光电二极管测量优化设计

光电二极管测量优化设计
光电二极管测量优化设计

图2. 典型光电二极管传递函数

光照射到光电二极管的活动区后,电流从阴极流向阳极。理想情况下,所有的光电二极管电流都流经图1中的反馈电阻,产生数值等于光电二极管电流乘以反馈电阻的反馈电压。该电路在原理上很简单,但若要系统具备最佳性能

防止外部漏电流的另一种方法是在搭载光电二极管电流的走线旁布局一个保护走线,并确保两条走线均驱动至相同的电压。图4显示搭载光电二极管电流的网络周围的保护交流考虑因素

虽然大部分精密光电二极管应用的工作速率较低,但我们

图3. 带漏电流路径的光电二极管布局

图4. 使用保护走线降低外部漏电流

图6. 光电二极管放大器的噪声增益会在较高的频率下增加

由于无法利用该带宽,因此可以采用设置为放大器信号带

晶体二极管的主要参数

晶体二极管的主要参数: 1 电阻 ⑴直流电阻 在晶体二极管上加上一定的直流电压V,就有一对那个的直流电流I,直流电压V与直流电流I的比值,就是晶体二极管的等效直流电流。 ⑵动态电流 在晶体二极管上加一定的直流电压V的基础上,再加上一个增量电压,则晶体二极管也有一个增量电流△I。增量电压△V与增量电流△I的比值,就是晶体二极管的动态电阻,即动态电阻为晶体二极管两端电压变化与电流变化的比值。 二极管的正向直流电阻和动态电阻都是随工作点的不同而发生变化的。 普通晶体二极管反响运动时,其直流电阻和动态电阻都很大,通常可以尽是为无穷大。 2 额定电流 晶体二极管的额定电流是指晶体二极管长时间连续工作时,允许通过的最大正向平均电流。在二极管连续工作时,为使PN结的温度不超过某一极限值,整流电流不应超过标准规定的允许值。 例如:2AP1 的额定电流为12mA; 2AP5为16mA;2AP9为5mA。 对于大功率晶体二极管,为了降低它的温度,增大电流,必须加装散热片。 3 反向击穿电压 反向击穿电压是指二极管在工作中能承受的最大反向电压,它也是使二极管不致反响击穿的电压极限值。在一般情况下,最大反向工作电压应小于反向击穿电压。选用晶体二极管时,还要以最大反向工作电压为准,并留有适当余地,以保证二极管不致损坏。 例如:2AP21型二极管的反向击穿电压为15V最大反向工作电压小于10V;2AP26的反向

击穿电压为150V,最大反向工作电流小于100V。 4 最高工作频率 最高工作频率是指晶体二极管能正常工作的最高频率。选用二极管时,必须使它的工作频率低于最高工作频率。 例如:2AP8BD 最高工作频率为150MHz;2CZ12的最高工作频率为3kHz;2AP16的最高工作频率为40MHz。 晶体二极管的分类: 按用途分: 检波二极管

发光二极管光谱参数测试方法的研究

发光二极管光谱参数测试方法的研究X 金尚忠1,2,王东辉1,周 文2,张在宣1 (1.中国计量学院信息工程学院,浙江杭州310034; 2.浙江大学信息工程学院,浙江杭州310027) 摘要:影响发光二极管(L ED)颜色的光谱参数有:峰值波长、带宽、主波长和质心波长。峰值波长和带宽反映了L ED发光的物理特性,主波长反映了L ED发光的目视感觉,质心波长是L ED的几何对称波长。 用分光光度法和CCD器件测量L ED的光谱参数,精度达1nm。用质心波长来估算主波长,误差小于 3nm。 关键词:发光二极管(L ED);峰值波长;主波长;质心波长;色品坐标 中图分类号:T P216;T N312+.8 文献标识码:A 文章编号:1005-0086(2002)08-0825-03 Research on Measurement of Spectrum Parameters in LED JIN Shang-zhong1,2,WANG Do ng-hui1,ZHOU Wen2,ZHAN G Zai-x uan2 (1.Institute of I nfo rm atio n Eng ineer ing,China Instit ute of M etr olog y,Hangzhou310034,China; 2.In- stitute o f Infor matio n Eng ineer ing,Zhejia ng U niv ersity,Hang zho u310027,China) Abstract:Peak w av eleng th,bandw ith,domain wav eleng th,and centro id w avelength ar e facto rs affect ing on lig ht color of LED.P eak wav eleng th and bandwith stand for the physical pro per ty of lig ht o f L ED, domain w av elengt h co rr espo nds to feel of eyes,centr oid w av elengt h is g eometr ic sym metry w avelength of L ED.T hey wer e measured using concave disper sio n sy st em and CCD.T heir accur acies are1nm.Do- main w avelength w as estimated by centr oid w aveleng th,its err or is less t ha n3nm. Key words:L ED;P eak wav eleng th;Do main w avelength;Cent ro id wav eleng th;Colo r coo rdinate 1 引 言 发光二极管(LED)由于其光强高、功耗低、寿命长、可靠性高、易驱动和易与IC相衔接等特点,已被广泛用于交通、广告和仪器仪表的显示中。LED的颜色是影响显示效果的关键因素,决定LED颜色的则是它的波长特性。由于LED的相对光谱功率分布是一种窄带的准单色光光谱,因此测量它的波长就尤为重要。 2 测量原理 LED在可见光区域内发光的相对光谱功率分布为P(K)。图1所示为绿色LED的P(K)曲线,量大值所对应的波长K P称为它的峰值波长。它的颜色可用色坐标(x,y)来表示。按CIE规定[1],LED的三刺激值X、Y和Z为 X=k∫780380P(K)x-(K)d K Y=k∫780380P(K)y-(K)d K Z=k∫780380P(K)z-(K)d K (1) 式中,x-(K)、y-(K)和z-(K)为1931CIE-X YZ标准色度观察者光谱三刺激值;k称为调整系数 k=100/∫780380P(K)y-(K)d K( 2) 图1 LED的相对光谱功率分布 Fig.1 Relative spectrum energy distribution of LED 光电子?激光 第13卷 第8期 2002年8月 Jo urnal of O pt oelect ro nics?L aser Vo l.13 N o.8 A ug.2002 X收稿日期:2002-01-21 修订日期:2002-02-06

2 光电二级管特性

课程设计任务书 课程设计任务书

目录: 实验目的 (1) 实验内容 (1) 实验仪器 (1) 实验原理 (1) 注意事项 (4) 实验步骤 (5) 实验结果 (12) 实验总结 (15) 参考文献 (15)

光电二极管特性测试实验 一、实验目的 1、学习光电二极管的基本工作原理; 2、掌握光电二极管的基本特性参数及其测量方法,并完成对其光照灵敏度、伏安特性、时间响应特性和光谱响应特性的测量; 3、通过学习,能够对其他光伏器件有所了解。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管伏安特性测试实验 3、光电二极管光照特性测试实验 4、光电二极管时间特性测试实验 5、光电二极管光谱特性测试实验 三、实验仪器 1、光电二极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述 随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,

各种类型发光二极管详细概述

发光二极管的作用及分类详细资料1.发光二极管的作用 发光二极管(LED)是一种由磷化镓(GaP)等半导体材料制成的、能直接将电能转变成光能的发光显示器件。当其内部有一定电流通过时,它就会发光。图4-21是共电路图形符号。 发光二极管也与普通二极管一样由PN结构成,也具有单向导电性。它广泛应用于各种电子电路、家电、仪表等设备中、作电源指示或电平指示。 2.发光二极管的分类 发光二极管有多种分类方法: 按其使用材料可分为磷化镓(GaP)发光二极管、磷砷化镓(GaAsP)发光二极管、砷化镓(GaAs)发光二极管、磷铟砷化镓(GaAsInP)发光二极管和砷铝化镓(GaAlAs)发光二极管等多种。 按其封装结构及封装形式除可分为金属封装、陶瓷封装、塑料封装、树脂封装和无引线表面封装外,还可分为加色散射封装(D)、无色散射封装(W)、有色透明封装(C)和无色透明封装(T)。 按其封装外形可分为圆形、方形、矩形、三角形和组合形等多种,图4-22为几种发光二极管的外形。

塑封发光二极管按管体颜色又分为红色、琥珀色、黄色、橙色、浅蓝色、绿色、黑色、白色、透明无色等多种。而圆形发光二极管的外径从¢2~¢20mm,分为多种规格。 按发光二极管的发光颜色又可人发为有色光和红外光。有色光又分为红色光、黄色光、橙色光、绿色光等。 另外,发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。 3.普通单色发光二极管 普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。它属于电流控制型半导体器件,使用时需串接合适的限流电阻。 图4-23是普通发光二极管的应用电路。 普通单色发光二极管的发光颜色与发光的波长有关,而发光的波长又取决于制造发光二极管所用的半导体材料。红色发光二极管的波长一般为650~700nm,琥珀色发光二极管的波长一般为630~650 nm ,橙色发光二极管的波长一般为610~630 nm左右,黄色发光二极管的波长一般为585 nm左右,绿色发光二极管的波长一般为555~570 nm。

基于光电二极管反偏的光电检测电路的噪声分析

基于光电二极管反偏的光电检测电路的噪声分析 发表时间:2017-03-09T11:18:47.780Z 来源:《电力设备》2017年第1期作者:王风敏 [导读] 在光电检测电路设计时,应该尽可能地减小噪声,从而提升系统的检测分辨率和信噪比。 (池州学院安徽池州 247100) 摘要:噪声是目前影响光电检测电路检测性能的重要因素,在光电检测电路设计时,应该尽可能地减小噪声,从而提升系统的检测分辨率和信噪比。为此,本文就对基于光电二极管反偏的光电检测电路的噪声进行了分析,首先简单介绍了光电二极管检测电路,然后对基于光电二极管反偏的光电检测电路设计进行了分析,随后探讨了光电检测电路的噪声,最后提出了光电检测电路的总噪声及低噪声的设计原则,旨在为低噪声光电检测电路的设计提供帮助。 关键字:噪声;光电检测电路;光电二极管;反偏 引言 现如今,光电检测技术已经被广泛地应用于诸多领域,从理论的角度分析而言,利用光电检测电路能够将任何存在光辐射信号地方的信号检测出来。然而,在实际检测过程中,经光电二极管转换的光电信号是非常微弱的,经常出现被检测信号被噪声淹没的情况,严重影响的光电检测电路的检测能力。因此,对光电检测电路的噪声进行分析具有非常重要的意义。 1.光电二极管检测电路 1.1光电二极管工作原理 光电二极管主要是利用半导体通过光电效应实现光信号到电信号的转换。受热运动的影响,耗尽层两侧没有电场的中性区域内有一些以扩散运动方式的空穴与光生电子进入到耗尽层,然后受电场的作用形成扩散电流,且方向与漂移电流相一致。光生电流为扩散电流分量与漂移电流分量的总和。所以,当N层和P层的连接电路打开时,在它们的两端会产生一定的电动势,而该效应则被称之为光电效应。当P 层与N层的连接电路出现闭合时,N区的过剩电子与P区的空穴电流会相互流动,从而形成一种光生电流。光生电流会随着入射光的变化而进行线性改变,从而实现光信号到电信号的转变。 1.2低噪声光电检测线路设计的意义 通常情况下,通过光电二极管转换而得到的光电信号是较为微弱的,且在光电信号的检测极易受到噪声的干扰。实际情况表明,当通过光电来检测相关线路时,其中光电转换器件的前置放大电路噪声往往会对整个系统产生较为严重的影响,因此,要想提升系统的检测分辨率和信噪比,在设计光电检测电路时,必须尽量地降低噪声。 1.3噪声的实用性分析 通过分析光电检测电路中噪声产生的原因,并对其噪声特点进行分析,并针对电路设计过程中有可能出现的所有问题,尽可能地降低电路噪声,从而确保西戎检测分辨率与信噪比的提高。现如今,诸多领域中都涉及到了微弱光信号的检测,当然检测方法也是各式各样的,但就实际应用效果来看,一部分常用检测方法的灵敏度不是很高,在工作中往往无法满足相关要求,而利用光电技术对微弱信号进行检测,具有较高的精度和稳定性。 2.基于光电二极管反偏的光电检测电路设计 光电二极管的工作状态在光电检测电路中存在反偏、无偏、正偏三种。当光电二极管处于反偏状态时,在反偏偏压的作用下,光生截流子的运动会加快,与其它两种状态相比较而言,所产生的光电流更大,更有利于弱光条件下的检测。本文所研究的基于光电二极管反偏的光电检测电路的设计思路为:首先采用光电二极管连接反向高压,对微弱光信号进行探测,实现光信号到电流信号的转换;然后,再利用三极管实现电信号的流压转换;最后,再通过运算放大器来放大电压,从而完成对弱光信号检测。光电检测电路中的所有期器件都不可避免会产生相应的噪声,从而对整个电路的噪声输出产生不良的影响,下面本文就电路的噪声进行进一步分析。 3.光电检测电路的噪声 3.1光电二极管的噪声 (1)热噪声。热噪声指的是导电材料两端因其中截流子的不规则热运动而产生涨落的电流或电压,并且电流或电压的涨落是随机的。材料的噪声等效带宽、电阻及温度是决定材料热噪声电压的主要因素,其中电阻是主要的热噪声源,在电阻不变的情况下,减少温度及噪声等效带宽能够使热噪声得到有效地减少。 (2)散粒噪声。散粒噪声是指导电材料中由于光生截流子流动与形成密度的涨落而产生的噪声,散粒噪声电流和电压均方值取决于通过光电二极管的电流和噪声带宽,并且散粒噪声电压与电流的均方值与电流及噪声带宽呈正比例关系,减少电流和噪声带宽能够使散粒噪声得到有效地降低。在光电检测电路中,散粒噪声电流与热噪声电流是相互独立的,总电流的均方值为散粒噪声电流均方值与热噪声电流均方值之和。 3.2三极管的噪声 三极管的噪声主要取决于工作电流、发射结阻抗以及基区电阻等参数,光电检测电路设计时,应该选用噪声系数较小的三极管,同时,在对负载电阻的阻值进行确定时,需要对噪声与三极管静态放大倍数之间的关系进行充分地考虑,从而实现电路设计优化。 3.3运算放大器的噪声 光电检测电路中的运算放大器是由电容、电阻、晶体管等集成的,其中电阻和晶体管分别会产生相应的热噪声和散粒噪声。运算放大器的输出噪声电压与其自身的增益、带宽、模型以及反馈电阻等因素有关。在光电检测电路设计时,其它需求条件都满足的情况下,运算放大器应尽可能地选用小的,同时放大倍数确定后,对电路阻值进行调整时,应尽可能地减少反馈电阻的阻值,从而实现电路噪声的减少。 4.光电检测电路的总噪声及低噪声的设计 通过上文分析,我们不难得出光电检测电路主要包括光电二极管、三极管流压转换以及运算放大器三个模块,在对整个电路的噪声进行分析时,必须对这三部分进行级联。除与电路器件自身相关之外,光电检测电路的输出噪声电压还与其它众多因素相关联。(1)从理论的角度来看,三极管的负载电阻与其静态增益的并联值越小,电路噪声越小,越有利于检测,然而随着负载电阻与静态增益的减小,输出信号也在随之变小。因此,在实际条件过程中,应该首先尽可能地满足负载电阻的值,然后再结合负载电阻对静态增益进行调节。(2)从

发光二极管特性参数(精)

发光二极管特性参数 IF 值通常为 20mA 被设为一个测试条件和常亮时的一个标准电流,设定不同的值用以测试 二极管的各项性能参数,具体见特性曲线图。 IF 特性: 1. 以正常的寿命讨论,通常标准 IF 值设为 20 - 30mA ,瞬间( 20ms )可增至 100mA。 2. IF 增大时 LAMP 的颜色、亮度、 VF 特性及工作温度均会受到影响,它是正常工作时的一个先决条件, IF 值增大:寿命缩短、 VF 值增大、波长偏低、温度上升、亮度增大、 角度不变,与相关参数间的关系见曲线图; 1.VR ( LAMP 的反向崩溃电压) 由于 LAMP 是二极管具有单向导电特性,反向通电时反向电流为 0 ,而反向电压高到一定程度时会把二极管击穿,刚好能把二极管击穿的电压称为反向崩溃电压,可以用 “ VR ”来表示。 VR 特性: 1. VR 是衡量 P/N 结反向耐压特性,当然 VR 赿高赿好; 2. VR 值较低在电路中使用时经常会有反向脉冲电流经过,容易击穿变坏; 3. VR 又通常被设定一定的安全值来测试反向电流( IF 值),一般设为 5V ; 4. 红、黄、黄绿等四元晶片反向电压可做到 20 - 40V ,蓝、纯绿、紫色等晶片反向 电压只能做到 5V 以上。 2.IR (反向加电压时流过的电流) 二极管的反向电流为 0 ,但加上反向电压时如果用较精密的电流表测量还是有很小的电流,只不过它不会影响电源或电路所以经常忽略不记,认为是 0 。 IR 特性: 1. IR 是反映二极管的反向特性, IR 值太大说明 P/N 结特性不好,快被击穿; IR 值 太小或为 0 说明二极管的反向很好; 2. 通常 IR 值较大时 VR 值相对会小, IR 值较小时 VR 值相对会大; 3. IR 的大小与晶片本身和封装制程均有关系,制程主要体现在银胶过多或侧面沾胶, 双线材料焊线时焊偏,静电亦会造成反向击穿,使 IR 增大。

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

发光二极管参数(精)

二极管参数 普通发光二极管的正向饱和压降为1.6V~2.1V, 正向工作电流为5~20mA LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)正向工作电流If:它是指发光二极管正常发光时的正向电流值。在实际使用中应根据需要选择IF在0.6·IFm以下。 (2)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。一般是在IF=20mA时测得的。发光二极管正向工作电压VF在1.4~3V。在外界温度升高时,VF将下降。 (3)V-I特性:发光二极管的电压与电流的关系 在正向电压正小于某一值(叫阈值)时,电流极小,不发光。当电压超过某一值后,正向电流随电压迅速增加,发光。由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。正向的发光管反向漏电流IR<10μA以下。 LED的分类 1.按发光管发光颜色分 按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。 根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。 2.按发光管出光面特征分 按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。 由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类: (1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可

硅光电二极管在光电检测电路中的应用研究_付文羽

第20卷 第5期 许昌师专学报 Vol.20.No.5 2001年9月 JOURNAL OF XUCHANG TE AC HERS C OLLE GE Sep.,2001 文章编号:1000-9949-(2001)05-0019-04 硅光电二极管在光电检测电路中的应用研究 付文羽,彭世林 (庆阳师范高等专科学校物理系,甘肃西峰745000) 摘 要:分析了光电检测时硅光电二极管线性响应及噪声特性,给出了硅光电二极管的线性 度及信噪比公式,并结合噪声E n—I n模型[1],对光电二极管用于光电检测时影响电路信噪比的 因素进行了探讨. 关键词:光电检测;信噪比;噪声模型 中图分类号:TN710.2 文献标识码:A 0 引言 硅光电二极管由于响应快、灵敏度高、性能稳定、测量线性好、噪声低而被广泛用于光电检测电路中,尤其在激光通讯测量中,通常要测量微瓦以下的光信号,就更离不开硅光电二极管.质量好的硅光二极管用于激光功率测量时,测量下限可达10-8W,分辨率可达10-12W.在许多场合,光电检测电路接收到的是随时间变化的光信号,其特点是:单一频率或包含着丰富的频率分量的交变信号,当信号很微弱时,由于背景噪声和电路热噪声的影响,还需要对信号进行低噪声处理、放大.因此,在交变光电信号作用下,怎样正确选择硅光电二极管的参数,以获得最小非线性失真信号及信号检测的灵敏度就成为人们所关心的问题. 1 硅光电二极管的基本结构及等效电路 光电二极管是一种光电转换器件,其基本原理是当光照射在P—N结上时,被吸收的光能转变为电能,这是一个吸收过程,与发光二极管的自发辐射和激光二极管的受激幅射过程相逆.P—N型硅光电二极管是最基本和应用最广的管子.基本结构如图1所示,它是在N型硅单晶片的上表面扩散一薄层P型杂质,形成P+型扩散层.由于扩散,在P+区和N型区形成一个P+N结.P+区是透明的,光子可以通过P+区到达PN结区产生光电子.在N型硅单晶下表面扩散N型杂质以形成高浓度的N+扩散区,以便给金属电极提供良好的电接触.另一种常用的硅光电二极管是P—I—N型硅光电二极管,其结构同P—N型类似.位于P层和N层之间的耗尽层由本征半导体构成,可以提供一个较大的耗尽深度和较小的电容,适合于反向偏压工作.硅光电二极管的等效电路如图2所示,图中I s为电流源,它是硅光电二极管接收辐射后所产生的光电流I p和暗电流I d以及噪声电流I n之和,即: 图1 平面扩散型PN结光电二极管结构图图2 硅光电二极管等效电路 收稿日期:2001-03-19 作者简介:付文羽(1963-),男,甘肃宁县人,庆阳师专物理系讲师,工程硕士,主要从事光电检测与传感技术应用研究.

二极管的符号、判别、参数和分类

二极管符号 二极管(国标) 2.半导体二极管的极性判别及选用 (1) 半导体二极管的极性判别

一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP1 7等。如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。塑封二极管有圆环标志的是负极,如IN4000系列。 无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。 根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R ×100或R×1k挡。不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极相接,测出两个阻值。在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。在这两种情况下,管子就不能使用了。 (2) 半导体二极管的选用 通常小功率锗二极管的正向电阻值为300~500?,硅管为1k?或更大些。锗管反向电阻为几十千欧,硅管反向电阻在500k?以上(大功率二极管的数值要大得多)。正反向电阻差值越大越好。 点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。 选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。

发光二极管的类型、主要参数

.普通单色发光二极管普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮.它属于电流控制型半导体器件,使用时需串接合适地限流电阻. 普通单色发光二极管地发光颜色与发光地波长有关,而发光地波长又取决于制造发光二极管所用地半导体材料.红色发光二极管地波长一般为,琥珀色发光二极管地波长一般为,橙色发光二极管地波长一般为左右,黄色发光二极管地波长一般为左右,绿色发光二极管地波长一般为. 常用地国产普通单色发光二极管有(厂标型号)系列、(部标型号)系列和系列.常用地进口普通单色发光二极管有系列和系列等. .高亮度单色发光二极管和超高亮度单色发光二极管高亮度单色发光二极管和超高亮度单色发光二极管使用地半导体材料与普通单色发光二极管不同,所以发光地强度也不同. 通常,高亮度单色发光二极管使用砷铝化镓()等材料,超高亮度单色发光二极管使用磷铟砷化镓()等材料,而普通单色发光二极管使用磷化镓()或磷砷化镓()等材料.. .变色发光二极管变色发光二极管是能变换发光颜色地发光二极管.变色发光二极管发光颜色种类可分为双色发光二极管、三色发光二极管和多色(有红、蓝、绿、白四种颜色)发光二极管. 变色发光二极管按引脚数量可分为二端变色发光二极管、三端变色发光二极管、四端变色发光二极管和六端变色发光二极管. 常用地双色发光二极管有系列和系列,常用地三色发光二极管有、、等型号,见表. .闪烁发光二极管闪烁发光二极管()是一种由集成电路和发光二极管组成地特殊发光器件,可用于报警指示及欠压、超压指示. 闪烁发光二极管在使用时,无须外接其它元件,只要在其引脚两端加上适当地直流工作电压()即可闪烁发光. 表是几种常用闪烁发光二极管地主要参数. .电压控制型发光二极管普通发光二极管属于电流控制型器件,在使用时需串接适当阻值地限流电阻.电压控制型发光二极管()是将发光二极管和限流电阻集成制作为一体,使用时可直接并接在电源两端. 电压控制型发光二极管地发光颜色有红、黄、绿等,工作电压有、、、、、共种规格. 表为系列电压控制型发光二极管地主要参数. .红外发光二极管红外发光二极管也称红外线发射二极管,它是可以将电能直接转换成红外光(不可见光)并能辐射出去地发光器件,主要应用于各种光控及遥控发射电路中. 红外发光二极管地结构、原理与普通发光二极管相近,只是使用地半导体材料不同.红外发光二极管通常使用砷化镓()、砷铝化镓()等材料,采用全透明或浅蓝色、黑色地树脂封装. 常用地红外发光二极管有系列、系列、系列、系列、系列和系列等 ·发光亮度 亮度是发光性能又一重要参数,具有很强方向性.其正法线方向地亮度,指定某方向上发光体表面亮度等于发光体表面上单位投射面积在单位立体角内所辐射地光通量,单位为或. 若光源表面是理想漫反射面,亮度与方向无关为常数.晴朗地蓝天和荧光灯地表面亮度约为(尼特),从地面看太阳表面亮度约为×. 亮度与外加电流密度有关,一般地,(电流密度)增加也近似增大.另外,亮度还与环境温度有关,环境温度升高,η(复合效率)下降,减小.当环境温度不变,电流增大足以引起结结温升高,温升后,亮度呈饱和状态. 文档来自于网络搜索 ·寿命

光电二极管的性能测试

北方民族大学 课程设计报告 院(部、中心)电气信息工程学院 姓名学号 专业测控技术与仪器班级测控技术与仪器101 同组人员 课程名称光电技术综合技能训练 设计题目名称光敏二极管的性能测试 起止时间 成绩 指导教师签名盛洪江 北方民族大学教务处制 摘要 随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 关键词:光敏二极管、ELVIS实验平台、LABView8.6、OSLO软件 引言 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具不同的光电特性和检测性能。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。

目录 摘要 1 引言 1 目录 2 光敏二极管 3 光电效应 4 光电导效应 4 光生伏特效应 4 光敏二极管的工作原理 5 光敏二极管 5 LabVIEW软件5 总结 6 附录7 程序设计原理图7 结果图8 实验连线9 光敏二极管 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我上来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。 光敏二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图1(a)是其结构示意图。光敏二极管在电路中通常处于反向偏置状态,如图1(b)所示。 光电效应 光电导效应 若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃

LED性能参数及测试方法

LED选修课总结 LED性能参数及测试方法 院(系)名称 专业班级 学号 学生姓名 指导教师 2011年11月24日

摘要 发光二极管(英语:Light-Emitting Diode,简称LED)是一种能发光的半导体电子元件。这种电子元件早在1962年出现,早期只能发出低光度的红光,之后发展出其他单色光的版本,时至今日能发出的光已遍及可见光、红外线及紫外线,光度也提高到相当的光度。而用途也由初时作为指示灯、显示板等;随着白光发光二极管的出现而续渐发展至被用作照明。 LED只能往一个方向导通(通电),叫作正向偏置(正向偏压),当电流流过时,电子与电洞在其内重合而发出单色光,这叫电致发光效应,而光线的波长、颜色跟其所采用的半导体物料种类与故意渗入的元素杂质有关。具有效率高、寿命长、不易破损、开关速度高、高可靠性等传统光源不及的优点。但当LED的发光强度达至足以用于室内照明的话,其效率会下降到比萤光灯更差(比萤光灯耗电),成本也高至极不合理水平,这是当前LED照明未能普及的重要原因。(September,2011)白光LED的发光效率,在近几年来已经有明显的提升,同时,在每千流明的购入价格,也因为投入市场的厂商相互竞争的影响,而明显下降。因此,LED照明虽然尚未达到全面普及的程度,但是在光电转换效率及有效照度对用电量的比值上,均已经超过萤光灯,甚至有机会挑战低压钠灯(Low Pressure Sodium light)。 关键词:正向偏置、电致发光 ·

目录 Ⅰ检测性能参数的方法 (1) ⅡLED的重要特性及测试 (2) 1电特性测试方法 (2) 2光特性测试 (3) 3光谱参数 (5) 4热学特性 (6) 5可靠性 (6) 总结 (7) 参考文献 (8)

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

光电二三极管特性测试实验报告

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

光电二极管检测电路的工作原理及设计方案

?光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。这种方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压(零偏置)方式。光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。输出电压会随着电阻RF两端的压降而变化。 图中的放大系统将电流转换为电压,即 VOUT = ISC ×RF (1)

图1 单电源光电二极管检测电路 式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。图1中的CRF是电阻RF的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p RF CRF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件RF。用这个模拟程序,激励信号源为ISC,输出端电压为VOUT。 此例中,RF的缺省值为1MW ,CRF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p RFCRF),即318.3kHz。改变RF可在信号频响范围内改变极点。 遗憾的是,如果不考虑稳定性和噪声等问题,这种简单的方案通常是注定要失败的。例如,系统的阶跃响应会产生一个其数量难以接受的振铃输出,更坏的情况是电路可能会产生振荡。如果解决了系统不稳定的问题,输出响应可能仍然会有足够大的“噪声”而得不到可靠的结果。 实现一个稳定的光检测电路从理解电路的变量、分析整个传输函数和设计一个可靠的电路方案开始。设计时首先考虑的是为光电二极管响应选择合适的电阻。第二是分析稳定性。然后应评估系统的稳定性并分析输出噪声,根据每种应用的要求将之调节到适当的水平。 这种电路中有三个设计变量需要考虑分析,它们是:光电二极管、放大器和R//C反馈网络。首先选择光电二极管,虽然它具有良好的光响应特性,但二极管的寄生电容将对电路的噪声增益和稳定性有极大的影响。另外,光电二极管的并联寄生电阻在很宽的温度范围内变化,会在温度极限时导致不稳定和噪声问题。为了保持良好的线性性能及较低的失调误差,运放应该具有一个较小的输入偏置电流(例如CMOS工艺)。此外,输入噪声电压、输入共模电容和差分电容也对系统的稳定性和整体精度产生不利的影响。最后,R//C反馈网络用于建立电路的增益。该网络也会对电路的稳定性和噪声性能产生影响。 2 光检测电路的SPICE模型

相关文档
最新文档