基于紫外光电二极管的火焰检测器
火焰检测器工作原理

火焰检测器工作原理
火焰检测器是一种用于探测火灾的电子探测装置,当它感应到火灾可燃气体的时候会触发一个报警。
火焰检测器通常会安装在室内,在室外也可以安装,但要按安装条件来安装。
火焰检测器有几种类型,它们的工作原理也不尽相同。
这里我们将介绍最常用的光纤式火焰探测器,即光电火焰探测器。
光电火焰探测器是检测火灾最常用,也是最常见的火焰检测器,它是通过一根特殊的光纤管来检测火焰。
光纤式火焰探测器有一端接受被检测火焰的红外波,另一端有一个光电二极管探测装置,该装置将检测到的红外波转换成电信号,随后送入模块判断是否超出一定的报警门限。
凡是所有形态的火焰都有一定数量的红外线,当光电火焰探测器通过探测到火焰发射出来的红外线时,火焰被检测到,并触发报警。
光纤式火焰探测器可以检测溶剂类和其他液体燃料类型的火焰,因为它对波长在2-15微米时的红外能够敏感检测,这正是制造火焰的常见特征波长,而且不会受到气体的影响。
此外,光电火焰探测器还可以检测到温度的突变,在一定的温度之上触发警报,这样可以增加探测到的火灾的敏感性和准确性。
总的来说,光电火焰检测器是一种高效率,可靠性较高的火灾报警装置,在安全保护中发挥重要作用。
此外,为了确保安全,定期进行探测器的维护和检查也非常重要。
火焰传感器工作原理

火焰传感器工作原理火焰传感器是一种用于检测火焰存在的传感器装置,广泛应用于火灾预警、工业安全监测以及燃气领域。
它可以通过感知火焰的特定光谱特征来进行工作,实现对火灾的早期发现和预警。
在本文中,我们将详细介绍火焰传感器的工作原理以及其在实际应用中的相关技术。
一、工作原理火焰传感器的工作原理基于火焰产生的特殊光谱。
当火焰燃烧时,燃烧产生的光由多种波长组成。
其中,紫外线(UV)和红外线(IR)是最常用于火焰检测的光谱范围。
火焰传感器通常包含一个光电二极管(Photodiode)或者其他带有光敏元件的感光器件。
感光器件能够感知到光强度,并将信号转化为电信号。
当火焰出现在传感器的感应范围内时,光强度会显著增加,并且会以特定的光谱特征进行变化。
通过对感光器件输出信号的检测和分析,我们可以判断火焰的存在与否。
二、探测方法基于火焰产生的特定光谱,火焰传感器可以采用不同的探测方法来实现火焰的检测和判断。
1. 紫外线探测法(UV探测法)紫外线探测法利用紫外线在火焰燃烧时产生的特殊光谱。
传感器通过感光器件感知紫外线强度的变化,一旦火焰出现,紫外线的强度将显著增加,从而触发传感器的报警信号。
这种方法对其他光源的干扰较小,但其检测距离相对较短。
2. 红外线探测法(IR探测法)红外线探测法利用红外线在火焰燃烧时产生的特殊光谱。
传感器通过感光器件感知红外线强度的变化,当火焰出现时,红外线的强度也会显著增加。
通过对红外线强度进行检测和分析,可以判断出火焰的存在与否。
红外线探测法对于长距离的火焰检测有良好的效果,并且对于抑制背景光的干扰也较强。
三、应用领域火焰传感器广泛应用于多个领域,具有重要的实际意义。
1. 火灾预警系统火焰传感器是火灾预警系统的关键组成部分之一。
通过安装火焰传感器,可以实现对火灾的早期发现和报警,提高火灾抢救和逃生的安全性能。
2. 工业安全监测在许多工业环境中,如化工厂、石油精炼厂等,火焰传感器被广泛应用于监测燃烧装置的运行状态。
霍尼韦尔火焰检测器工作原理

霍尼韦尔火焰检测器工作原理火焰检测器是一种用于监测火焰的安全设备,它在工业和商业场所起着至关重要的作用。
霍尼韦尔火焰检测器作为其中的一种,具有高灵敏度和可靠性,能够迅速检测到火焰的存在,从而保障人员和设备的安全。
霍尼韦尔火焰检测器的工作原理主要基于光学传感器技术。
它利用了火焰的辐射特性,通过检测火焰产生的光信号来判断是否存在火灾。
其具体工作过程可以分为以下几个步骤:1. 光敏元件感应:霍尼韦尔火焰检测器内置了一种特殊的光敏元件,通常为光电二极管(Photodiode)。
当光线照射到光敏元件上时,光敏元件会产生电流信号。
2. 光源发射:火焰检测器内部还配备了一种光源,通常为红外光源。
这个光源会以特定的频率和强度发射红外光。
3. 火焰辐射:当火焰出现时,它会产生辐射光,包括可见光和红外光。
这些光会被火焰检测器捕捉到。
4. 光信号传递:捕捉到的光信号会经过光学系统,被聚焦到光敏元件上。
光敏元件会将光信号转化为电流信号,并将其传递给后续的电路进行处理。
5. 信号处理:接收到光敏元件传递的电流信号后,火焰检测器会对信号进行处理和分析。
它会通过比较光信号的强度和频率,判断是否存在火焰。
6. 报警输出:如果火焰检测器判断存在火焰,它会触发报警信号,通知相关人员采取适当的应对措施。
报警信号可以通过声音、光亮或者其他方式进行输出。
霍尼韦尔火焰检测器采用了先进的技术,使其具备了快速、准确地检测火焰的能力。
它可以识别不同类型的火焰,包括明火和隐火。
同时,它还能够抵抗干扰光和日光的影响,确保检测结果的可靠性。
在实际应用中,霍尼韦尔火焰检测器可以广泛用于各种场所,如工厂、仓库、石化厂、发电厂等。
它可以及时发现火灾的踪迹,避免火灾蔓延造成更大的损失。
同时,它还可以与其他安全设备和系统进行联动,实现自动报警、联动控制等功能,提高火灾应急响应的效率。
霍尼韦尔火焰检测器通过光学传感器技术,能够快速、准确地检测火焰的存在。
它在保障人员和设备安全方面发挥着重要作用,是现代工业和商业场所不可或缺的一种安全设备。
基于紫外光电二极管的火焰检测器

( C i t y I n s t i t u t e , Da l i a n U n i v e r s i t y o f T e c h n o l o g y , Da l i a n 1 1 6 6 0 0 , C h i n a )
常用检测火焰 的方 法有 很多 … , 如紫外 线检测 、 红 外线 检
_ 窝
波长/ n m
测、 离子检测 、 图像法检测等 。当各种燃料燃烧 时 , 火焰发 出大
量 的紫外线 , 当火焰熄 灭时 , 紫外 线立 即消失 。通 过检 测有 无 紫外线 , 判断着火 和熄 火 的状 态 。 目前 , 最 常用 的检测 紫外 线
2 0 1 3, 正
仪 表 技 术 与 传 感 器
I n s t r u me n t T e c h n i q u e a n d S e n s o r
2 01 3 No . 2
第 2期
基 于 紫外 光 电二 极 管 的火焰 检 测器
姜 绍君 , 何英昊, 马 或
s h o w n t O b e p r e c i s e a n d s t a b l e , i s s u i t a b l e f o r d e t e c t i n g l f a me i n i n d u s t ia r l f u r n a c e . Ke y wo r d s : l f m e a d e t e c t i o n; u h r a v i o l e t p h o t o d i o d e ; s i g n a l c o n d i t i o n i n g
火焰探测器的优缺点火焰探测器的类型火焰探测器的安装

什么是火焰探测器?火焰探测器(flame detector)是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。
火焰探测器又称感光探测器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。
火焰探测器又称感光式火灾探测器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。
根据火焰的光特性,目前使用的火焰探测器有三种:一种是对火焰中波长较短的紫外光辐射敏感的紫外探测器;另一种是对火焰中波长较长的红外光辐射敏感的红外探测器;第三种是同时探测火焰中波长较短的紫外线和波长较长的红外线的紫外/红外混合探测器。
具体根据探测波段可分为:单紫外、单红外、双红外、三重红外、红外\紫外、附加视频等火焰探测器;根据防爆类型可分为:隔爆型、本安型;根据火焰的光特性,目前使用的火焰探测器有三种:一种是对火焰中波长较短的紫外光辐射敏感的紫外探测器;另一种是对火焰中波长较长的红外光辐射敏感的红外探测器;第三种是同时探测火焰中波长较短的紫外线和波长较长的红外线的紫外/红外混合探测器。
火焰燃烧过程释放出紫外线、可见光、红外线。
在特定波长、特定闪烁频率(0.aHz一20日z)具有典型特征,有别于其它干扰辐射。
阳光、热物体、电灯等辐射出的紫外线、红外线没有闪烁特征。
火焰探测的原理是通过检测火焰辐射出的特殊波长的紫外线、红外线及可见光等,同时配合对火焰特征闪烁频率来的识别,来探测火焰。
一般选用紫外光电管、窄带波长红外热释电传感器、光电二极管等作为探测元件。
火焰探测器的优缺点优点:响应速度快,探测距离远,环境适应性好缺点:价格高其他类型:优点:可靠性高、成本低缺点:反应速度慢、环境适应性差(室内、风、烟、雾、热源等)火焰探测器的类型具体根据探测波段可分为:单紫外、单红外、双红外、三重红外、红外/紫外、附加视频等火焰探测器;根据应用类别可分为:普通型、防爆型。
火焰检测器

火焰检测器火焰检测器对于大家来说是个新名词,一直以来,对于我们的认得当中,火是不可把握的,随着科学的进展,人们渐渐认得了火焰,同时也创造了认得火焰的工具——火焰检测器,它重要是由探头和信号处理器两个部分构成。
目录定义分类定义检测燃烧室或燃烧器火焰强度的装置。
重要由探头和信号处理器两部分构成,输出表示火焰强度的模拟量信号、表示有无火焰的开关量信号和(或)表示火焰强度的视频信号。
分类1、紫外光火焰检测器紫外光火焰检测器采纳紫外光敏管作为传感元件,其光谱范围在O.006~0.4m之间。
紫外光敏管是一种固态脉冲器件,其发出的信号是自身脉冲频率与紫外辐射频率成正比例的随机脉冲。
紫外光敏管有二个电极,一般加交流高电压。
当辐射到电极上的紫外光线充足强时,电极间就产生“雪崩”脉冲电流,其频率与紫外光线强度有关,高达几千赫兹。
灭火时则无脉冲。
2、可见光火焰检测器可见光火焰检测器采纳光电二极管作为传感元件,其光谱响应范围在0.33~0.7m之间。
可见光火焰检测器由探头、机箱和冷却设备等部分构成。
炉膛火焰中的可见光穿过探头端部的透镜,经由光导纤维到达探头小室,照到光电二极管上。
该光电二极管将可见光信号转换为电流信号,经由对数放大器转换为电压信号。
对数放大器输出的电压信号再经过传输放大器转换成电流信号。
然后通过屏蔽电缆传输至机箱。
在机箱中,电流信号又被转换为电压信号。
代表火焰的电压信号分别被送到频率检测线路、强度检测线路和故障检测线路。
强度检测线路设有两个不同的限值,即上限值和下限值。
当火焰强度上限值时,强度灯亮,表示着火;当强度低于下限值时,强度灯灭,表示灭火。
频率检测线路用来检测炉膛火焰闪亮频率,它依据火焰闪亮的频率是高于还是低于设定频率,可正确判定炉膛有无火焰。
故障检测线路也有两个限值,在正常的情况下,其值保持在上、下限值之间。
一旦机箱的信号输入回路显现故障,如光电管至机箱的电缆断线,则上述电压信号立刻偏离正常范围,从而发出故障报警信号。
火焰探测器原理

火焰探测器原理
火焰探测器是用来检测火焰的一种设备,其原理主要基于火焰的热辐射和光辐射。
首先,火焰产生的热辐射是火焰探测器工作的主要原理之一。
当有火焰燃烧时,火焰会释放大量的热能,其中包括红外辐射。
火焰探测器通常会使用红外传感器来检测火焰散发的红外辐射信号。
这些传感器可以对红外光信号进行感应和测量,一旦探测到高强度的红外辐射,就可以判断出可能有火灾发生。
其次,火焰也会产生可见光辐射,这也是火焰探测器的另一个原理。
火焰燃烧时,其颜色、亮度和频率等特征会有所变化,这些变化可以通过光学传感器进行检测和识别。
火焰探测器通常会使用光敏元件(如光电二极管、光敏电阻等)来感知火焰所产生的可见光信号,并将其转换成电信号进行处理和分析。
综上所述,火焰探测器通过感知和测量火焰产生的热辐射和光辐射来实现火灾的检测。
这些原理的应用使得火焰探测器能够快速而准确地发现潜在的火灾风险,从而及时采取措施以保护人们的生命和财产安全。
uv 火焰探测器工作原理 波长

uv 火焰探测器工作原理波长UV火焰探测器是一种利用紫外光来探测火焰的设备。
它主要利用火焰产生的紫外辐射来检测和判断火灾情况,从而实现火灾报警和火灾监测的功能。
UV火焰探测器的工作原理可以简单描述为以下几个步骤:UV光源发射紫外光——紫外光穿过空气——紫外光被火焰吸收或散射—— UV光散射或经火焰透射到达UV光检测器—— UV光检测器检测到火焰信号——输出报警信号。
首先,UV火焰探测器需要一个紫外光源。
紫外光源通常是一种具有较短波长的光源,例如具有254纳米波长的紫外灯。
这种紫外灯可以产生较强的紫外光,且能够工作在连续光谱模式下。
然后,紫外光会穿过空气并照射在可能发生火灾的区域。
当火焰产生时,火焰会发出可见光和紫外辐射。
其中,紫外辐射是由火焰燃烧产生的,主要包括C、H、O等活性物质的辐射。
接下来,紫外光会被火焰吸收或散射。
火焰在吸收紫外光时会产生吸收峰,这些峰位于200~300纳米的波长范围内。
部分紫外光会被散射到火焰周围的空气中。
紫外光散射或经火焰透射到达UV光检测器。
UV光检测器一般是一种高灵敏度的光电二极管,用于检测通过火焰透射或散射的紫外光信号。
当有火焰存在时,会产生一定的紫外光信号。
这些信号被UV光检测器接收后,会产生相应的电信号。
最后,通过对UV光检测器输出信号的分析和判断,可以确定是否有火焰存在,从而触发火灾报警系统。
通常,UV火焰探测器会与其他火灾报警设备(如声光警报器)相结合,以及时发出警报并采取相应的灭火措施。
在相关参考内容方面,可以参考以下文献资料:1. "UV Flame Detection for Gas Turbine Applications" by Robert Henderson, Baseline Inc.2. "Principles of Fire Detection" by David Laven, Honeywell Life Safety Group.3. "Ultraviolet (UV) Flame Detection" by Det-Tronics, a UTC Fire & Security Company.4. "UV Flame Detector Selection, Installation, and Use" by Det-Tronics, a UTC Fire & Security Company.5. "UV Flame Detection Theory and Application" by Gary Carlson, Hanwei Electronics Group Corporation.这些资料中包含了对UV火焰探测器工作原理的详细说明,以及在实际应用中的选择、安装和使用等方面的指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源
紫外 光电 二极 管
继电器控制 信号 调理 电路 PIC18F2520 单片机 RS-485接口
工 作 过 程
紫外线光电二极管将火焰发出的 微弱的紫外线转换成电流信号
放大电路对前级信号 放大,滤波
PIC18F2520单片机对调理后的信 号进行A/D转换,数据处理
RS-485总线把熄灭的 信息发送给上位机
利用继电器模块关闭电磁 阀,停止继பைடு நூலகம்供给燃料
结论
基于紫外线光电二极管检测燃气火焰的状态,具 有高准确性和可靠性。开发的火焰检测器用在压缩机 的电机铁芯热处理工业炉中,经过长时间的测试,运 行稳定,结果可靠,具有较高的使用价值。
谢谢! 请老师批评指正!
基于紫外光电二极管的 火焰检测器
方案设计
火焰燃烧向外释放紫外线,通过紫外光电二极管转 换成微弱的电流,经过信号调理,单片机控制输出, 实现火焰检测。 所设计的检测器检测准确,性能稳定,适合用于燃 气工业炉的火焰检测。
光电探测器的选用
当各种燃料燃烧时,火焰发出大量的紫外线;当火焰熄灭 时,紫外线立即消失。通过检测有无紫外线,判断着火和 熄火的状态。
紫外光电二极管检测原理
与一般半导体二极管类似,PN节装在管的顶部, 以便接受光照,上面有一个透镜制成的窗口,使光线 集中在PN节敏感面上。
光电二极管工作原理
当受到紫外光照时,PN节附近受到光子轰击,吸 收能量产生电子-空穴对,使P区和N区载流子浓度增加。 在外加电压和内电场的作用下,PN节的反向电流大大 增加,形成了光电流。
前置放大器设计
为了放大微弱的电流信号,必须提高放大倍数,所 以采用两级放大电路。 为了抑制60Hz以上的噪音,采用有源一阶低通滤波 器。
前置放大器设计
通过调整每一级放大倍数,来选择适当的反馈电 阻,减小由反馈电阻引起的误差。通过两次电压反相, 使放大电路的最终输出电压与输入信号相同。
系统组成
由于火焰燃烧过程中辐射的可见光和红外线最多,但在实
际上由于高温的壁炉同样辐射大量红外线,难以将两者区
分。因此通过检测紫外线来检测火焰,不受可见光和红外
线影响。
光电探测器的选用
采用紫外光电二极管G5824 此光电管只在260~400nm狭窄范围内的紫外线进行 响应,而对其他范围的光线不敏感。利用这一光谱 特性检测火焰中的紫外线。