传动轴sheji计算
4转轴的强度设计计算

第四节轴的设计计算1、设计计算公式1)按钮转强度计算—传动轴传动轴上开有键槽时,轴径增大4~7%2)按弯扭合成强度计算1、填空题1 轴根据其受载情况可分为:__________、____________、__________。
2 轴根据其形状可分为:__________3 主要承受弯矩,应选____________轴4 主要承受转矩,应选____________轴5 既承受弯矩,又承受转矩应选_________轴。
6 平键联结可分为__________、___________、_____________等。
7 键连接可分为__________、____________、______________、__________。
2、单选题1 平键工作以_________为工作面。
A: 顶面B: 侧面C: 底面D: 都不是2 半圆键工作以___________为工作面。
A: 顶面B: 侧面C: 底面D: 都不是3 楔键工作以____________为工作面。
A: 顶面B: 侧面C: 底面D: 都不是4 机器的零、部件在装拆时,不得损坏任何部分。
而且经几次装拆仍能保持该机器性能的联接叫__________。
A: 可拆联接B: 不可拆联接C: 焊接D: 以上均不是5 机械静联接多数属于__________。
A: 可拆联接B: 不可拆联接C: 焊接D: 以上均不是6 键联接、销联接和螺纹联接都属于__________。
A: 可拆联接B: 不可拆联接C: 焊接D: 以上均不是7 楔键联接对轴上零件能作周向固定,且__________。
A: 不能承受轴向力B: 只能承受单向轴向力C: 不能承受径向力D: 以上均不是8 根据平键的__________不同,分为A、B、C型。
A: 截面形状B: 尺寸大小C: 头部形状D: 以上均不是9 _________ 联接的轴与轴上零件的对中性好,用于高速精密的传动。
A: 紧键B: 松键C: 高速精密D: 以上均不是。
某型SUV传动轴设计与计算概论

河北工业大学毕业论文作者:原囡囡学号:100280学院:机械工程学院系(专业):车辆工程题目:某型SUV传动轴设计与计算指导者:刘璇讲师评阅者:2014年 6月 7日目录1 绪论 (5)1.1 课题背景 (5)1.2 国内外研究现状 (5)1.3 常见的万向节及其工作原理 (7)1.4 课题内容 (9)2 万向传动轴的设计与计算 (10)2.1 传动轴设计校核计算过程 (10)2.2 传动轴的主要结构参数及校核计算 (10)2.3 计算机辅助绘图 (15)3 建立万向传动轴模型 (19)3.1 软件介绍 (19)3.2 实体建模 (20)3.3 本章小结 (21)4 万向传动轴的仿真分析 (22)4.1 Nastran软件介绍 (22)4.2 有限元分析过程及结果 (22)4.3 分析所设计的结构的不足与改进方法 (27)4.4 模态分析 (27)结论 (28)参考文献 (29)致谢 (30)1 绪论1.1 课题背景随着人类社会的发展越来越好,人民生活水平的质量越来越高,汽车的使用也越来越频繁。
作为汽车传动系统的重要组成部分,在前置引擎后轮驱动的汽车中,传动轴重要性更为突出,其主要功能是将变速器的输出转矩和功率传输到后轴的旋转运动,起到了连接变速箱与后桥,是汽车传动系的一条大动脉。
汽车所安装的万向传动轴大部分由传动轴、万向节和中间支撑等构成。
不同的行驶情况下传动轴所受力矩由汽车驱动轮(后轮)载荷决定。
汽车在加速、爬坡或满载时传动轴所受力矩较大。
汽车行驶时,由于后轴的跳动,变速器和后驱动桥的相对位置也会不断的发生变化,使传动轴与变速器之间产生轴向位移,伸缩花键可以很好的解决这个问题。
根据汽车的工作情况来设计汽车的传动轴,使其能够承受传动载荷,结构尽可能简单,便于拆装,寿命足够长。
从而使汽车减少材料使用,减轻质量,降低油耗,使产品拥有更强的竞争力。
如果按照传统的设计方法来设计传动轴然后检验其性能耗时长,效率低,成本高且检验性能的过程也比较复杂。
轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52160~135148~125135~118118~107107~982、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
传动轴设计计算范文

传动轴设计计算范文传动轴是通过连接两个轴组成的机械装置,用于传递动力和扭矩。
在设计传动轴时,需要考虑许多因素,包括应用环境、传动效率、可靠性和安全等。
下面我们将探讨传动轴的设计计算。
首先,在传动轴的设计计算中,需要确定扭矩传递的计算方法。
扭矩可以通过下式计算得到:T=P*9550/n其中,T为扭矩(N.m),P为功率(kW),9550为转速换算系数,n 为转速(rpm)。
在计算扭矩时,还需考虑传动系数(Kf)和动载系数(Km)。
传动系数是考虑传动装置的传动效率、工作条件以及装配质量等因素的系数,通常为1.2~1.6、动载系数是考虑传动过程中动态载荷的系数,通常为1.2~1.4确定了扭矩传递计算方法后,需要根据应用环境和工作条件确定传动轴的材料。
常见的传动轴材料包括钢、铝合金和碳纤维等。
不同材料的强度和刚度各有优缺点,需要根据实际需求做出选择。
接下来,需要根据传动轴的长度和直径来计算其弯曲刚度。
弯曲刚度可以通过公式:Φ=(π/32)*(G*d^4)/(L)其中,Φ为弯曲刚度(Nm/rad),G为剪切模量(N/m^2),d为传动轴的直径(m),L为传动轴的长度(m)。
根据传动轴的弯曲刚度,还可以计算得到传动轴的自然频率(f)f=(1/2π)*√(Φ/I)在进行传动轴的设计计算时,还需要考虑传动轴的安全系数。
传动轴的设计应该具有一定的安全储备,以保证传动轴在正常工作负载下不发生失效。
安全系数通常为1.5~2.0,根据实际情况可能有所不同。
最后,需要进行传动轴的强度计算。
强度计算的方法有多种,包括受力分析法、有限元分析法等。
在进行强度计算时,需要考虑各部件的受力情况,包括剪切力、弯矩、挤压力等。
根据受力分析结果,可以选择合适的传动轴尺寸和材料。
综上所述,传动轴的设计计算涉及许多因素,包括扭矩传递计算、材料选择、弯曲刚度计算、自然频率计算、安全系数考虑和强度计算等。
通过合理的设计计算,可以确保传动轴在工作过程中具有良好的传动性能和可靠性。
轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。
传动轴设计计算

传动轴设计计算1概述在汽车传动轴系或其它系统中,为了实现一些轴线相交或相对置经常变化的转轴之间的动力传递,必须采用万向传动装置。
万向传动装置一般由万向节和传动轴组成,当距离较远时,还需要中间支承。
在汽车行业中把连接发动机与前、后轴的万向传动装置简称传动轴。
传动轴设计应能满足所要传递的扭矩与转速。
现轻型载货汽车多采用不等速万向节传动轴。
2传动轴设计2.1传动轴万向节、花键、轴管型式的选择根据整车提供发动机的最高转速、最大扭矩及变速箱提供的一档速比,及由后轴负荷车轮附着力,计算得扭矩,由两者比较得出的最小扭矩来确定传动轴的万向节、花键、轴管型式。
a 按最大附着力计算传动轴的额定负荷公式:M ψmax =G ·r k ·ψ/i oG 满载时驱动轴上的负荷r k 车轮的滚动半径ψ车轮与地面的附着系数i o 主减速器速比b 按发动机最大扭矩计算传动轴的额定负荷公式:M ψmax =M ·i k1·i p /nM 发动机最大扭矩i k1变速器一档速比i p 分动器低档速比n 使用分动器时的驱动轴数按《汽车传动轴总成台架试验方法》中贯定选取以上二者较小值为额定负荷。
考虑到出现最大附着力时的工况是紧急制动工况此时的载荷转移系数为μ因此实际可利用最大附着力矩: M ψmaxo = M max ·μ传动轴的试验扭矩:由汽车设计丛书《传动轴和万向节》中得知:一般总成的检查扭矩为设计扭矩的 1.5-2.0倍。
传动轴设计中轴管与万向节的设计扭矩也应选取1.5-2.0倍的计算扭矩,以满足整车使用中的冲击载荷。
轴管扭转应力公式:τ=16000DM π(D 4-d 4)<[τ] =120N/ mm 2 D 轴管直径;d 轴管内径;M 变速箱输出最大扭矩;花键轴的扭转应力:τ=16000M πD 23<[τ] =350N/ mm 2D 2花键轴花键底径;D 2=27.667mm 。
传动轴设计计算

传动轴设计计算1. 引言传动轴是用于传输动力和扭矩的机械元件,在各种机械设备和车辆中广泛应用。
本文将介绍传动轴设计计算的基本原理和步骤。
2. 传动轴设计计算的基本原理传动轴设计计算的目标是确定传动轴的最佳尺寸和材料,以满足特定的扭矩要求和使用条件。
以下是传动轴设计计算的基本原理:- 确定扭矩要求:根据机械设备或车辆的功率和转速要求,确定传动轴所需的最大扭矩值。
- 材料选择:选择适当的材料来制造传动轴,考虑材料的强度和可加工性。
- 长度计算:根据应用中传动轴的位置和距离要求,计算传动轴的长度。
- 直径计算:根据扭矩要求和材料的强度,计算传动轴的最小直径。
- 测量校验:通过适当的测量方法和校验,确保传动轴的尺寸和尺寸的准确性。
3. 传动轴设计计算的步骤以下是传动轴设计计算的一般步骤:1. 确定设计要求:了解机械设备或车辆的功率和转速要求,确定传动轴的设计要求。
2. 计算扭矩要求:根据设计要求和设备的工作条件,计算传动轴所需的最大扭矩值。
3. 选择材料:根据传动轴的使用条件和材料的特性,选择适当的材料来制造传动轴。
4. 计算传动轴长度:根据传动轴的位置和距离要求,计算传动轴的长度。
5. 计算传动轴直径:根据扭矩要求和材料的强度,计算传动轴的最小直径。
6. 确定油脂和润滑方式:根据传动轴的使用条件,选择适当的油脂和润滑方式,以减少磨损和摩擦。
7. 进行测量和校验:通过测量传动轴的尺寸和进行校验,确保传动轴满足设计要求。
4. 总结传动轴设计计算是确定传动轴尺寸和材料的重要步骤,它直接影响机械设备和车辆的性能和可靠性。
通过遵循上述步骤,我们可以设计出满足要求的传动轴,并确保其安全和有效地传输动力和扭矩。
机械设计 轴的计算

m 3z3 n csin β3 = ar m z sinβ2 n2 2
n1
F1 a
3
nⅡ
F3 a
nⅢ
F4 r
4
F3 r
F2 t
· F
t3
F4 t
1
F1 r
F4 a
F2 r
· F1 t
注意: 注意:
F2 a
2
Ⅱ
1、力画在啮合线 、力画在啮合线 附近; 附近; 2、标明各力符号; 、标明各力符号;
M σ= W T τ= WT
{扭矩T
σ ca = σ 2 + 4τ 2 = 按第三强度理论: 按第三强度理论:
σ
M 2 +T 2 ≤ [σ ] W
t
转轴弯曲应力的循环特性 r = -1 扭转剪应力的循环特性取决于扭矩作用性质: 扭转剪应力的循环特性取决于扭矩作用性质: 应力的循环特性取决于扭矩作用性质 当扭矩频繁正反作用时, 当扭矩频繁正反作用时, = -1 ; r 当扭矩单向不连续作用时, = 0 ; 当扭矩单向不连续作用时, r 当扭矩不变化时, 当扭矩不变化时, r = +1 ; T
· F
t1
F2 t
F2 r
F2 a
3、计算: 、计算: 2T 2T mnz 2 3 QF 2 = F 3 ∴ tgβ2 = tgβ3Q T2 = T3 , d = a a d2 d3 cosβ
Ⅱ
2
注意: 注意: 1、力画在啮合线 、力画在啮合线 附近; 附近; 2、标明各力符号; 、标明各力符号;
sin β 2 sin β 3 ∴ = m n2z 2 m n3z 3
Kσ =
εσ β
kσ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在轴向 油润滑且 轴承处, 具有认可 此处滚 型油封装 柱轴承 置或装有 用作推 连续轴套 力轴承 的无键套
合或法兰 连接的螺 旋桨轴
油润滑且 具有认可 型油封装
置或装有 连续轴套 的有键螺 旋桨轴
适用于前 两条规定 的螺旋桨 轴长度以 前的螺旋 桨轴或尾 轴到尾尖 舱舱壁部 分的直径
1.0 1.0 1.1 1.1 1.2 1.1
轴的直径d应不小于按下式计算 的值:
d=98K 3
Ne 570 ne σb-157
式中:d—轴的直径m m; K—不同轴的设计特性系数,按表2-5-9 (1)、(2)选取; ne—轴传递的额定功率,k W; Ne—轴传递Ne的额定转速,r /min; σb—轴材料的抗拉强度。对于中间轴,若>800MPa时,取
传动轴的计算主要包括传动轴的基本直径计算和 强度校核两方面内容。
基本直径计算按照相关的船舶规范进行。
强度校核则是计算静载荷下的合成应力,再根据 由经验所确定的许用安全系数来考虑动载荷的作 用。
㈠按《钢质海船入级与建造规范》 计算轴的基本直径
轴的直径d应不小于按下式计算 的值:
d=FC 3
Ne ne
在推力环 的两侧轴 承处④
1.1
注:
①在键槽底部横截面处的圆角半径不得小于0.0125d。 ②孔径应不大于0.3d。 ③纵向槽的长度应不大于1.4d;宽度应不大于0.2d。 ④距键槽端、横孔边缘0.2d长度以及距纵向槽道端0.3d长度
以后的轴及推力轴在距推力环长度等于推力轴直径以外的轴
径可以逐渐减少到以K=1算得的直径。
㈢传动轴的强度校核
传动轴在工作时,同时受到扭转、弯曲和压缩三 种负荷,不仅承受静载荷,而且还有附加动载荷 作用,受力情况很复杂,目前普遍采用的传动轴 强度校核方法,是在按规范计算出传动轴基本轴 径的基础上计算静载荷下的合成应力,再根据由 经验所确定的许用安全系数(见表2-17)来考虑 动载荷的作用,是一种近似计算方法。
表2-15(2)用于螺旋桨轴的K值
序号
适用范围
1 从桨毂前面到相邻轴承前缘 无键螺旋桨的轴
的轴段
有键螺旋桨的轴
2 除1外,向前到尾轴管前填料函前端之间的螺旋 桨轴段
3 尾轴管前填料函前端至联轴器的螺旋桨轴段
K 1.22 1.26 1.15
1.15①
注:① 轴直径可逐渐减小到按公式计算的中间轴直径。
800MPa;对于螺旋桨轴和尾管轴若>600 MPa时,取600MPa。
表2-14 不同轴的设计特性系数
具有下述型式的中间轴
整液键径纵
体压槽向向
连无
孔, 槽
接键
横
法套
向
兰合
孔
联
轴
器
对在发动机外的 具有下述型式的螺旋桨轴 推力轴
在推力环 处,向外 等于推力 轴直径的 部分,其 余部分可 按圆锥减 小到中间 轴直径
⒈许用安全系数的确定
许用安全系数的确定主要考虑下面几个问题:
⑴轴的负荷情况:螺旋桨轴的工作条件恶劣,受力情况复杂 而且与海水接触,安全系数应取大些;刚性连接的传动轴受 到主机交变扭矩负荷,材料易疲劳,其安全系数应比柔性连 接的传动轴要大些。
⑵材料的特性:如选择合金钢,其安全系数比碳钢要高,
⑶船型:军用船舶的轴径是按照最大负荷进行计算的,但是 实际上军用船舶多在较轻负荷下航行,为了减轻轴系重量, 军用船舶多采用许用应力大的材料和较小的许用安全系数。
⑴由主机扭矩引起的剪应力τ=Mt/Ww N/ m² 式中:Mt―主机最大功率时扭矩 ;
Mt=9550 Pmax/nmax i ηN/ m² 式中:Pmax—传递的最大功率,KW; nmax—最大功率时的转速,r/min; i—减速箱的减速比; η—减速箱的传动效率;
Ww―中间轴抗扭截面模数:Ww=πdz3(1-m4)/16 式中:dz—中间轴直径cm ; m―中空系数:m= do / dz do―中孔直径cm
①
②③④
⑤⑤⑤
1.1 1.22 1.26 1.15
①法兰根部过渡圆表角半2-径1应4的不小说于明0.08d。
②至少在键槽及从键槽两端延伸到0.2d 的长度范围 内,C取1.10。在这个范围以外,轴的直径可以减至 以C=1.0的计算直径。键槽底部横截面的过渡圆角 半径应不小于0.0125d。
③至少在孔及从孔两边缘延伸到0.2d的长度范围内, C取1.10。在这个范围以外轴的直径可以减至以C= 1.0的计算直径。镗孔直径应不大于0.3d。
④至少在槽及从槽两边延伸到0.3d的长度范围内,C 取1.2。在这个范围以外,轴的直径可以减至以C=1 的计算直径。键槽长度应不大于1.4 d,宽度应不大 于0.2d。
⑤当遇到轴上有多种型式时,则其修正时,多个系 数应连乘计算。
⑥其中d为以C=1.0时计算所得的值。
㈡按《内河钢质船舶入级与建造规范》 计算轴的基本直径
608 σb-160
式中:d—轴的直径m m; F—推进装置型式系数; F=95,对于涡轮推进装置具有滑动型联轴节的柴油机推进
装置和电力推进装置
F=100,对于所有其他型式的柴油机推进装置 C—不同轴的设计特性系数具体数值见表2-14; ne—轴传递的额定功率,k W; Ne—轴传递Ne的额定转速,r /min; σb— 轴 材 料 的 抗 拉 强 度 。 对 于 中 间 轴 若 > 800MPa 时 , 取
⑵由中间轴重量所产生的弯曲应力:
σw =Mw/Ww N/ cm² 式中:
推进方式 刚性直接传动
液力偶合器、电 磁离合器或电传
动
类别 中间轴 螺旋桨轴 中间轴 螺旋桨轴
一般船舶 2.5~5.5 2.8~5.8 1.7~2.5 2.0~2.8
军用船舶 3.5 4.5 2.0 2.2
⒈中间轴的强度校核
将轴看成一根自由放置在两支点上的等截面的简支梁,其所 受的外力为转矩、推力T、自重q和集中载荷G(G为联轴节 重量)。
800MPa ; 对 于 螺 旋 桨 轴 和 尾 管 轴 , 若 > 600MPa 时 , 取 600MPa。
表2-15(1)用于中间轴、推力轴的K值
与法兰为 整体的轴
1.0
与法兰联 轴器为红 套、推入 或冷配合 的轴
1.0
Hale Waihona Puke 开有键槽 的轴①④1.1
有径向孔 的轴②④
1.12
有纵向槽 的轴③④
1.20