高三理科数学上学期期中考试试卷及答案

合集下载

2021-2022年海淀区高三期中数学试卷及答案

2021-2022年海淀区高三期中数学试卷及答案

海淀区高三年级第一学期期中练习数 学(理科)本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则AB =( A ) A. {1,1,2}- B. {1,2} C. {1,2}-D. {2} 2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x = 3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B.D. 4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C. 12D. 2 5.若a ∈R ,则“2a a >”是“1a >”的( B ) A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 6. 已知数列{}n a 的通项公式2(313)n n a n =-,则数列的前n 项和n S 的最小值是( B )A. 3SB. 4SC. 5SD. 6S7. 已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( D ) A. 2[,0)3- B. [1,0)- C. [2,3) D. (0,)+∞8. 已知函数sin cos ()sin cos x x f x x x+=,在下列给出结论中: ① π是()f x 的一个周期;。

陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析

陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析
9.双曲线 的左,右焦点分别是 ,过 作倾斜角为 的直线交双曲线的右支于点 ,若 垂直于 轴,则双曲线的离心率为()
A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.

山东省临沂市2014-2015学年高三上学期期中考试理科数学试题word版含答案

山东省临沂市2014-2015学年高三上学期期中考试理科数学试题word版含答案

高三教学质量检测考试理科数学2014.11本试卷分为选择题和非选择题两部分,共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知全集2,{|1},{|20}U R A x x B x x x ==>=->,则()U C AB =( )A .{}|2x x ≤B .{}|1x x ≥C .{}|01x x ≤≤D .{}|02x x ≤≤ 2、下列函数中,在区间(0,)+∞上为增函数的是( )A .2(1)y x =- B .2xy -= C .ln y x = D .y3、已知命题:22;p q ≤ ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝4、设函数()()23,(2)f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x +5、如图,AB 是O 的直径,点,C D 是半圆弧AB 上的两个三等分点,,AB a AC b ==,则AD =( )A .12a b + B .12a b - C .12a b + D .12a b - 6、函数(01)xxa y a x=<<的图象的大致形状是( )7、已知角α的终边经过点(3,4)-,则tan2α=( )A .13-B .12- C .2 D .3 8、给出下列四个结论:①函数()2log f x x =是偶函数;②若393,log a x a ==,则x =③若,1x x R e x ∀∈≥+,则0:,1x p x R e x ⌝∀∈≤+;④“3x >”是“21x ->”的充分不必要条件,其中正确的结论的个数是( )A .0B .1C .3D .3 9、已知函数()sin()f x x ϕ=-,且()30f x dx π=⎰,则函数()f x 的图象的一条对称轴是( )A .23x π=B .56x π=C .3x π=D .6x π= 10、设()22x x f x -=-,若当,02πθ⎡⎫∈-⎪⎢⎣⎭时,21()(3)0cos 1f m f m θ-+->-恒成立,则实数m 的取值范围是( )A .(),2-∞-B .()2,1-C .()[),21,-∞-+∞D .(),2(1,)-∞-+∞第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

高三上学期期中考试数学试题卷(理科)

高三上学期期中考试数学试题卷(理科)

绝密★启用前高三上学期期中考试数学试题卷(理科)数学试题共4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一.选择题:(本大题共10小题,每小题5分,共50分)。

1.已知523cos sin =+x x ,则sin 2x =( ) A .1825 B .725C .725-D .1625-2.设11a b >>>-,则下列不等式中恒成立的是 ( )A . 2a b >B .11a b> C .11a b < D .22a b >3.下列命题的说法错误..的是 ( ) A .若q p ∧为假命题,则,p q 均为假命题.B .“1=x ”是“2320x x -+=”的充分不必要条件.C .对于命题2:,10,p x R x x ∀∈++> 则2:,10p x R x x ⌝∃∈++≤.D .命题“若2320x x -+=,则1=x ”的逆否命题为:“若1≠x , 则2320x x -+≠” 4.已知集合{}{}22,01242>=<-+=x x B x x x A ,则=B A ( )A .{}6<x xB .{}12x x <<C .{}26<<-x xD .{}2<x x5.已知等差数列{}n a 的公差0,d <若462824,10,a a a a ⋅=+=则该数列的前n 项和n S 的最大值为 ( )A .50B .40C .45D .356.(原创)在△ABC 中,已知||4,||1AB AC ==,ABC S ∆=AB AC ⋅的值为( )A .2-B .2C .4±D .2±7.函数)(x f y =在[0,2]上单调递增,且函数)2(+x f 是偶函数,则下列结论成立的是( )A .f (1)<f ()<f ()B .f ()<f (1)<f ()C .f ()<f ()<f (1)D .f ()<f (1)<f ()8.(原创)若点P 是函数x x x f ln )(2-=上任意一点,则点P 到直线02=--y x 的最小距离为 ( ) A .2 B .22 C .21D .3 9、(原创)在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200y x s y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是 ( )A.[6,15]B.[7,15]C.[6,8]D.[7,8] 10. (原创)已知O 为坐标原点,(),OP x y =,(),0OA a =, ()0,OB a =,()3,4OC =,记PA 、PB 、PC 中的最大值为M ,当a 取遍一切实数时,M 的取值范围是 ( )A. )+∞B. )7⎡++∞⎣C. )7⎡-+∞⎣D. 7,7⎡+⎣ 二.填空题:(本大题共6小题,考生作答5小题,每小题5分,共25分). 11.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项 公式n a =_____.12已知),3(),1,2(x ==若⊥-)2(,则x =___________13.(原创)若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 (14)(15)(16)三题为选做题,请从中任选两题作答,若三题全做,则按 前两题给分14.如图,PA 是圆O 的切线,切点为A ,PO 交圆O 于B ,C 两点,1PA PB ==,则PAB ∠= 。

重庆市重庆一中2014届高三上学期期中考试理科数学试卷(解析版)

重庆市重庆一中2014届高三上学期期中考试理科数学试卷(解析版)

重庆市重庆一中2014届高三上学期期中考试理科数学试卷(解析版)一、选择题1)【答案】C【解析】选C.考点:向量的坐标运算及垂直关系.2.已知全集U=R)AC【答案】D【解析】考点:集合的基本运算及解不等式.3)A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】00一定成立.故不是充分条件..选B.考点:1、等比数列;2、充分条件与必要条件.4()A.2 B.3 C.4 D.6【答案】A 【解析】试题分析: 考点:1、函数的导数;2、二次方程根与系数的关系.的三条边及相对三个角,则ABC ∆的形状是(A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形【答案】B【解析】试题分析:在三角形中,o s均不为0,故由题意可得:由正弦定理得:,即考点:1、共线向量;2、正弦定理.7)A.10 B.11 C.12 D.13【答案】B【解析】若,则61(a a+11.考点:12、等差数列的性质的应用.8tan-)【答案】C 【解析】 3cos 3==.考点:三角恒等变换.9.前n 项的积前n 项的和那么不确定 【答案】A 【解析】3121n x x x x x =⋅⋅⋅=. (x -1故选A.A..二、填空题10【答案】32 【解析】考点:等比数列.112,a b =37b =,则的夹角为 .【解析】 试题分析:由37b =得:考点:向量的模、夹角及数量积.12的解集为 .【解析】由题意得:所4不等考点:1、一元二次不等式、指数不等式及对数不等式的解法;2、韦达定理.13.若直线与函数的图象相切于点,则切点的坐标为 .【解析】试题分析:对函数求导得:.设切点,则点考点:导数的应用.14的最大值为 .【答案】16【解析】.取得最大值.所以考点:1、等差数列;2、最值问题.三、解答题15(1(2)上的对称中心.【答案】(1(2【解析】试题分析:(1)将降次化一,可化为.(2)在(1当时,可以得到.又,所以.这样试题解析:(1(2考点:不等式.16(1(220【答案】(1(2【解析】试题分析:(1)在本题中由由此便可得一个方程组,解这个方程组即可.(2)由(1试题解析:(1)(2)考点:1、等差数列与等比数列;2.17的图象.ABC 的三c o s C 的值【答案】(1(2【解析】试题分析:(1..(2)由(1①注意s 1,s i n co sC =,所以可令①②两式平方相加即可. 试题解析:(1)12ϕ+=πϕ=,f-∈(26………………………………①考点:1、三角函数的图象及其变换;2、正弦定理及三角恒等变换.18(1(2.【答案】【解析】试题分析:(1(2)联系(1试题解析:(1(2)由(1考点:1、利用导数求函数的最值;2、方程的解.19.已知数合(11的项,请写出所有这样数列的前三项;(2(3【答案】(1)9,3,1或2,3,1;(2)详见解析;(3)详见解析. 【解析】试题分析:(1.(2. (32、3时,可求出前三项,前三项就是1、2、3三个数,结论成立.时,数列中的项最终必将小于或等于 3.现在的问题是如何证明这一点.注意(2)小题的结,这样依次递减下去,数列中的项最终必将小于或等于3.一旦小于等于3,则必有1、2、3,从而问题得证.试题解析:(10.所以前三项分别为9,3,1或2,3,1..综上得,前三项分别为9,3,1或2,3,1.(2)①当被3除余1时,由已知可得3除余23的倍数,3的倍数,3除余033333(3.由(2.大于3由前面的计算知,只要数列中存在小于等于3的项,则必有1、2、3三个数,考点:1、递推数列;2、不等式的证明.20(1(2问:求出该切线方程;若不能,请说明理由.【答案】(1(2【解析】试题分析:(10.求导得:..(2)本题属探索性问题.对探索性问题,常用的方法是假设成立,然后利用题设试着去求相关的量.若能求出,则成立;若无解,则不成立.的极值点,故有.又函数存在两个零点4个方程(4个未知数).方程).试题解析:(1(2……………………………………⑤.考点:1、函数的单调性;2、函数的零点;3、函数的导数及其应用.。

2019-2020学年度第一学期期中考试(3)

2019-2020学年度第一学期期中考试(3)

2019-2020学年度第一学期期中考试高三数学(理科)本试卷分为第I 卷和第II 卷,试卷满分150分,考试时间120分钟。

考试范围:【集合、函数、导数、三角函数、解三角形、平面向量、数列、不等式】第I 卷一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x <1},B ={x |3x <1},则( ){}.|x<0A A B x ⋂=.B A B R ⋃= {}.|1C A B x x ⋃=>.D A B ⋂=Φ2. 若函数f (x )=()()212xx x a +-为奇函数,则a 等于()A.2 B . 1 C .12 D . -123 .若x∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =ln x e ,则a ,b ,c 的大小关系为( ) A .b >c >a B .c >b >aC .a >b >cD .b >a >c24.()23--3]1(2)2f x x ax a A x a x a x =+-∞+≥>∈∈-记函数在区间(,上单调递减时的取值集合为,不等式恒成立时实数的取值集合为B ,则"x A"是"x B"的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件5. 正三角形ABC 中,D 是线段BC 上的点,AB=6, BD=2,则AB AD ⋅=( )A.12B. 18C. 24D. 30 6. 在下列给出的四个结论中,正确的结论是( )A. 已知函数()f x 在区间(,)a b 内有零点,则()()0f a f b <B.1,333a ba b +=若则是和的等比中项C. 121212,2,36,//e e m e e n e e m n =-=-若是不共线的向量,且则D. 已知角α终边经过点 (3,-4),则4cos 5α=-{}457621222107.(,),(,),4,log log ...log ()n a a a a b a a a b a a a ==⋅=+++=等比数列的各项均为正数,已知向量且A. 12B. 10C. 5 2.2log 5D +2228.,,,ABC A B C b c a B +-=在中,内角所对边分别是a 、b 、c,若csinC=acosB+bcosA,且 则角的大小( )A.6πB.3π C.2π D.23π219.()ln (2)2f x a x x =--∞已知函数在[1,+)上是减函数,则实数a 的取值范围是( ).[1,)A -+∞ .(1,)B -+∞ .(,1)C -∞- .(,1]D -∞-210.()2sin cos (0)0f x x x x ωωωωπω=->已知函数在区间(,)内有且只有一个极值点,则的取值范围为( )5.(0,]12A 11.(0,]12B 511.(,]1212C 511.[,]1212D23111.()log )f x x a b=+已知函数,若对任意的正数a 、b,满足f(a)+f(3b-1)=0则的最小值为( )A .6B .8C .12D .24'23312.()(1)1,2()1,[,](2cos )2sin 2222x R f x f f x x f x ππ=>∈-+>定义在上的可导函数满足且当时,不等式的解集为( )4.()33A ππ, 4.()33B ππ-, .(0)3C π, .()33D ππ-,第II 卷二、填空题(本题共4道小题,每题5分,共20分,其中第16题第一空2分,第二空3分,请将正确的答案填在横线上)13.sin()cos()___ ____.633ππαα+=-=已知则3214.()(2)2,()()1,3f x x a x x f x f x =+-+设函数若为奇函数,则曲线y=在点()处的切线方程为________.1,210,______.4a b a a b b π=-==15.已知,的夹角为,且则16. 将正整数12分解成两个正整数的乘积有112,26,34⨯⨯⨯三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当(,)p q p q p q N *⨯≤∈且是正整数n 的最佳分解时我们定义{}(),(12)43 1.(88)(5))2020n f n q p f f f n N *=-=-=∈函数例如则的值为_______,数列(的前项和为_______.三、解答题(第17题10分,第18题至22题每题12分,共计70分){}.1),(log 21222.17n 121T n b b N n a b a a n n n n n n n 项和的前求数列)若(的通项公式;)求数列(为公比的等比数列,为首项,是以已知数列⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧+*-.sin sin 333)2()1(1)cos(32cos ,,,,,.18的值,求,的面积为若的值;求已知的对边分别为中,在C B b ABC A C B A c b a C B A ABC =∆=+-∆.(2019)f ...(2)f (1)f 2)()()1(.4),21()(,20,0),22,22()),(2cos 2,2(.19的值计算的单调递减区间;求函数离为与其相邻的最高点的距点,的图像过点函数其中已知向量+++⋅=<<>-=+=x f B B ba x fb x aπϕωϕω20.如图,有一块边长为1(百米)的正方形区域ABCD .在点A 处有一个可转动的探照灯,其照射角∠PAQ 始终为45°(其中点P ,Q 分别在边BC ,CD 上),设BP =t (百米).(1)用t 表示出PQ 的长度,并探求△CPQ 的周长L 是否为定值;(2)设探照灯照射在正方形ABCD 内部区域的面积为S (平方百米),求S 的最大值.{}{}{}{}11121.2,2(1),b .(1)b 11c ,c , 2.n n n n n n nn n n n n n nna a a a na n a a a nb ++=⋅+=+=-=<+已知数列满足设求证:数列为等比数列,并求的通项公式.(2)设数列的前n 项和为S 求证:S22.()+(0,0,1,1)1(1)2,,2()2(2)()6201,1,()(),21.x x f x a b a b a b a b f x f x mf x m a b g x f x a x R b =>>≠≠==∀=≥-<<>-∈=①求方程②若对不等已知函数当时的根;恒成立,求实数的最大值;()若函数有且只有个零点,求的值式2019-2020学年度第一学期期中考试高三数学(理科)答案一、选择题1.A【解析】:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},所以A正确,D错误,A∪B={x|x<1},所以B和C都错误。

2022-2023学年江西省临川一中上学期期中考试理科数学试卷及答案

2022-2023学年江西省临川一中上学期期中考试理科数学试卷及答案

临川一中2022-2023学年度上学期期中考试高三年级数学理科试卷1.已知全集{}{}{}1,2,3,4,5,6,7,8,3,4,5,4,7,8U A B ===,则=⋃B A C U )((卷面满分:150分一、单选题(每题5分,共60)A .{}7,8B .{}1,2,6C .{}1,2,4,6,7,8D .{}1,2,6,7,82.已知i 是虚数单位,若2(1)i z i +=-,则z 对应的点在复平面的()A .第一象限B .第二象限C .第三象限D .第四象限3.已知命题p :“0a ∃>,有12a a+<成立”,则命题p 的否定为()A .0a ∀≤,有12a a+≥成立B .0a ∀>,有12a a+≥成立C .0a ∃≤,有12a a +≥成立D .0a ∃>,有12a a+≥成立4.“幂函数()()21m f x m m x =+-在()0,∞+上为增函数”是“函数()222x xg x m -=-⋅为奇函数”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要5.对于任意实数a 、b 、c 、d ,下列命题中,真命题为()①若a >b ,c >d ,则a -c >b -d ;②若a >b >0,c >d >0,则ac >bd ;③若a >b >0④若a >b >0,则2211>a b .A .①②B .②③C .①④D .①③6.已知曲线y =()1,4处的切线的倾斜角为2α,则1sin cos π14ααα++=⎛⎫+ ⎪⎝⎭()A .2B .12C .D .17.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A .相邻两个节气晷长减少或增加的量为十寸B .秋分的晷长为75寸C .立秋的晷长比立春的晷长长D .立冬的晷长为一丈五寸8.在ABC 中,A,B,C 分别为ABC 三边a 、b 、c所对的角.若cos 2B B =且满足关系式cos cos 2sin 3B C a Bb c c+=,则ABC 外接圆直径为()AB .2C .4D.9.定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()x f x =,若在区间[0,10]x ∈内,函数)0(,1)()(>--=m mx x f x g 有5个零点,则实数m 的取值范围是()A .⎪⎪⎭⎫⎢⎣⎡--61e ,101e B .)101e (0,5-C .61e ,111e (--D .⎥⎦⎤ ⎝⎛-101e 0,10.数学美的表现形式多种多样,我们称离心率ω=e(其中12ω=)的椭圆为黄金椭圆,现有一个黄金椭圆方程为12222=+by a x ,()0>>b a ,若以原点O 为圆心,短轴长为直径作O ,P 为黄金椭圆上除顶点外任意一点,过P 作O 的两条切线,切点分别为A ,B ,直线AB 与x ,y 轴分别交于M ,N 两点,则=+2222ONa OMb ()A.ω1B.ωC.ω- D.ω1-11.已知定义在(-2,2)上的函数)(x f 导函数为)('x f ,若0)()(4=-+x f e x f x ,2)1(e f =且当0>x 时,)(2)('x f x f >,则不等式42)2(e x f e x <-的解集为()A.)4,1( B.)1,-2( C.)4,0( D.)1,0(12.若函数b x a e x f x+-+=)1()(在区间[21,1]上有零点,则22b a +的最小值为()A.54e B.2eC.21 D.e二、填空题(每题5分,共20分)13.已知向量a ,b 满足a =(3,4),a ·b=6,7a b -= ,则b =________.14.已知()f x 为偶函数且()2d 4f x x =⎰,则()()|22| 2e d x f x x x -+⎰等于_____.15.如右图,将函数()cos()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的图象上所有点向右平移π6个单位长度,得到如图所示的函数()y g x =的图象,若π(0)3f f ⎛⎫+= ⎪⎝⎭)0,(,>+b a b a ,则ba 11+最小值为_____.16.已知菱形ABCD 的各边长为2,60D ∠= .如图所示,将ACD ∆沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S ABC -,此时3SB =.若E 是线段SA 的中点,点F 在三棱锥S ABC -的外接球上运动,且始终保持EF AC ⊥则点F 的轨迹的面积为__________.三、解答题17.(12分)已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .18.(12分)如图,在边长为2的等边ABC 中,D ,E 分别为边AC ,AB 的中点.将ADE 沿DE 折起,使得AB AD ⊥,得到四棱锥A BCDE -,连接BD ,CE ,且BD 与CE 交于点H .(1)证明:AH BD ⊥;(2)设点B 到平面AED 的距离为1h ,点E 到平面ABD 的距离为2h ,求12h h 的值.19.(12分)甲,乙两位同学组队去参加答题拿纪念币的游戏,规则如下:甲同学先答2道题,至少答对一题后,乙同学才有机会答题,乙同样也是答两道题.每答对一道题得10枚纪念币.已知甲每题答对的概率均为p ,乙第一题答对的概率为23,第二题答对的概率为12.已知乙有机会答题的概率为1516.(1)求p ;(2)求甲,乙共同拿到纪念币数量X 的分布列及期望.20.(12分)已知双曲线C 与双曲线221123y x -=有相同的渐近线,且过点1)A -.(1)求双曲线C 的标准方程;(2)已知点(2,0),,D E F 是双曲线C 上异于D=,证明:直线EF 过定点,并求出定点坐标.21.(12分)已知函数ax e x f x -=)(,x x f x 2sin )()(+=ϕ,(R a ∈),其中 2.71828≈e 为自然对数的底数.(1)讨论函数)(x f 的单调性,(2)若*a N ∈,当0x ≥时,0)(≥x ϕ恒成立时,求a 的最大值.(参考数据:≈3e 20.1)四.选做题(共10分,请考生在22,23题任选一题作答,如果多选,则按所做第一题记分)22.(10分)以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox 中,曲边三角形OPQ 为勒洛三角形,且π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫ ⎪⎝⎭,以极点O 为直角坐标原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy ,曲线1C 的参数方程为112x y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求O Q 所在圆C 2的直角坐标方程;(2)已知点M 的直角坐标为(0,-1),曲线C 1和圆C 2相交于A ,B 两点,求11||||MA MB -.23.(10分)已知函数()+1f x x x =+.(1)设()f x 的最小值为m ,求m ;(2)若正数,,a b c 满足abcm =,证明:cb a abc ac b bc a 111++≥++.临川一中2022-2023学年度高三上学期期中考试数学试卷答案(理)一、单选题1.【答案】C 【详解】{}1,2,6,7,8U A =ð,则(){}1,2,4,6,7,8U A B = ð.故选:C 2.【答案】A3.【答案】B4.【答案】A【详解】要使函数()()21mf x m m x =+-是幂函数,且在()0,+∞上为增函数,则2110m m m ⎧+-=⎨>⎩,解得:1m =,当1m =时,()22x x g x -=-,x ∈R ,则()()()2222xx x x g x g x ---=-=--=-,所以函数()g x 为奇函数,即充分性成立;“函数()222x xg x m -=-⋅为奇函数”,则()()g x g x =--,即()222222222----⋅=--⋅=⋅-x x x x x xm m m ,解得:1m =±,故必要性不成立,故选:A .5.【答案】B6.【答案】B44b a ∴>,故错C 误.8.【答案】B9.【答案】D 【详解】由题,令2x +替换x ,则()()()()22224f x f x f x f x -+=-=++=+⎡⎤⎡⎤⎣⎦⎣⎦,又()f x 是偶函数,所以()()f x f x -=,则()()4f x f x +=,所以()f x 是周期函数,4T =,10.【答案】A【详解】依题意有OAPB 四点共圆,将两圆方程:222b y x =+与00202=-+-y y y x x x 相减,得200:b yy xx l AB =+,解得)b (0, ,0)b (0202y N x M ,因为=+2222ONaOMb2242242022024*******422042b a b b a b y a x b b y a b x y b a x b b ==+=+=+,所以=ω1-52=ω1.11.【答案】A 解:令xex f x g 2)()(=则由0)()(4=-+x f e x f x得0)()(=-+x g x g ,∴)(x g 为奇函数又xex f x f x g 2'')()()(-=,∴当0>x 时,)(,0)('x g x g >单调递增,∴)(x g 在(-2,2)上单调递增又1)1()1(2==e f g ,∴⇒<-⇒<-⇒<--)1()2(1)2()2()2(242g x g e x f e x f e x x 4112222<<⇒⎩⎨⎧<-<-<-x x x 选A12.【答案】A)(t g 在[21,1]单调递增.)(t g 最小值为54e .二、填空题13.【答案】614.【答案】1615.【答案】116.【答案】π1225设三棱锥S ABC -外接球的球心为,,O SAC BAC 的中心分别为易知1OO ⊥平面2,SAC OO ⊥平面BAC ,且12,,,O O O 由题可得1121602OMO O MO ∠∠==,113O M SM =解Rt 1OO M △,得1131OO O M ==,又123O S SM =易知O 到平面α的距离12d MH ==,三、解答题18.【答案】(1)见解析;【详解】(1)证明:在图1中,ABC 为等边三角形,且D 为边AC 的中点,BD AC ∴⊥,........1分(2)B AED E ABD V V --= ,∴121133AED ABD S h S h = ,则12ABDAEDh S h S = ............................................8AED 是边长为1的等边三角形,∴34AED S =在Rt ABD 中,3BD =,1AD =,则2AB =.19.【答案】(1)34p =;(2)分布列见解析,415()16E X =119133415E X=⨯+⨯+⨯+⨯+⨯= (12)()01020304016163232161621【答案】(1)由ax e x f x -=)(可得a e x f x -=)(' (1)当0a ≤时,()f x 在()0,+∞单调递增; (2)22.【答案】(1)222:((1)4++=C x y ;(2)3m=;;(2)证明见解析. 23.【答案】(1)1。

(整理版)辽南协作体高三上学期期中考试高三数学(理科)试卷

(整理版)辽南协作体高三上学期期中考试高三数学(理科)试卷

辽南协作体高三上学期期中考试高三数学〔理科〕试卷本试卷分第I 卷〔选择题〕和第二卷〔非选择题〕两局部,考生作答时,将答案答在答题纸上,在本试卷上答题无效。

第一卷〔选择题,共60分〕一、选择题〔本大题共12小题,每题5分,共60分。

在每题的四个选项中,只有一项为哪项符合题目要求的,请将正确选项填涂在答题卡上〕 1、设全集U 是实数集R ,{|||2},{|13}M x x N x x =≥=<<,那么图中阴影局部所表示的集合是A .{|21}x x -<<B .{|12}x x <<C .{|22}x x -<<D .{|2}x x < 2.向量(1,2),(cos ,sin ),//,tan()4a b a b πααα==+=且则A .13 B .13- C .3 D .-3 3.假设平面向量,a b 满足(2,1)a b +=-,(1,2)b =,那么向量a 与b 的夹角等于 A .45︒ B .60︒ C .120︒ D .135︒ 4.2:11xp x <-:()(3)0q x a x +->,假设p 是q 的充分不必要条件,那么实数a 的取值范围是A .(]3,1--B .[]3,1--C .(],1-∞-D .(],3-∞-5.设O 为坐标原点,点A 〔1,1〕,假设点(,)B x y 满足222210,12,12,x y x y x y ⎧+--+≥⎪≤≤⎨⎪≤≤⎩那么OA OB⋅取得最小值时,点B 的个数是A .1B .2C .3D .无数6.正项等比数列{}n a 满足7652a a a =+,假设存在两项,m n a a1144,a m n=+则的 最小值为A .32 B .53 C .94D .不存在 7.假设.1)8(),()4(,)cos(2)(-=-=+++=ππφωf t f t f t m x x f 且都有对任意实数那么实数m 的值等于A .1±B .-3或1C .3±D .-1或38.A 、B 是直线l 上任意两点,O 是l 外一点,假设l 上一点C 满足2cos cos OC OA OB θθ=+,那么246sin sin sin sin θθθθ+++的最大值是A 9.设函数)(x f 是定义在R 上的奇函数,且当0≥x 时,)(x f 单调递减,假设数列}{n a 是等差数列,且03<a ,那么)()()()()(54321a f a f a f a f a f ++++的值A .恒为正数 B.恒为负数 C.恒为0 D.可正可负10.①函数()ln 2f x x x =+-的图像与x 轴有2个交点;②向量b a ,不共线, 那么关于x 方程02=+x b x a 有唯一实根;③函数y =A .①③ B .② C .③ D .②③ 11、函数x y x -+=)14(log 2的值域是 A.),0[+∞ B.),(+∞-∞ C.),1[+∞D.),1[]1,(+∞--∞12.设⎩⎨⎧-=-)1(3)(x f x f x (0)(0)x x ≤> , 假设a x x f +=)(有且仅有三个解,那么实数a 的取值范围是A. )1,(-∞B. ]1,(-∞C. ]2,(-∞D. )2,(-∞第二卷〔非选择题,共90分〕二、填空题〔本大题共4小题,每题4分,共16分,把正确答案填在答题卡中的横线上〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省实验中学高三年级—上期期中考试 数学(理)(时间:120分钟,满分:150分) 第Ⅰ卷(选择题 共60分)一、选择题:本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将所选答案填在答题卷上.1.若复数()1a ia R i +∈+是纯虚数,则实数a 的值为A .1-B . 1C .2-D .22.设集合S = {0 , 1 , 2 , 3 } , T = { x | | x –3 | ≤2},则S ∩T = A .{0 , 1, 2 , 3 } B .{1 , 2 , 3 } C .{0 ,1 }D .{1}3.在等比数列{an}中,若321a a a = 2 ,432a a a = 16,则公比q =A .21B .2C .22D .84.定义集合M 与N 的新运算:M+N=M x x ∈|{或N x ∈且}N M x ⋂∉,则(M+N)+N 等于 A .MB .NC .N M ⋂D .N M ⋃5.若()x f 是R上的增函数,且()(),22,41=-=-f f 设P=(){}31|<++t x f x ,Q=(){}4|-<x f x .若“P x ∈”是“Q x ∈”的充分不必要条件,则实数t的取 值范围是A.t≤-1 B.t>-1 C.t≥3 D.t>36.设函数()20)f x x =≥,则其反函数1()f x -的图象是7.已知函数)(x f 满足)()(x f x f -=π,且当)2,2(ππ-∈x 时,x x x f +=sin )(,设)3(),2(),1(f c f b f a ===,则A.c b a <<B.a c b <<C. a b c <<D.b a c << 8.随机变量ξ服从标准正态分布)1,0(N ,025.0)96.1(=-Φ,则=<)96.1|(|ξPC.A.B.D.A .025.0B .050.0C .950.0D .975.09.若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为221y x =+,值域为{3,19}的“孪生函数”共有 A .15个 B .12个 C .9个 D .8个10.函数=y sin -x cos x 与函数=y sin +x cos x 的图象关于A.x 轴对称 B.y 轴对称 C.直线2π=x 对称 D.直线4π=x 对称11.方程θθcos 2sin =在[0,)2π上的根的个数为A .0B .1C .2D .412.已知)()(x 、g x f 都是定义在R 上的函数, g(x)≠0,)()()()(''x g x f x g x f <, )()(x g a x f x=,25)1()1()1()1(=--+g f g f ,在有穷数列()()f n g n ⎧⎫⎨⎬⎩⎭( n=1,2,…,10)中,任意取前k 项相加,则前k 项和大于1615的概率是A .51B .52C .54D .53第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设⎪⎩⎪⎨⎧≥+<--=)0()0(11)(2x •••••x a x ••xxx f ,要使函数)(x f 在),(+∞-∞内连续,则a 的值为14.已知l 是曲线x x y +=331的切线中倾斜角最小的切线,则l 的方程为 .15.已知命题P :关于x 的不等式ax x >-+-20082006恒成立;命题Q :关于x 的函数()ax y a -=2log 在[0,1]上是减函数.若P或Q为真命题,P且Q为假命题,则实数a 取值范围是 .16.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =.在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题:①函数)(x f y =的定义域是R ,值域是[0,21];②函数)(x f y =的图像关于直线2k x =(k ∈Z )对称; ③函数)(x f y =是周期函数,最小正周期是1;④ 函数()y f x =在⎥⎦⎤⎢⎣⎡-21,21上是增函数;则其中真命题是__ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)函数)0(21cos )cos sin 3()(>-+=ωωωωx x x x f 的最小正周期为π4.(Ⅰ)求)(x f 的单调递增区间;(Ⅱ)在ABC ∆中,角A,B,C 的对边分别是c b a ,,,且满足C b B c a cos cos )2(=-,求角B 的值,并求函数)(A f 的取值范围.18.(本小题满分12分) 设数列}{n a 的前n 项和为nS ,已知11,2(1)(1,2,3,).n n a S na n n n ==--=(Ⅰ)求证:数列}{n a 为等差数列,并分别写出na 和nS 关于n 的表达式;(Ⅱ)求12231111lim n n n a a a a a a →∞-⎛⎫+++⎪⎝⎭.19.(本小题满分12分)已知袋中装有若干个均匀的红球和白球,从中摸出一个红球的概率是31.现从中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (Ⅰ)求恰好摸5次停止的概率;(Ⅱ)记5次之内摸到红球的次数为ξ,求ξ的分布列及数学期望. 20.(本小题满分12分)设R a ∈,函数ea ax e x f x)(1(2)(2++=-为自然对数的底数).(Ⅰ)判断)(x f 的单调性;(Ⅱ)若]2,1[1)(2∈>x e x f 在上恒成立,求a 的取值范围.21.(本小题满分12分)已知各项均为正数的数列}{n a ,)2(1>=a a a ,)1(221-=+n nn a a a 其中*n ∈N .(I )证明 :2>n a ;(Ⅱ)设2-=n n n a a b ,①证明 :21nn b b =+;②若数列}{n c 满足nn b c lg =,求数列}{n c 的前n 项和nS .22 .(本小题满分12分)设函数x ax xx f ln 1)(+-=在),1[+∞上是增函数.(Ⅰ)求正实数a 的取值范围;(Ⅱ)设1,0a b >>,求证:.ln 1b ba b b a b a +<+<+参考答案 一.选择题ABBAD CDCCC CD 二.填空题13. 2114.y=x 15. 1≤a 16. ①②③三.解答题17. 解:(Ⅰ))62sin()0(21cos )cos sin 3()(πωωωωω+=>-+=x x x x x f π4=T ,41=∴ω )621sin()(π+=∴x x f)](324,344[Z k k k ∈+-∴ππππ单调增区间为 5分(Ⅱ)C b B c a cos cos )2(=- , C B B C B A cos sin cos sin cos sin 2=-A CB B A sin )sin(cos sin 2=+=321cos π=∴=∴B B)621sin()(π+=A A f2626πππ<+<∴A )1,21()(∈∴A f 10分18. 解:(Ⅰ)当n ≥2时,)1(4)1(11----=-=--n a n na S S a n n n n n ,得14(2,3,4,)n n a a n --==.∴数列}{n a 是以11a =为首项,4为公差的等差数列.∴.34-=n a n211()22n n S a a n n n=+=-. 6分(Ⅱ)lim n →∞12231111n n a a a a a a -⎛⎫+++⎪⎝⎭=()()1111lim 155********n n n →∞⎛⎫++++ ⎪ ⎪⨯⨯⨯--⎝⎭=111111111lim ()()()()415599134743n n n →∞⎛⎫-+-+-++- ⎪--⎝⎭=11lim 1443n n →∞⎛⎫- ⎪-⎝⎭=41. 12分 19. 解:(Ⅰ)由题意知前4次中有两次摸到了红球,第5次摸到的也是红球,所以概率为:8183132312224=⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯C4分(Ⅱ)随机变量ξ的聚会为0 , 1 , 2 , 3 .其中,当ξ= 3时,又分三种情况,则()24332311055=⎪⎭⎫⎝⎛-⨯==C P ξ()24380311311415=⎪⎭⎫ ⎝⎛-⨯⨯==C P ξ320π<<A()243803113123225=⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛*==C P ξ ()8117313113131311313113132242230333=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯+⨯⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯==C C C P ξ随机变量ξ的分布列是10分ξ的数学期望为:E ξ=24332× 0 + 24380× 1 +24380× 2 + 8117× 3 =8113112分20.解:(1)由已知)2(21)1(21)(2ax e a ax e x f x x ⋅+++-='-- ),12(212--+-=-a ax ax e x2分令.12)(2--+-=a ax ax x g ①当)(,0)(,01)(,0x f x f x g a ∴<'∴<-==时在R 上为减函数.②当,04)(440)(,022<-=+-=∆=>a a a a x g a 的判别地 )(0)(,0)(x f x f x g ∴<'<∴即在R 上为减函数. 4分③当0<a 时,由,0122>--+-a ax ax 得,1111a x ax -+>--<或由,0122<--+-a ax ax 得,1111a x a-+<<--),(),,()(+∞---+-∞∴a aa a a a x f 在上为增函数;),()(a aa a a a x f ---+在上为减函数 6分(2)①当]2,1[)(,0在时x f a ≥上为减函数..511215.215)2()(222min >>++==∴a e e a e a f x f 得由 10分 ②当2221215)2(,0e e a f a <+=<时21)(e x f >∴在[1,2]上不恒成立,∴a 的取值范围是).,51(+∞ 12分21.解:(I )运用数学归纳法证明如下:①当1=n 时,由条件知21>=a a ,故命题成立;②假设当*()n k k =∈N 时,有 2>k a 成立 那么当1+=k n 时,0)1(2)2(2)1(22221>--=--=-+k k k k k a a a a a 故命题成立综上所述,命题2>n a 对于任意的正整数n 都成立. 4分(II )①22222111442)1(2)1(22nn n n n n n nn n n b a a a a a a a a a b =+-=---=-=+++ 8分②n nn n c b b c 2lg lg 211===++ 且02lg1≠-=a ac∴数列}{n c 是以2lg1-=a ac 为首项,以2为公比的等比数列.2lg)12(--=∴a aS n n . 12分22. 解:(Ⅰ)01)(2'≥-=ax ax x f 对),1[+∞∈x 恒成立,x a 1≥∴对),1[+∞∈x 恒成立.又11≤x , 1≥∴a 为所求. 4分(Ⅱ)取b b a x +=,1,0,1>+∴>>b ba b a ,一方面,由(Ⅰ)知x ax xx f ln 1)(+-=在),1[+∞上是增函数,0)1()(=>+∴f b b a f , 0ln 1>+++⋅+-∴b b a b b a a b ba .即b a b b a +>+1ln. 8分另一方面,设函数)1(ln )(>-=x x x x G ,)1(0111)('>>-=-=x x x x x G ,∴)(x G 在),1(+∞上是增函数,又01)1(>=G .∴当1>x 时,0)1()(>>G x G ,∴x x ln >, 即b b a bb a +>+ln. 综上所述,1ln a b a ba b b b ++<<+. 12分。

相关文档
最新文档