作交流,共同创设问题情境,体会“权”对平均数的影响,加深学生对加权平均数的理解,提高学生的发散性思维,达到学生数学能力的提升.例题讲解【课件展示】(教材7页例1)某学校为了鼓励学生积极参加体育锻炼,规定体育科目学期成绩满分100分,其中平时表现(早操、课外体育活动)、期中考试和期末考试成绩按比例3∶2∶5计入学期总成绩.甲、乙两名同学的各项成绩如下:学生平时表现/分期中考试/分期末考试/分甲95 90 85乙80 95 88分别计算甲、乙的学期总成绩.【师生活动】学生独立完成后,小组内交流答案,小组代表板书解答过程,教师在巡视过程中帮助有困难的学生,对学生的展示进行点评.【课件展示】解:三项成绩按3∶2∶5的比例确定,就是分别用3,2,5作为三项成绩的权,用加权平均数作为学期总成绩.甲的学期总成绩为95×3+90×2+85×53+2+5=89(分),乙的学期总成绩为80×3+95×2+88×53+2+5=87(分).【思考】1.分配的“权”不同,甲、乙二人的总成绩是否发生变化?2.算术平均数和加权平均数的区别和联系是什么?【师生活动】学生小组合作交流,教师对有困难的学生进行引导思考,对学生的回答进行点评并补充完整.【课件展示】算术平均数与加权平均数的区别和联系:区别:由于权的不同导致结果不同,所以权的差异对结果有影响.联系:算术平均数是加权平均数各项的权都相等的一种特殊情况.[设计意图]通过计算加权平均数解决实际问题,让学生再次体会到“权”的重要性,发展数学应用能力,培养学生归纳总结能力.做一做【课件展示】某电视节目主持人大赛要进行专业素质、综合素质、外语水平和临场应变能力四项测试,各项测试均采用10分制,两名选手的各项测试成绩如下表所示:测试项目专业素质综合素质外语水平临场应变能力测试成绩/分甲9.0 8.5 7.5 8.8 乙8.0 9.2 8.4 9.0(1)如果按四项测试成绩的算术平均数排名次,名次是怎样的?(2)如果规定按专业素质、综合素质、外语水平和临场应变能力四项测试的成绩各占60%,20%,10%,10%计算总成绩,名次有什么变化?【师生活动】学生独立完成后,小组内交流答案,教师在巡视过程中帮助有困难的学生,小组代表板书解答过程,教师点评.(板书)解:(1)甲、乙各项成绩的算术平均数分别为:x̅甲=9.0+8.5+7.5+8.84=8.45(分),x̅乙=8.0+9.2+8.4+9.04=8.65(分).比较算术平均数,乙排名第一,甲排名第二.(2)甲、乙的加权平均成绩分别为:x̅甲=9.0×60%+8.5×20%+7.5×10%+8.8×10%=8.73(分),x̅乙=8.0×60%+9.2×20%+8.4×10%+9.0×10%=8.38(分).比较加权平均数,甲排名第一,乙排名第二.提问:1.按照算术平均数和加权平均数的计算方法分别求平均数,对排名有影响吗?2.按算术平均数排名和加权平均数排名有什么区别?【师生活动】学生思考回答,教师点评并补充,让学生理解权的意义.归纳:按测试成绩的算术平均数排名次,实际上是将四项测试成绩同等看待.而按加权平均数排名次,则是对每项成绩分配不同的权,体现每项成绩的重要程度不同.如专业素质成绩的权重为60%,说明专业素质对主持人最重要.当各数据的重要程度不同时,一般采用加权平均数作为一组数据的代表值.[设计意图]通过做一做,进一步理解加权平均数的意义,体会权的重要性,加深对加权平均数和算术平均数的区别的理解和掌握,提高学生应用意识.[知识拓展]1.数据中的“权”反映数据的相对“重要程度”,其表现形式有:数据所占的百分比、各个数据所占的比值,数据出现的次数.权越大,该数据所占的比重越大,反之则越小.2.算术平均数是加权平均数的一种特例.加权平均数的实质是考虑不同权重的平均数,当加权平均数的各项权相同时,就变成了算术平均数.三、课堂小结1.加权平均数的概念.2.权的意义:权代表重要程度.3.算术平均数与加权平均数的区别和联系.4.计算加权平均数.5.加权平均数在实际问题中的应用.。
初中数学冀教版九年级上册第二十三章 数据分析23.1 平均数与加权平均数-章节测试习题(6)

章节测试题1.【题文】某学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1:3:6的比计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表:体育成绩德育成绩学习成绩小明96 94 90小亮90 93 92请计算他们的综合成绩,并判断谁能拿到一等奖.【答案】【分析】【解答】小明的综合成绩为(分)小亮的综合成绩为(分)∵92.1>91.8∴小亮能拿到一等奖.2.【答题】某市连续6天的最高气温为28℃,27℃,30℃,33℃,30℃,32℃.这组数据的平均数是()A. 28℃B. 29℃C. 30℃D. 32℃【答案】C【分析】3.【答题】数名射击运动员第一轮比赛成绩如下表:环数7 8 9 10人数4 2 3 1那么,他们本轮比赛的平均成绩是()A. 7.8环B. 7.9环C. 8.1环D. 8.2环【答案】C【分析】【解答】4.【答题】某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%已知小明的两项成绩(百分制)依次是80分、90分,则小明这学期的数学成绩是()A. 80分B. 82分C. 84分D. 86分【答案】D【分析】【解答】5.【答题】某班一共有50名学生,平均身高为,其中30名男生的平均身高为,则20名女生的平均身高为______.【答案】140【解答】6.【答题】小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分.若依次按照2:3:5的比例确定成绩,则小王的成绩是______分.【答案】86【分析】【解答】7.【题文】随着人们的生活水平的提高,家用轿车越来越多地进入家庭小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表).以为标准,多于的记为“+”,不足的记为“-”,刚好的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程8 -11 -14 0 -16 +41 +8(1)请你用所学的统计知识,估计小明家一个月(按30天计)要行驶多少千米?(2)若每行驶需用汽油,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用.【答案】解:(1),∴(km).(2)(元).【分析】8.【题文】某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如下表:面试笔试成绩评委1 评委2 评委392 88 90 86(1)请计算小王面试的平均成绩;(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.【答案】解:(1)(分).故小王面试的平均成绩为88分.(2)(分).故小王的最终成绩为89.6分.【分析】【解答】9.【题文】小林第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分如果按照平时考试成绩、期中考试成绩、期末考试成绩的权重分别为10%,30%,60%计算,那么小林该学期数学书面测验的总评成绩为多少分?【答案】解:平时考试成绩的平均分为(分).∴总评成绩为(分).∴小林该学期数学局面测验的总评成绩为87分.【分析】【解答】10.【题文】学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩,小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,则这学期谁的数学总评成绩最高?平时作业期中考试期末考试小明96 94 90小亮90 96 93小红90 90 96【答案】解:小明:,小亮:,小红:.∵,∴小亮成绩最高.答:这学期小亮的数学总评成绩最高.【分析】【解答】11.【题文】自1996年起,我国确定每年3月份最后一周的星期一为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如下表:项目演讲内容演讲技巧仪表形象甲95 90 85乙90 95 90如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?【答案】解:甲的得分为(分),乙的得分为(分).∵,∴甲的成绩更高.【分析】【解答】12.【答题】有一组数据:2,5,5,6,7,这组数据的平均数为()A. 3B. 4C. 5D. 6【答案】C【分析】【解答】13.【答题】某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是______分.【答案】88【分析】【解答】14.【答题】某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是______分.【答案】90【分析】【解答】15.【答题】(2020独家原创试题)某校打算组织校运动会,观察了连续7天的最高气温,分别为28℃,27℃,30℃,33℃,30℃,30℃,32℃,则这组数据的平均数是()A. 28℃B. 29℃C. 30℃D. 32℃【答案】C【分析】【解答】.选C.16.【答题】若一组数据1,4,7,x,5的平均数为4,则x的值是()A. 7B. 5C. 4D. 3【答案】D【分析】【解答】依题意,可知,解得x=3,选D.17.【答题】如果两组数据;的平均数分别为和,那么新的一组数据的平均数是()A. B. C. D.【答案】C【分析】【解答】,新的一组数据的平均数为,选C.18.【答题】在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,根据表中提供的数据,3号选手的成绩为______分.选手1号2号3号4号5号平均成绩(分)得分90 95 89 88 91【答案】93【分析】【解答】观察题中表格可知,这5名选手的平均成绩为91分,∴3号选手的成绩为(分).19.【答题】(2020山东东营期中)若3个数的平均数是44,且这3个数的比是2:4:5,则最大的数是______.【答案】60【分析】【解答】设这个三个数分别为2x,4x,5x,根据题意知,,解得x=12,则最大的数为,故答案为60.20.【答题】(2019山东淄博沂源期末)某居民小队为了了解本小区100户居民家庭平均月使用塑料袋的数量情况.随机调查了10户居民家庭月使用塑枓袋的数量(单位:只),结果如下15、20、35、24、36、28、24、42、32、44.根据统计情况,估计该小区这100户居民家庭平均月使用塑料袋的数量为______只.【答案】30【分析】【解答】估计该小区这100户居民家庭平均月使用塑料袋的数量为只.。
初三九年级数学学冀教版 第23章 数据分析 23.1 平均数与加权平均数23.1.3 求平均数的应用【教学设计】

求平均数的应用教学目标:1.使学生了解求平均数是统计的一种方法,在日常生活中有广泛应用。
2.使学生理解平均数的意义,掌握求简单平均数的方法。
3.培养学生分析和解决一些实际问题的能力。
教学重点和难点:求平均数和理解平均数的意义。
教具:多媒体课件。
教学过程:同学们,老师从海盐来,到了咱们嘉兴以后,老师想带点咱们嘉兴的土特产回去,想送给海盐的老师尝尝,你们能不能给老师介绍一下咱们嘉兴有哪些土特产,(……)。
咱们嘉兴的土特产还真多……一、谈话引入:教师刚买好了些五芳斋粽子,想送给两位老师,但感觉买的太少了,于是又去买了些。
二、概念建构:1、感知:但是没注意,买的只数不一样,12只,8只。
后来一想,要送给两位老师同样多的粽子,所以请同学们帮个忙,想个办法使两人收到的粽子同样多。
学生思考,想象移的过程。
移完了是怎样的?老师操作,并问:这个10是它们的什么数?(……)师:象这样通过移多补少,使不相同的几个数变的同样多,同样多的那个数就是这几个数的平均数。
今天我们就来研究平均数,好不好!揭题:“平均数”。
☆每次来到咱们嘉兴,总回想起我第一次来的情景,那次我才上一年级,我爸爸带我去公园,竟然没让我买全票,后来我才知道,原来120厘米以下不用买全票的,你们现在应该很高了吧!2、拓展:①师:你们知道自己的身高吗?谁愿意告诉大家你有多高?是多少厘米?②这么多同学愿意讲啊,我们抽一组,共请五个人。
③请生报身高,教师扳书。
如:128、132、137、138(135)④有135的同学吗,添上括号中的数。
⑤现在我们请这五位同学站到屏幕上来,请你观察一下,板书:“观察”,最高的是(),最低的是(),你能估计一下这五名同学的平均身高吗?。
板书:估计。
⑥可以先和旁边同学说说看!A、请几名同学猜。
B、你是怎么想的。
C、那么这五名同学确切的平均身高到底是多少呢?D、那么你能想出什么办法?……(就按你想出来的办法办)。
⑦请生计算好后问:是多少厘米?(问2—3个同学),请生肯定计算结果。
最新冀教版初中数学九年级上册精品教案23.1 平均数与加权平均数

第二十三章数据分析
23.1 平均数与加权平均数
第1课时算术平均数
┃教学整体设计┃
【教学目标】
1.了解算术平均数的概念,会求一组数据的算术平均数.
2.能利用算术平均数解决一些现实问题,发展学生的数学应用能力. 【重点难点】
重点:会求一组数据的算术平均数.
难点:体会平均数在不同情境中的应用.
┃教学过程设计┃
┃教学小结┃
【板书设计】
算术平均数
1.平均数的概念
2.平均数的作用和特点
3.平均数的缺点
【教学反思】
本节课充分利用学生的好奇心设疑、解疑,组织有效的教学活动,鼓动学生积极参与,大胆猜想,使学生在自主探索和合作交流中,观察猜测、交流讨论、分析推理、归纳总结,理解和掌握本节课的内容.
第2课时加权平均数
┃教学整体设计┃
【教学目标】
1.会求加权平均数,并体会权的差异对结果的影响.
2.理解算术平均数和加权平均数的联系和区别,发展学生的求同和求异思维. 【重点难点】
重点:1.会求加权平均数,并体会权的差异对结果的影响,认识到权的重要性.
2.探索算术平均数和加权平均数的联系和区别.
难点:探索算术平均数和加权平均数的联系和区别.
┃教学过程设计┃
┃教学小结┃
【板书设计】
加权平均数
1.加权平均数的意义
2.权的含义
3.加权平均数的计算
4.平均数与加权平均数的联系与区别
【教学反思】
通过教学,预定的目标已经达到,学生主动参与面广,学习兴趣浓,练习的达成度高,老师得到了解放,学生也得到了一次锻炼的机会,很多学生从自学中找到了自信,转变了自己的学习方式,从过度依赖老师转到了先自学再提问,培养了自己的自学能力与独立思考问题的能力.。
2024年冀教版九年级上册教学第二十三章 数据分析 第二十三章 数据分析

一、单元学习主题本单元是“概率与统计”领域“统计”主题中的“抽样与数据分析”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段统计与概率领域包括“抽样与数据分析”和“随机事件的概率”两个主题,其中“抽样与数据分析”这个主题强调从实际问题出发,根据问题背景设计收集数据的方法,经历更加有条理地收集、整理、描述、分析数据的过程,利用样本的平均数估计总体的平均数,利用样本的方差估计总体的方差,体会抽样的必要性和数据分析的合理性.通过学习“抽样与数据分析”这一内容,有助于学生感悟从不确定性的角度认识客观世界的思维方式和解决问题的方法,并能初步理解通过数据认识客观世界的意义,感受大数据时代的特征,发展学生的数据观念和模型观念.2.本单元教学内容分析冀教版教材九年级上册第二十三章数据分析,本章包括四个小节:23.1平均数与加权平均数;23.2中位数和众数;23.3方差;23.4用样本估计总体.“抽样与数据分析”主题通过用平均数、中位数和众数描述数据集中趋势——用方差刻画一组数据的离散程度——用样本估计总体,运用样本估计总体的统计基本思想,用样本的平均数或者方差估计总体的的平均数或者方差.平均数、中位数、众数都能描述数据的集中程度,但是描述的角度有所不同.平均数是其中最为广泛应用的数据,它能较好的代表一组数据的集中程度.在具体的实际问题中,我们还应该根据不同的情况具体分析,合理地运用平均数、中位数和众数.方差可以刻画一组数据的离散程度,可以用于描述产品质量、特殊人群的身高整齐程度以及某些技能水平发挥的稳定性等.在描述数据的特征时,应结合具体的情况,综合考虑数据的平均数和方差.当平均数相等时,可以利用方差比较其稳定性,得到最优选择方案.在用样本估计总体时,样本不同,得到的结果一般也不同.当样本容量足够大并且具有较好的代表性时,样本在一定程度上可以反应总体的数据特征,样本的平均数会在总体的平均数附近波动,样本的方差也会在总体的方差附近波动,样本容量越大,波动越小.通过对本章内容的学习,学生能体会抽样的必要性,并能通过实例认识简单随机抽样.学生从经历收集、整理、描述、分析数据的活动,了解数据的处理的过程,能根据问题的需要设计合适的调查问卷并会用简单随机抽样收集数据,并能根据统计图计算一组数据的中位数、众数、加权平均数,知道计算加权平均数的分布式计算方法,知道中位数、众数、平均数都能刻画这组数据的集中趋势以及它们各自的特点.会计算一组简单数据的方差,知道方差能刻画这组数据的波动程度,知道样本与总体的关系,能用样本平均数估计总体平均数,能用样本方差估计总体方差;能根据问题的需要提取中位数、众数、平均数、方差等数据的数字特征,能根据数据的数字特征解释或解决问题;能根据需要使用恰当的统计图表整理和表示数据,能根据统计图表分析随机现象的变化趋势.三、单元学情分析本单元内容是冀教版数学九年级上册第二十三章数据分析,学生在小学阶段已经学习了数据的收集、整理、描述、分析数据的简单方法,会定性描述简单随机现象发生的可能性的大小,已经初步建立了数据意识.本章对于学生来说,相对比较简单,本章通过实际问题的呈现,使得学生在解决实际问题时能够感受到平均数、中位数、众数、方差在描述数据特征时各自的特点.在本章的学习中,学生将学习简单的获得数据的抽样方法,在小学学习的基础上,进一步通过数据了解客观世界.通过对本章的学习,使得学生能够用平均数、中位数、众数、方差描述一组数据的特征,能够用样本估计总体.四、单元学习目标1.经历收集、整理、描述和分析数据的活动,了解数据处理的过程,能用计算器处理较为复杂的数据.2.进一步理解平均数、中位数和众数等统计量的意义,并会求一组数据的平均数、中位数和众数,增强学生的运算能力和数据意识.3.会计算加权平均数,理解“权”的意义,并能选择适当的统计量来表示数据的集中趋势.4.体会刻画数据离散程度的意义,理解方差的含义,并会计算简单数据的方差.5.体会样本和总体的关系,知道可以通过样本平均数、样本方差来估计总体的平均数和总体的方差.6.能对统计结果进行合理的解释,进而进行简单的判断和预测,并能进行交流,学生通过对本章的学习,能清晰地表达自己的观点,体会统计对决策的作用,增强学生的应用意识.五、单元学习内容及学习方法概览续表六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照新课程标准设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所收获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
冀教版数学九年级上册23.1《平均数与加权平均数》教学设计

冀教版数学九年级上册23.1《平均数与加权平均数》教学设计一. 教材分析冀教版数学九年级上册23.1《平均数与加权平均数》是本册教材中的一个重要内容。
本节内容主要介绍平均数和加权平均数的概念、性质和计算方法。
通过本节内容的学习,使学生能够理解平均数和加权平均数的实际意义,掌握它们的计算方法,并能运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的数学基础,对数学概念和运算有一定的理解。
但学生在学习过程中,可能对平均数和加权平均数的实际意义和应用还不够清晰,需要通过实例讲解和练习来加深理解。
三. 教学目标1.知识与技能:理解平均数和加权平均数的概念,掌握它们的计算方法。
2.过程与方法:通过实例分析和练习,培养学生的运算能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探讨的学习态度。
四. 教学重难点1.重点:平均数和加权平均数的概念、性质和计算方法。
2.难点:对平均数和加权平均数实际意义的理解和运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生主动探究;通过典型案例的分析,使学生理解平均数和加权平均数的实际意义;通过小组合作讨论,培养学生的合作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作相应的教学PPT,展示教材中的例题和练习题。
2.教学案例:准备一些与生活实际相关的案例,用于讲解和练习。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际案例导入本节课的内容。
例如,讲解一个班级在一次考试中的平均成绩,引发学生对平均数的兴趣。
2.呈现(15分钟)讲解平均数和加权平均数的概念、性质和计算方法。
以PPT的形式展示教材中的例题,并进行讲解。
3.操练(15分钟)让学生进行一些简单的练习题,巩固所学知识。
可以设置一些小组竞赛,激发学生的学习兴趣。
4.巩固(10分钟)讲解一些典型案例,使学生理解平均数和加权平均数的实际意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.1 平均数与加权平均数
学习目标:
1.理解平均数的实际意义,并且会运用平均数解决一些简单的实际问题.
2.会求加权平均数,并体会权的差异对结果的影响. 学习重点:理解加权平均数的意义. 学习难点:体会权的意义.
一、知识链接
1.数据2、3、4、5、6、7的平均数是____________.
2. 一次数学测验,3名同学的数学成绩分别是60,80和100分,则他们的平均成绩是多少? 列式 :_________________;
算式中的分子、分母表示的含义分别是______________________. 二、新知预习
3.小学所学过的平均数称为算术平均数,请你回忆、归纳出算术平均数的计算公式:一般地,我们把n 个数x 1,x 2,x 3, …,x n 和与n 的比,叫做这n 个数的算术平均数,简称为平均数,记做x ,即x =___________________.
4..
(1)下述计算方法是否合理?若不合理,并说一说正确的计算方法. 解:x =
1
4
(70+75+80+85)=77.5(g). 答:__________(填:“正确”或“不正确”).应先分别计算每一种鸭蛋的总质量,再相加得出这20个鸭蛋的总质量,然后除以鸭蛋的个数,得出这20个鸭蛋的平均质量.即x =________________________________.
(2)上述计算错误的原因是:因为每一种质量的______不同,即频数不同,它们对平均数的影响也不同,所以计算时应考虑每个数据的权重. (3)通过上述计算过程,归纳出含权重的平均数的计算公式:一般地,若n 个数x 1,x 2,…,x n 出现的次数分别是w 1,w 2,…,w n ,则x =_____________________________,此时的
平均数称为数据x 1,x 2,…,x n 的加权平均数,w 1,w 2,…,w n 分别叫做权重,简称权.如:此题中70,75,80,85的权分别____________. 三、自学自测
1.一次数学测验中,小强、小明、小月的考试成绩分别为110分、102分、91分,则他们的 平均成绩为_______.
2.一组数据:2、2、2、3、3、4、4、4、4,则2的权是______,3的权是________,4的权是 _______.
3.某人打靶,有1次中10环,2次中7环,3次中5环,则平均每次中靶________环. 四、我的疑惑
_____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________
合作探
一、要点探究
探究点1:平均数的计算
问题:某农科院为了寻找适合本地的优质高产小麦品种,将一块长方形试验田分成面积相等的9块,每块100m2,在土壤肥力、施肥、管理等都相同的条件下试种AB两个品种的小麦.小麦产量见如下的图表:
品种A A1A2A3A4A5
产量/kg 95 93 82 90 100
品种B B1 B2 B3 B4
产量/kg 94 100 105 85
(1)直接通过观察,能否看出哪个品种的小麦的产量更高?答:__________.
(2)要比较A,B两个小麦品种的单位面积产量,则需分别计算它们的平均产量,即
A 品种小麦的平均产量:________________________________________;
B 品种小麦的平均产量:________________________________________.
(3)如果只考虑产量这个因素,_____品种更适合本地种植.
【归纳总结】平均数是一组数据的代表,它反映了一组数据的“一般水平”.
【针对训练】
1.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89,92,92,95,95,96,97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为________.
2.已知一组数据7,6,x,9,11的平均数是9,那么数x等于()
A.3B.10C.12D.9
探究点2:加权平均数的相关计算
问题1:如果公司想招一名综合能力较强的翻译,请计算两名应试者的平均成绩,应该录用
应试者听说读写
甲85788573
乙73808283
(1)如果公司想招一名翻译能力较强的翻译,用算术平均数来衡量他们的成绩合理吗?_________
(2)作为笔译翻译,你认为“听、说、读、写”四个方面哪些能力更重要一些?_____________ (3)听、说、读、写的成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分判),应该录取谁?
解:四项成绩按2:1:3:4的比例确定,就是分别用2,1,3,4作为四项成绩的权,用加权平均
数作为应试者的平均成绩.
甲的平均成绩为:
乙的平均成绩为:
果______.当各数据的重要程度不同时,一般采用加权平均数作为一组数据的代表值.
问题2:某校规定学生期末数学总评成绩由下列三部分组成:考试成绩、课外作业、平时成绩,三部分所占比例如图所示.若小丽的这三项得分依次是94分,80分和86分,则她这个学期期末数学总评成绩是多少?
1.某中学规定:学生的学期体育综合成绩满分为100分.其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末体育成绩(百分制)分别是80分、90分,则小海这个学期体育综合成绩是________.
2.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容∶演讲能力∶演讲效果=5∶4∶1的比例计算选手的综合成绩(百分制)
请确定出两人的名次.
3.某公司考核把员工的笔试成绩、工作业绩两项成绩分别按40%,60%的比例计入年底考核的总成绩中.李明的工作业绩成绩是81分,若想要年底考核总成绩不低于90分,则李明的笔试成绩至少要是多少?
二、课堂小结
算术平均数
x
=_________________________
__
算术平均数反映一组数据的平均水平
加权平均数
x
=_________________________
___ 数据的权能够反映数据的相对重要程度
1.数据1,2,x,-1,-2的平均数是0,则x的值是()
A.0B.2C.3D.4
2.某歌曲比赛初选中,10名评委给一位歌手打分如下:9.79,9.67,9.87,9.95,9.78,9.68,9.57,9.89,9.85,9.82.若去掉一个最高分和一个最低分,这名歌手最后得分是() A.9.80B.9.79C.9.78D.9.76
3.已知样本x1,x2,x3,x4的平均数是2,则x1+3,x2+3,x3+3,x4+3的平均数为____.
4.某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为______.
5.某班级为了解同学年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个班级学生的平均年龄(结果取整数).
6.以下表格是我班某位同学在上学期的数学成绩如果按照如图所示的月考、期中、期末成绩的权重,那么该同学的期末总评成绩应该为多少分?
考试月考
1
月考
2
月考
3
期中期末
成绩89 78 85 90 87 当堂检
(1)分别计算小聪和小亮的平均成绩;
(2)若学校按2∶3∶3∶2方法计算毕业成绩,毕业成绩达80分以上(含80分)为“优秀毕业生”.小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?
(3)小聪和小亮升入高中后,请你对他们两人今后的发展给每人提一条建议.
当堂检测参考答案:
1.A
2.B
3.2
4.3∶2
5.这个班级学生的平均年龄为:
1381416152416214
816242+++=+++x ⨯⨯⨯⨯≈
所以,他们的平均年龄约为14岁.
6.该同学的月考平均成绩: (89+78+85)÷3 = 84 (分) 再计算总评成绩:
= 87.6 (分)
7.(1)小聪的平均成绩是:(80+90+98+60)÷4=82(分),
小亮的平均成绩是:(85+75+75+95)÷4=82.5;
(2)小聪成绩是:(80×2+90×3+98×3+60×2)÷10=84.4(分),
小亮成绩是:(85×2+75×3+75×3+95×2)÷10=81(分). 小聪和小亮都达到了“优秀毕业生”水平;甲的成绩更好些.
(3)小聪要加强体育锻炼,注意培养综合素质;小亮在学习文化知识方面还要努力,成绩有待进一步提高.。