人教A版高中数学必修5同步不等式6-【完整版】
高中数学 3.1不等关系和不等式课件(第二课时) 新人教A版必修5

思考3:如果ai>bi(i=1,2,3,„, n),那么a1· a2„an>b1· b2„bn吗? ai>bi>0 (i=1,2,3,„,n)
Þ
a1· a2„an>b1· b2„bn
思考4:如果a>b,那么an与bn的大小关 系确定吗? a>b,n为正奇数
Þ
a n>b n
思考5:如果a>b,c<d,那么a+c与b +d的大小关系确定吗?a-c与b-d的大 小关系确定吗?
探究(一):不等式的基本性质
思考1:有一个不争的事实:若甲的身材 比乙高,则乙的身材比甲矮,反之亦然. 从数学的观点分析,这里反映了一个不 等式性质,你能用数学符号语言表述这 个不等式性质吗?
a>b b<a(对称性)
思考2:又有一个不争的事实:若甲的 身材比乙高,乙的身材比丙高,那么甲 的身材比丙高,这里反映出的不等式性 质如何用数学符号语言表述?
作业:
P75习题3.1A组:2,3. B组:2.
a >b ,c <d
Þ a -c >b -d
1 1 思考6: 若a>b,ab>0,那么 a 与 b
的大小关系如何?
1 1 a>b,ab>0 a b
理论迁移
例1
已知a>b>0,c<0,
c c 求证: . a b
例2
1 1 已知 0 a b
,x >y >0 ,
x y 求证: . xa y b
思考1:在等式中有移项法则,即a+b= c a=c-b,那么移项法则在不等式 中成立吗? a +b >c a >c -b
思考2:如果ai>bi(i=1,2,3,„, n),a1+a2+„+an与b1+b2+„+bn的 大小关系如何? ai>bi (i=1,2,3,„,n) Þ a1+a2+„+an>b1+b2+„+bn
人教A版高中数学必修课件:不等式与不等关系

推论 :
a c
b d
a
c bd (同向不等式的可加性)
性质4 : (乘法的单调性) a b,c 0 ac bc
推论1 :
(同向不等式的可乘性)
a b 0 c d 0 ac bd
推论2 : a b 0 an bn (n N*, n 2)
a b 0 n a n b(n N *, n 2)
(本小题满分10分)已知二次函数y=f(x)图象过原点, 且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
人教A版高中数学必修5课件:3.1.2不 等式与 不等关 系(共2 3张PPT )
∵a>b>c,∴b-a<0,c-a<0,c-b<0. ∴(bc2+ca2+ab2)-(b2c+c2a+a2b)<0, 即bc2+ca2+ab2<b2c+c2a+a2b.
人教A版高中数学必修5课件:3.1.2不 等式与 不等关 系(共2 3张PPT )
人教A版高中数学必修5课件:3.1.2不 等式与 不等关 系(共2 3张PPT )
(可乘方性、可开方性)
例1:已知a>b>0,c<0,求证
c a
c b
例2.(1)如果a b 0, 那么 1 1 ab
变式a b 0那么 1
1
ab a
(2)如果a>b>c>0,那么 c
c
ab
变式a>b>c>0,那么 b c a-b a c
练习:已知c>a>b>0,
试比较 b 与 c 的大小? c-b c a
变式. 已知a,b,m,n∈R+,求证:am+n+bm+n≥ambn+anbm. 证明:(am+n+bm+n)-(ambn+anbm) =(am+n-ambn)+(bm+n-anbm)=(am-bm)(an-bn). ∵幂函数f(x)=xm,g(x)=xn在x∈R+上是增函数,由对
新课标人教A版数学必修5全部课件:不等式的复习(3)

( x 2)(x 5) 0 4.不 等 式 组 与不 x( x a) 0 等 式( x 2)(x 5) 0同 解, 则a 的取值范围是 a 2 _ __________
5.解 不 等 式 x 4x 3 x 4 x 3
2 2
3 6.若不等式 x ax 的 2 解集为(4, b ), 求a, b的值.
7.解 不 等 式 80 x x 3 3 9
8.若8x 8(a 2)x a 5 0 对 任 意 实 数均 成 立 求 实 数 x , a 的取值范围 .
4 2
不等式的解法
1.一元二次不等式 类 2.一元高次不等式 3.无理不等式
4.绝对值不等式
( 2) ax b cx d m
型
(1) 形 如 f ( x) a或 f ( x ) a
定
理
a b ab a b
例1 (1)a, b R , 分 别 求 下 列 不 等 式 定 理 取 “” 号 的 条 件 : (i ) ab 0 (i ) a b a b (ii) ab 0 (ii) a b a b (iii) a b 且ab 0 (ii i) a b a b (iv) a b 且ab 0 (iv) a b a b
D. x 0 x 3
2.不等式 x 1 x 2 1 0解集是( D ) A . R B. C. 1 , D. 2 ,
3.对任意 R, 不等式x 1 x 2 k x 恒成立 则k的取值 范围是 k 3 _ , __________
( 2)若 不 等 式 bx c 0解 集 ax
2020高中数学 第三章 不等式 阶段复习课 第3课 不等式学案 新人教A版必修5

第三课 不等式[核心速填]1.比较两实数a ,b 大小的依据a -b >0⇔a >b .a -b =0⇔a =b .a -b <0⇔a <b .2.不等式的性质3.Ax +By +C (B >0)⎩⎪⎨⎪⎧>0<0表示对应直线⎩⎪⎨⎪⎧上下方区域.4.二元一次不等式组表示的平面区域每个二元一次不等式所表示的平面区域的公共部分就是不等式组所表示的区域. 5.两个不等式[题型探究]一元二次不等式的解法[探究问题]1.当a >0时,若方程ax 2+bx +c =0有两个不等实根α,β且α<β,则 不等式ax 2+bx +c >0的解集是什么?提示:借助函数f (x )=ax 2+bx +c 的图象可知,不等式的解集为{x |x <α或x >β}.2.若[探究1]中的a <0,则不等式ax 2+bx +c >0的解集是什么? 提示:解集为{x |α<x <β}.3.若一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac <0,则ax 2+bx +c >0的解集是什么?提示:当a >0时,不等式的解集为R ;当a <0时,不等式的解集为∅.若不等式组⎩⎪⎨⎪⎧x 2-x -2>02x 2+2k +5x +5k <0的整数解只有-2,求k 的取值范围.【导学号:91432361】思路探究:不等式组的解集是各个不等式解集的交集,分别求解两个不 等式,取交集判断.[解] 由x 2-x -2>0,得x <-1或x >2.对于方程2x 2+(2k +5)x +5k =0有两个实数解x 1=-52,x 2=-k .(1)当-52>-k ,即k >52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-k <x <-52,显然-2∉ ⎝ ⎛⎭⎪⎫-k ,-52.(2)当-k =-52时,不等式2x 2+(2k +5)x +5k <0的解集为∅.(3)当-52<-k ,即k <52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52<x <-k. ∴不等式组的解集由⎩⎪⎨⎪⎧x <-1,-52<x <-k ,或⎩⎪⎨⎪⎧x >2,-52<x <-k 确定.∵原不等式组整数解只有-2, ∴-2<-k ≤3,故所求k 的范围是-3≤k <2.母题探究:.(变条件,变结论)若将例题改为“已知a ∈R ,解关于x 的不 等式ax 2-2x +a <0”.[解] (1)若a =0,则原不等式为-2x <0,故解集为{x |x >0}. (2)若a >0,Δ=4-4a 2.①当Δ>0,即0<a <1时,方程ax 2-2x +a =0的两根为x 1=1-1-a 2a ,x 2=1+1-a 2a,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a . ②当Δ=0,即a =1时,原不等式的解集为∅. ③当Δ<0,即a >1时,原不等式的解集为∅. (3)若a <0,Δ=4-4a 2.①当Δ>0,即-1<a <0时,原不等式的解集为错误!. ②当Δ=0,即a =-1时,原不等式可化为(x +1)2>0, ∴原不等式的解集为{x |x ∈R 且x ≠-1}. ③当Δ<0,即a <-1时,原不等式的解集为R . 综上所述,当a ≥1时,原不等式的解集为∅;当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a ; 当a =0时,原不等式的解集为{x |x >0};当-1<a <0时,原不等式的解集为错误!;当a =-1时,原不等式的解集 为{x |x ∈R 且x ≠-1};当a <-1时,原不等式的解集为R . [规律方法] 不等式的解法 (1)一元二次不等式的解法.①将不等式化为ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)的形式; ②求出相应的一元二次方程的根或利用二次函数的图象与根的判别式确 定一元二次不等式的解集.,(2)含参数的一元二次不等式.,解题时应先看二次项系数的正负,其次考 虑判别式,最后分析两根的大小,此种情况讨论是必不可少的.不等式恒成立问题已知不等式mx 2-mx -1<0.(1)若x ∈R 时不等式恒成立,求实数m 的取值范围; (2)若x ∈[1,3]时不等式恒成立,求实数m 的取值范围;(3)若满足|m |≤2的一切m 的值能使不等式恒成立,求实数x 的取值范围.【导学号:91432362】思路探究:先讨论二次项系数,再灵活的选择方法解决恒成立问题. [解] (1)①若m =0,原不等式可化为-1<0,显然恒成立;②若m ≠0,则不等式mx 2-mx -1<0 恒成立⇔⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0.综上可知,实数m 的取值范围是(-4,0]. (2)令f (x )=mx 2-mx -1,①当m =0时,f (x )=-1<0显然恒成立; ②当m >0时,若对于x ∈[1,3]不等式恒成立,只需⎩⎪⎨⎪⎧f 1<0,f3<0即可,∴⎩⎪⎨⎪⎧f 1=-1<0,f3=9m -3m -1<0,解得m <16,∴0<m <16.③当m <0时,函数f (x )的图象开口向下,对称轴为x =12,若x ∈[1,3]时不等式恒成立,结合函数图象(图略)知只需f (1)<0即可,解得m ∈R ,∴m <0符合题意.综上所述,实数m 的取值范围是⎝ ⎛⎭⎪⎫-∞,16. (3)令g (m )=mx 2-mx -1=(x 2-x )m -1,若对满足|m |≤2的一切m 的值不等式恒成立,则只需⎩⎪⎨⎪⎧g-2<0,g 2<0,即⎩⎪⎨⎪⎧-2x 2-x -1<0,2x 2-x -1<0,解得1-32<x <1+32.∴实数x 的取值范围是⎝⎛⎭⎪⎫1-32,1+32.[规律方法] 对于恒成立不等式求参数范围的问题常见的类型及解法有以下几种: 1.变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看做主元. 2.分离参数法若f (a )<g (x )恒成立,则f (a )<g (x )min . 若f (a )>g (x )恒成立,则f (a )>g (x )max . 3.数形结合法利用不等式与函数的关系将恒成立问题通过函数图象直观化. 1.设f (x )=mx 2-mx -6+m ,(1)若对于m ∈[-2,2],f (x )<0恒成立,求实数x 的取值范围; (2)若对于x ∈[1,3],f (x )<0恒成立,求实数m 的取值范围. [解] (1)依题意,设g (m )=(x 2-x +1)m -6,则g (m )为关于m 的一次函数,且一次项系数x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,所以g (m )在[-2,2]上递增, 所以欲使f (x )<0恒成立,需g (m )max =g (2)=2(x 2-x +1)-6<0, 解得-1<x <2.(2)法一:要使f (x )=m (x 2-x +1)-6<0在[1,3]上恒成立, 则有m <6x 2-x +1在[1,3]上恒成立,而当x ∈[1,3]时, 6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34≥69-3+1=67, 所以m <⎝⎛⎭⎪⎫6x 2-x +1min =67,因此m 的取值范围是⎝⎛⎭⎪⎫-∞,67. 法二:①当m =0时,f (x )=-6<0对x ∈[1,3]恒成立,所以m =0. ②当m ≠0时f (x )的图象的对称轴为x =12,若m >0,则f (x )在[1,3]上单调递增, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (3)<0即7m -6<0, 所以0<m <67.若m <0,则f (x )在[1,3]上单调递减, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (1)<0即m <6, 所以m <0.综上可知m 的取值范围是⎝⎛⎭⎪⎫-∞,67.线性规划问题已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤0,2y -x +1≥0,x +y -4≥0,且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【导学号:91432363】思路探究:先画出可行域,再研究目标函数,由于目标函数中含有参数m ,故需讨论m 的值,再结合可行域,数形结合确定满足题意的m 的值.1 [作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,目标函数z =x +my 可看作动直线y =-1m x +zm,若m <0,则-1m>0,数形结合知使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1.] [规律方法]1.线性规划在实际中的类型主要有:(1)给定一定数量的人力、物力资源,如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少.2.解答线性规划应用题的步骤:(1)列:设出未知数,列出约束条件,确定目标函数.(2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解.(5)答:作出答案.[跟踪训练]2.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?[解]设投资人分别用x万元、y万元投资甲、乙两个项目.由题意,知⎩⎪⎨⎪⎧x+y≤10,0.3x+0.1y≤1.8,x≥0,y≥0,目标函数z=x+0.5y.画出可行域如图中阴影部分.作直线l0:x+0.5y=0,并作平行于l0的一组直线x+0.5y=z,z∈R,与可行域相交,其中有一条直线经过可行域上的点M时,z取得最大值.由⎩⎪⎨⎪⎧x+y=10,0.3x+0.1y=1.8,得⎩⎪⎨⎪⎧x=4,y=6,即M(4,6).此时z=4+0.5×6=7(万元).∴当x=4,y=6时,z取得最大值,即投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.利用基本不等式求最值设函数f(x)=x+ax+1,x∈[0,+∞).(1)当a=2时,求函数f(x)的最小值;(2)当0<a<1时,求函数f(x)的最小值.【导学号:91432364】思路探究:(1)将原函数变形,利用基本不等式求解. (2)利用函数的单调性求解. [解] (1)把a =2代入f (x )=x +ax +1,得f (x )=x +2x +1=(x +1)+2x +1-1, ∵x ∈[0,+∞), ∴x +1>0,2x +1>0, ∴x +1+2x +1≥22,当且仅当x +1=2x +1, 即x =2-1时,f (x )取等号,此时f (x )min =22-1. (2)当0<a <1时,f (x )=x +1+ax +1-1若x +1+ax +1≥2a ,则当且仅当x +1=ax +1时取等号,此时x =a -1<0(不合题意), 因此,上式等号取不到.f (x )在[0,+∞)上单调递增.∴f (x )min =f (0)=a .3.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元,公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.[解] (1)设每件定价为t 元,依题意,有[8-(t -25)×0.2]t ≥25×8, 整理得t 2-65t +1 000≤0, 解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ·16x =10(当且仅当x =30时,等号成立), ∴a ≥10.2.因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.。
高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000
高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.
高中数学基本不等式 同步练习(一)新人教版必修5(A)

基本不等式 同步练习(一)选择题1、下列函数中,最小值为4的函数是( )A 、x x y 4+=B 、)0(sin 4sin π x xx y += C 、x x e e y -+=4 D 、81log log 3x x y +=2、已知正数y x ,满足194=+yx ,则xy 有( ) A 、最小值12 B 、最大值12 C 、最小值144 D 、最大值1443、设*N n z y x ∈, ,且zx n z y y x -≥-+-11恒成立,则n 的最大值是( )A 、2B 、3C 、4D 、54、一批货物随17列货车从A 市以v km/h 匀速直达B 市,已知两地间铁路线长为400 km ,为了安全,两列货车间的间距不得小于220⎪⎭⎫ ⎝⎛v km ,那么这批货物全部运到B 市最快需要( )A 、6 hB 、8 hC 、10 hD 、12 h5、若)2lg()lg (lg 21lg lg 1b a R b a Q b a P b a +=+=⋅=,,, ,则( ) A 、Q P R B 、R Q P C 、R P Q D 、Q R P6、若a ,b 是任意实数,且a b >,则下列不等式一定成立的是( )A .22a b >B .1>ab C .1<ba D .0)(3>-ab 7、Rc b a ∈,,且b a >,则下列各式中恒成立的是( )A .c b c a ->+B .bc ac >C .02>-ba c D .0)(2≥-cb a 8、若b a >、dc >,那么( )A .d b c a ->-B .bd ac >C .c b d a ->-D .cd b a > 9、给定0>>b a ,R d ∈,下列各式中不正确的是( )A .2b ab >B .c b c a +>+C .b a >D .bc ac >解答题10.已知0,0,0>>>c b a ,求证:)(2222222c b a a c c b b a ++≥+++++.11.已知a ,b ,c 是不全相等的正数,求证:)()()()(2222222b a c a c b c b a c b a +++++>++.12.已知a ,b ,c 都是正数,且1=++c b a ,求证:abc c b a 8)1)(1)(1(≥---.答案:1、C2、C3、C4、B5、B6、D7、D8、C9、D10、证明略 11、证明略 12、证明略。
高中数学人教版必修五:基本不等式(共23张PPT)

ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方为41.
【素养·探】 在解决与距离有关的最值问题时,常常用到核心素养中 的直观想象,将目标函数转化为相应的距离求解. 本例的条件不变,试求z=(x+1)2+y2的最小值.
【解析】由本例中的可行域可知,z=(x+1)2+y2的最小
值为点(-1,0)到直线x+y=0距离的平方,
故所求的最小值为 ( 1 0 )2 1.
b
z,
b
(1)当b>0时z随着直线l在y轴上的截距变大而变大;
(2)当b<0时,z随着直线l在y轴上的截距变大而变小.
2.直线的斜率k与倾斜角α的关系
(1)0<k1<k2时,0<α1<α2<
2
;
(2)k1<k2<0时,
2
<α1<α2.
即当斜率同为正或同为负时,均满足斜率越大,倾斜角
越大,可以通过斜率来比较目标函数与边界倾斜程度的
【习练·破】
2x y 0
已知x,y满足条件
x
y
1
0 , 若z=x+2y的最小值为0,则
m= (
)
x m
A.1
B.2
C.3
D.4
2x y 0
【解析】选B.由x,y满足条件
x
y
1
0,
作出可行域,
x m
又目标函数z=x+2y表示直线y=-1 x+z 在y轴上的截
22
距的二倍,因此截距越小,z就越小;
【素养小测】 1.思维辨析(对的打“√”,错的打“×”) (1)若线性规划问题存在最优解,它只能在可行域的某个顶点达 到. ( ) (2)线性目标函数的最优解是唯一的. ( ) (3)若目标函数为z=x-y,则z的几何意义是直线z=x-y的截距.
()
【提示】(1)×.存在最优解,但不一定只在顶点达到. (2)×.最优解指的是使目标函数取得最大值或最小值的 可行解.最优解不一定唯一,有时唯一,有时有多个. (3)×.z的几何意义是直线z=x-y的截距的相反数.
由图象可得,当直线y=- 1 x+ z 过点A时,
22
在y轴上的截距最小;由
x
x
m,解得A(m,1-m),
y 1 0,
所以zmin=m+2(1-m)=2-m,
又z=x+2y的最小值为0,所以2-m=0,解得m=2.
【加练·固】
x y 0
已知点(x,y)满足不等式组
x
y
2 , 若z=2x-y的最
【类题·通】 含参数的线性目标函数问题的求解策略 (1)约束条件中含有参数:此时可行域是可变的,应分情 况作出可行域,结合条件求出不同情况下的参数值.
(2)目标函数中含有参数:此时目标函数对应的直线是 可变的,如果斜率一定,则对直线作平移变换;如果斜率 可变,则要利用斜率与倾斜角间的大小关系分情况确定 最优解的位置,从而求出参数的值.
2
此时zmin=
1 2
2
=
5
.
11 4
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
【类题·通】 非线性目标函数的最值的求解策略 (1)z=(x-a)2+(y-b)2型的目标函数可转化为点(x,y)与 点(a,b)距离的平方;特别地,z=x2+y2型的目标函数表 示可行域内的点到原点的距离的平方.
大小,从而确定最优解的位置.
【习练·破】
x y 5,
设变量x,y满足约束条件
2 x
x
y y
4, 1,
则目标函数z=3x+
5y的最大值为 ( ) y 0 ,
A.6
B.19
C.21
D.45
【解析】选C.在平面直角坐标系中画出可行域ABCD以 及直线l:3x+5y=0,
平移直线l,可知:当直线l过点C(2,3)时,z取得最大值为 3×2+5×3=21.
定义
如果约束条件是关于变量的一次不等式 (或等式),则称为线性约束条件
在线性约束条件下,求线性目标函数的最 大值或最小值问题,称为线性规划问题
使目标函数达到最大值或最小值的点的 坐标,称为问题的最优解
满足线性约束条件的解,叫做可行解
由所有可行解组成的集合叫做可行域
【思考】 (1)线性目标函数的最优解一定存在吗? 提示:不一定.当可行域是开放区域,可行域的边界取不到时可 能没有最优解. (2)可行域右上方的顶点一定是最优解吗? 提示:不一定.要根据目标函数对应的直线特点,即在y轴上的 截距的意义确定.
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
【习练·破】
x 2y 0
(2019·雅安高二检测)已知实数x,y满足 的最大值为 ( )
x 0
y y
0,则 1
x
y
3
A.1 B.1 C.1 D.1 234
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
【思维·引】变形 y2 y2 ,转化为两点连线的斜
x1 x(1)
率求最小值.
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
【解析】1.选A.不等式组对应的平面区域如图:
由z=kx+y得y=-kx+z, 当k=0时,直线y=-kx+z=z,此时取得最大值的最优解只有一 个,不满足条件; 当-k>0时,直线y=-kx+z截距取得最大值时,z取得最大值,直 线与x=y重合时,最大值有无数个,则-k=1,解得k=-1;当-k<0 时,目标函数的最优解只有一个,不满足题意.
B.0
C.1
D.-1或0
x y 3 0,
2.(2019·昌平高二检测)若x,y满足
x
2y
3
0,且
2x+y的最小值为1,则实数m的值为
y m,
世纪金榜导学号
()
A.-5
B.-1
C.1
D.5
【思维·引】1.利用目标函数与可行域边界平行求解. 2.作出可行域,用m表示最优解,利用最小值求m的值.
【解析】选B.作出不等式组对应的平面区域如图:
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
目标函数z= y 的2 几何意义为动点M(x,y)和定点
x 1
D(-1,2)连线的斜率,
当M位于A( 1 , 1 )时,DA的斜率最小,
直线y=5x-z的截距最大,此时z最小. 由 3xx32yy解5得8,A(2,1), 此时z=5x-y的最小值为9.
类型二 线性目标函数的参数问题
【典例】1.(2019·马鞍山高二检测)x、y满足约束条
x y
件
x
2
y 1
,若z=kx+y取得最大值的最优解有无数个,则
实数k的值为 ( )
A.-1
2
由
y x
2 x得,最优解为(1,2),
1 y,
所以z=2y-x的最小值为3.
答案:3
【内化·悟】 当可行域是封闭区域时,最优解在哪里取得? 提示:在封闭区域的顶点、边界处取得.
【类题·通】
确定最优解时需要注意的问题
1.不妨令目标函数z=ax+by(b≠0),变形为l:y=- a x+
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
人教A 版高中数学必修5 同步 不等式 6 - 精品课件p p t ( 实用版)
(2)z= y b 型的目标函数可转化为点(x,y)与点(a,b)
xa
连线的斜率. (3)z=|Ax+By+C|可转化为点(x,y)到直线Ax+By+C=0的 距离的 A2 B2 倍. 易错警示:目标函数z=x2+y2的几何意义易错误理解为 可行域内的点到原点的距离.
x y 2 0
【解析】选A.根据x,y满足约束条件
x
y
0,
画出可行域:
x 3
z=(x+1)2+y2[=(x1)2 y表2]2示D(-1,0)到可行域的距
离的平方,由
x x
3,解得A(3,5),
y 2 0,
当点D与点A(3,5)连线时,AD距离最大,
则z=(x+1)2+y2的最大值是A(3,5)到D(-1,0)的距离的平
大值为5,则a=______ .
y a
x y 0
【解析】当a<1时,不等式组
x
y
2 ,表示的区域不存
y a
在;当Байду номын сангаас≥1时,不等式组
x x
y y
0 2
,表示的区域如图所示,
y a
目标函数化为y=2x-z,z取最大值时,截距-z最小.对比 斜率,可得z取最大值时的最优解为(a,a),代入,得2aa=5,可得a=5. 答案:5
3.3.2 简单的线性规划问题 第1课时 简单的线性规划问题
线性规划中的基本概念
名称
定义
目标函数
要求最大值或最小值的函数,叫做目标函数
约束条件
目标函数中的变量所要满足的不等式(组)