半导体二极管参数的测量

合集下载

测量半导体二极管的伏安特性

测量半导体二极管的伏安特性
使用合适的测量工具
选择合适的电流表、电压表进行测量,避免因测量工具选择不当导 致测量误差或损坏仪器。
异常情况的处理和应急措施
遇到异常情况应立即停止实验
如发现仪器故障、电路短路、电流过大等情况,应立即切断电源,保护仪器和人身安全。
掌握基本的急救措施
在实验过程中,如发生触电、火灾等紧急情况,应掌握基本的急救措施,如心肺复苏、灭 火等。
定期检查实验设备
定期对实验设备进行检查和维护,确保设备正常运转,防止因设备故障引发意外事故。
THANKS
感谢观看
详细描述
当正向电压施加在二极管上时,PN结内的电子和空穴受到电场作用而分离,形成正向电流。当反向电压施加时 ,由于空间电荷区的存在,电流被阻止。在一定温度下,二极管的伏安特性呈指数关系,表现为正向导通电压随 电流增大而增大,反向击穿电压随温度升高而增大。
02
CATALOGUE
伏安特性测量原理
伏安特性的定义
确保电源安全
使用可靠的电源,避免使用破损或老化的电源线 ,确保电源接地良好。
避免电磁干扰
在实验过程中,应尽量减少周围环境中可能产生 电磁干扰的设备,如手机、微波炉等。
操作过程中的安全注意事项
遵循操作规程
按照规定的步骤进行实验操作,避免因操作不当引发意外事故。
注意观察仪器状态
在实验过程中,应时刻关注仪器的工作状态,如发现异常应及时停 止实验并检查。
伏安特性的分析
正向特性分析
分析正向伏安特性曲线,研究二极管在 正向偏置下的电流随电压的变化规律, 了解其正向导通电阻、正向电压降等参 数。
VS
反向特性分析
分析反向伏安特性曲线,研究二极管在反 向偏置下的电流随电压的变化规律,了解 其反向截止电流、反向击穿电压等参数。

测量半导体二极管的伏安特性

测量半导体二极管的伏安特性
实验 线性与非线性元件 伏安特性的测定
实验目的
1、了解电学实验常用仪器的规格、性能,学习它们的使用方法。 2、学习电学实验的基本操作规程和连接电路的一般方法。 3、掌握电阻元件伏安特性的测量方法,用伏安法测电阻。 4、了解系统误差的修正方法,学会作图法处理实验数据。
实验原理
利用欧姆定律求导体电阻的方法称为伏安法,它是测 量电阻的基本方法之一。为了研究材料的导电性,通 常作出其伏安特性曲线,了解它的电压与电流的关系。 伏安特性曲线是直线的元件称为线性元件,伏安特性 曲线不是直线的元件称为非线性元件,这两种元件的 电阻都可以用伏安法测量。
半导体二极管是一种常用的非线性电子元件,两个电极 分别为正极、负极。二极管的主要特点是单向导电性, 其伏安特性曲线如图(b)所示。其特点是:在正向电流 和反向电压较小时,伏安特性呈现为单调上升曲线;在 正向电流较大时,趋近为一条直线;在反向电压较大时, 电流趋近极限值 ,叫做反向饱和电流。 IS
实验仪器
(a) 线性元件的伏安特性
(b)非线性元件的伏安特性
伏安法 电流表内接法
V R I
RmA V Vx VmA R Rx RmA Rx 1 Ix Ix R x
电流表外接法
Vx Vx Rx 1 R I I x IV 1 1 Rx 1 Rx RV RV
0.55
0.60
0.65
0.70
3.测量小灯泡灯丝伏安特性
Ui(V) I(mA)
0.2
0.4
0.6
0.8
2
5
6.3
注意事项
l、为保护直流稳压电源,接通与断开电源前均需先使其输 出为零,然后再接通或断开电源开关。输出调节旋钮的 调节必须轻、缓。 2、更换测量内容前,必须使电源输出为零,然后再逐渐增 加至需要值.否则元件将会损坏。 3、在设计测量电学元件伏安特性的线路时,必须了解待测 元件的规格,使加在它上面的电压和通过的电流均不超 过额定值。

二极管的测试方法

二极管的测试方法

二极管的测试方法二极管是一种最简单的半导体器件,广泛应用于电子电路中。

为了确保二极管的性能和质量,在生产过程中需要进行测试。

下面将介绍二极管的测试方法。

一、外观检验首先,对二极管的外观进行检查,主要包括以下方面:1.外观是否完整:检查二极管外壳是否有明显的裂纹或损伤。

2.弯曲测试:用适当的力将二极管引脚弯曲,观察是否有变形或断开现象。

3.引脚检查:检查二极管引脚是否完整、平整,是否有锈蚀或氧化现象。

4.标识检查:查看二极管上的标识是否清晰可见,是否与规格书一致。

二、静态电特性测量静态电特性测试是最基本的二极管测试方法之一,主要包括以下几个参数的测量:1.正向电流和正向压降:使用电流表和电压表,将正向电流和正向电压测量出来。

一般需在规定电压下进行测试。

2.反向电流和反向击穿电压:使用电流表和电压表,将反向电流以及反向击穿电压测量出来。

反向电流应尽可能小,而击穿电压应尽可能大。

3.漏电流:将二极管正向极端接地,测量出正向电压下的漏电流。

三、动态电特性测量除了静态电特性,动态电特性也是测试二极管性能的重要方法。

主要包括以下几个参数的测量:1.正向电压下的响应时间:施加一个标准的方波信号,测量出由关断转为导通所需的时间。

2.反向电压下的响应时间:施加一个标准的方波信号,测量由导通转为关断所需的时间。

3.回复时间:施加正向电流,然后迅速关断,测量二极管恢复正常导通所需的时间。

4.逆耐压测量:以很快的速度给反向电压施加一个短脉冲,通过测量二极管的恢复时间来评估其逆耐压能力。

四、温度特性测试温度对二极管的性能有重要影响,因此需要对其进行温度特性测试。

主要包括以下几个参数的测量:1.启动温度:将二极管置于恒定温度下(通常为室温),测量正向电流和正向压降随温度变化的关系图。

确认启动温度和正向电流的关系。

2.热阻:以其中一温度作为背面温度,测量正向电流通过二极管时的实际结温,并计算出热阻值。

3.温度系数:测量正向电流与环境温度的关系,计算出二极管温度系数。

半导体发光二极管LED的测试方法

半导体发光二极管LED的测试方法
为光源在指,
电磁 能量,单位为 瓦特 ( )。 它通 常 w 表示L D在 空间4 E n度 范围内,每秒钟所
发 出 的 能 量 。 实 际 上 ,辐 射 通 量 就 是 辐 ’
角元dQ内月
这 个立体 角, 在此方 向上f
, 一

射体 的辐射 功率。 由于光子 能量 的大 小
半导体发光二极管L D E 的测试方法
光地 北京光 电子技术实验室主任 半导体发光二极 管 ( E L D) 已经被
广 泛 应 用 于 指 示 灯 、 信 号 灯 、 仪 表 显
的红外线放射作用。而 16 年美国通用 92
电气公 司 ( ikHoo y kJ) 则开 GE N c ln a r
量 、辐 射效率 、光强、光强分布特 性和
光谱参数等。
光通 量和 光效。光通 量 的测试有 两 种 方法,即积分球法和 变角光度 计法。 在辐射度学上,L D辐射通量中e E m来衡
量 发 光 二极 管 在 单 位 时 间 内 发 射 的 总 的
I ) ( ( 1 )
距离和探测
之间不 同波长 的光线 ,而业界也有紫色

紫外线 的L D。近年 来L D最吸引入 E E
的发展是蓝光L D上涂上萤光粉 ,将蓝 E
现 了砷 化镓Ga 与及 其他半 导体合 金 AS
光转化成 白光 的白光L D产 品。L D之 E E
Techn oq ol
所 以被称 为世 纪新光源 ,原 因在于LE D 具备 点光源与 固态光源的特性 ,能够节
省 能源 、高耐震、寿命长 、体积4 响应 、
快速、并且色彩饱和度高。
电特性测试方法 L ED是一个 由半导体无机 材料构成 的单 极性P n 二极 管 ,其 电压 与 电流 —结

半导体二极管参数的测量

半导体二极管参数的测量

2.二极管的主要参数 (1)最大整流电流 I FM
指管子长期工作时,允许通过的最大正向 平均电流。 (2)反向电流

指在一定温度条件下,二极管承受了反向 工作电压、又没有反向击穿时,其反向电 流值。 (3)反向最大工作电压 VRM 指管子运行时允许承受的最大反向电压。 应小于反向击穿电压。

(4)直流电阻
如果有且只有两个脚间的电阻无论正反向都无穷大那么这两个脚一定是集电极和发射极剩下的那个脚就是基极判别发射极和集电极的依据是
4.2.4
半导体二极管参数的测量
二极管是整流、检波、限幅、钳位 等电路中的主要器件。
一、半导体二极管的特性和主要参数
1.二极管的主要特性
二极管最主要的特性是单向导电特性,即二极 管正向偏置时导通;反向偏置时截止。
2.用数字万用表测量三极管

3.用晶体管特性图示仪测量三极管
二、测量原理和常规测试方法
1.模拟万用表测量三极管 可判断b、c、e,并估测电流放大倍数。
(1)基极的判定 利用PN结的单向导电性进行判别。 假设一个基极,分别测两个PN结的正向电阻和 反向电阻。基极判断出来后,还可以判断管型。
具体步骤

用模拟万用表红黑表 笔分别测量三极管任 意两个脚,每两个脚 正反都测量一次。如 果有且只有两个脚间 的电阻无论正反向都 无穷大,那么这两个 脚一定是集电极和发 射极,剩下的那个脚 就是基极b。

100kΩ 万 用 表 E
R0

(a)判断c、e的测量接线图
(3)电流放大倍数的估测

测量集电极和发射极间的电阻(对NPN, 黑笔接集电极,红笔接发射极;PNP的相 反),用手捏着基极和集电极,观察表针 摆动幅度的大小,表针摆动越大,β值越大。 一般数字万用表都有测量三极管的功能, 将晶体管插入测试孔就可以读出β值。

二极管参数测量方法

二极管参数测量方法

二极管参数测量方法二极管是最简单、最常用的半导体器件之一,用于电子器件的整流、稳压、开关等方面。

测量二极管的参数可以帮助我们了解其正向特性、反向特性以及工作状态,为电路设计和故障排除提供依据。

本文将介绍二极管参数的测量方法。

1.正向电压降(VF)测量正向电压降是指二极管在正向工作时的电压降。

其测量方法有以下几种:1.1.电压降法:将二极管连接到一个恒流源电路中,通过改变电流大小,测量二极管两端的电压降。

根据欧姆定律,电压降等于电流乘以电阻值,我们可以通过此方法来测量电压降。

1.2.示波器法:将二极管连接到一个满足其最大电流要求的电源电路中,然后用示波器观察二极管两端的电压波形,通过测量峰-峰值来计算电压降。

1.3.多用表法:将多用表的电流挡位选择在二极管最大电流的两倍以上,将多用表的正、负极分别连接到二极管的阳极和阴极,读取多用表上的电压值即可得到正向电压降。

2.反向电流(IR)测量反向电流是指二极管在反向工作时的电流。

测量方法有以下几种:2.1.电流表法:将多用表的电流挡位选择在二极管的最大反向电流的两倍以上,将多用表的正、负极分别连接到二极管的阳极和阴极,读取多用表上的电流值即可得到反向电流。

2.2.示波器法:将二极管连接到一个稳压源电路中,通过改变稳压源的输出电压大小来改变二极管上的反向电压。

用示波器观察二极管两端的电压波形,通过测量峰-峰值来计算反向电流。

3.二极管前向电阻(RF)测量前向电阻是指二极管在正向工作时所具有的电阻。

测量方法有以下几种:3.1.电阻桥法:将二极管与一个标准电阻串联,将电阻桥的两个桥臂与二极管形成焦点连接。

通过调节电阻桥,使得电路达到平衡,此时可以通过测量电桥的平衡电压来计算前向电阻。

3.2.示波器法:将二极管连接到一个恒流源电路中,通过示波器观察二极管两端的电压波形,根据欧姆定律可以计算出前向电阻。

4.容量(C)测量二极管具有一定的电容值,测量方法有以下几种:4.1.电桥法:将二极管与一个标准电容并联,将电容桥的两个桥臂与二极管形成焦点连接。

二极管测试标准

二极管测试标准

二极管测试标准二极管是一种常见的半导体电子器件,具有单向导电性质,广泛应用于电路中的整流、稳压和开关等部分。

因此,在制造和使用二极管时,对其进行测试是非常必要的。

本文将介绍二极管测试的标准,以确保二极管的质量和可靠性。

一、外观检查首先,需要对二极管的外观进行检查。

应该检查二极管的引线是否完好,是否弯曲或断裂。

如果二极管外壳表面有明显的损坏、划痕或腐蚀,则应该予以淘汰。

二、正向滞后电压测试接下来,需要对二极管的正向滞后电压进行测试。

正向滞后电压是指在正向电压作用下,二极管内部PN结产生反向电势,使得电流变得非常小的电压值。

测试时,可以采用万用表或特殊的二极管测试仪来测量。

通常,正向滞后电压应在规定范围内,如果超出范围,则应淘汰。

三、反向漏电流测试接下来,需要对二极管的反向漏电流进行测试。

反向漏电流是指在反向电压作用下,流经二极管的电流。

测试时,可以采用万用表或特殊的二极管测试仪来测量。

通常,反向漏电流应在规定范围内,如果超出范围,则应淘汰。

四、温度特性测试二极管的性能随着温度的变化而变化,因此需要对其温度特性进行测试。

测试时,可以采用恒流源和恒压源来测量二极管的电压和电流,并在不同温度下进行测试。

通常,温度特性应符合规定要求,如果不符合,则应淘汰。

五、可靠性测试最后需要进行可靠性测试,以确保二极管在长时间使用过程中的可靠性。

可靠性测试通常包括高温老化、低温冷冻、湿度热循环等测试。

测试时,应将二极管放置在相应的测试环境中,并在规定的时间内进行测试。

通常,可靠性测试应符合规定要求,如果不符合,则应淘汰。

总之,二极管测试是非常重要的一步,可以确保二极管的质量和可靠性。

在测试过程中,应注意各项测试标准的要求,以确保测试结果准确可靠。

二极体值的测量方法

二极体值的测量方法

二极体值的测量方法二极管是一种常用的半导体器件,用于电子电路中的整流、放大、开关和保护等功能。

测量二极管的参数是电子学和电子工程领域中的重要内容之一。

本文将介绍二极管值(也称作二极管参数)的测量方法。

一、二极管的值在电子电路中,二极管的值通常包括正向导通电压VF、反向击穿电压VR、正向导通电流IF、反向饱和电流IR等。

这些值对于二极管在电路中的工作状态和性能具有重要的影响和指导作用。

准确测量二极管的值对于电子电路设计和故障排除是至关重要的。

二、二极管值的测量方法1. 正向导通电压VF的测量方法(1)采用数字多用表测量将二极管的阳极和阴极分别接入多用表的测试端口,选择电阻量程,测量二极管的正向导通电压。

此方法简单方便,适用于一般的二极管,但测量精度一般。

(2)采用示波器测量示波器是一种常用的用于测量电路信号的仪器,可以通过示波器的X-Y模式,将二极管的I-V特性曲线在屏幕上显示,从而测量出二极管的正向导通电压。

该方法测量精度高,适用于对二极管正向导通电压要求较高的场合。

2. 反向击穿电压VR的测量方法反向击穿电压是指二极管在反向电压作用下开始出现击穿的电压值,通常需要使用高阻抗的仪器进行测量。

采用数字多用表的电压量程,在反向电压下测量二极管的反向电压,可以得到反向击穿电压的近似数值。

3. 正向导通电流IF和反向饱和电流IR的测量方法正向导通电流IF和反向饱和电流IR的测量一般通过采用直流电桥或者电流源测量。

通过使用准确的电流源和电流表,可以分别测量出二极管的正向导通电流和反向饱和电流的数值。

三、测量注意事项在进行二极管值的测量时,需要注意以下几点:1. 测量环境和条件要稳定,避免温度、湿度等因素对测量结果的影响。

2. 测量仪器的准确性和精度对于测量结果具有重要影响,应选择合适的仪器进行测量。

3. 测量前应对二极管进行预处理,如去除表面污染、漂移等因素。

4. 对于特殊要求的二极管值测量,应选择合适的特殊测量方法和仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100kΩ 万 用 表 E
R0

(a)判断c、e的测量接线图
(3)电流放大倍数的估测

测量集电极和发射极间的电阻(对NPN, 黑笔接集电极,红笔接发射极;PNP的相 反),用手捏着基极和集电极,观察表针 摆动幅度的大小,表针摆动越大,β值越大。 一般数字万用表都有测量三极管的功能, 将晶体管插入测试孔就可以读出β值。
(5)交流电阻 r

二极管特性曲线工作点Q附近电压的变化量与相应电流 变化量之比。
(6)二极管的极间电容

势垒电容与扩散电容之和称为极间电容。在低频工作时, 二极管的极间电容较小,可忽略;在高频工作时,必须 考虑其影响。
二、测量原理和常规测试方法

PN结的单向导电性是进行二极管测量的根 本依据。
1.模拟式万用表测量二极管 (1)正、反向电阻的测量

三极管在有信号输入时,定义为集电极电流的变 化量 I C与基极电流的变化量I B之比。
3.穿透电流 I CEO

基极b开路,集电极c与发射极e间加反向电压时的 集电极电流 I CEO 。硅管的 I CEO 在几微安以下。
( 4.反向击穿电压 V BR)CEO
V BR)CEO是基极b开路,集电极c与发射极e间的反向 (

指在一定温度条件下,二极管承受了反向 工作电压、又没有反向击穿时,其反向电 流值。 (3)反向最大工作电压 VRM 指管子运行时允许承受的最大反向电压。 应小于反向击穿电压。

(4)直流电阻

指二极管两端所加的直流电压与流过它的直流电流之比。 良好的二极管的正向电阻约为几十Ω到几kΩ;反向电 阻大于几十kΩ到几百kΩ。

通常小功率锗二极管正向电阻值为300~500, 反向电阻为几十千欧,硅管正向电阻值为1k或 更大些,反向电阻在500k以上(大功率二极管 的数值要小得多)。

正反向电阻的差值越大越好。
(2)极性的判别

根据二极管正向电阻小,反向电阻大 的特点可判别二极管的极性。
在测得阻值较小的一次测量中,如果 用模拟万用表来测,与黑表笔相接一 端为二极管正极,另一端为负极。若 用数字万用表则相反。
3.用晶体管图示仪测量二极管 直接显示二极管的伏安特性曲线。
4.发光二极管的测量
(1)用模拟式万用表判别发光二极管 用欧姆档测量其正向和反向电阻。 (2)发光二极管工作电流的测量
RP
R
100Ω mA 6.8kΩ
6V
图4.15 发光二极管的测量图
4.2.5 半导体三极管参数的测量
半导体三极管是内部含有两个PN结、外部具有 三个电极的半导体器件。 一、三极管的主要参数 1.直流电流放大系数 定义为集电极直流电流 I CQ 与基极直流 I BQ 之比。 2.交流电流放大系数
(2)发射极和集电极的判别

判别发射极和集电极的依据是:发射 区的杂质浓度比集电区的杂质浓度高, 因而三极管正常运用时的β值比倒置运 用时要大得多。
测试步骤
如图 (a)所示: ①三极管基极集电极间 接100kΩ 电阻。 ②与模拟万用表相连。 结论: 显示电阻值小, 三极管处于放大状态。 黑表笔接的为c 红表笔接的为e

(3)管型的判别 硅二极管的正向压降一般为0.6~0.7V, 锗二极管的正向压降一般为0.1~0.3V, 通过测量二极管的正向导通电压,就 可以判别被测二极管的管型。 方法:
R 1KΩ
1.5V
V
2.数字式万用表测量二极管

一般数字万用表上都有二极管测试档, 实际测量的是二极管的直流压降。
4.2.4
半导体二极管参数的测量
二极管是整流、检波、限幅、钳位 等电路中的主要器件。
一、半导体二极管的特性和主要参数
1.二极管的主要特性
二极管最主要的特性是单向导电特性,即二极 管正向偏置时导通;反向偏置时截止。
2.二极管的主要参数 (1)最大整流电流 I FM
指管子长期工作时,允许通过的最大正向 平均电流。 (2)反向测量三极管 可判断b、c、e,并估测电流放大倍数。
(1)基极的判定 利用PN结的单向导电性进行判别。 假设一个基极,分别测两个PN结的正向电阻和 反向电阻。基极判断出来后,还可以判断管型。
具体步骤

用模拟万用表红黑表 笔分别测量三极管任 意两个脚,每两个脚 正反都测量一次。如 果有且只有两个脚间 的电阻无论正反向都 无穷大,那么这两个 脚一定是集电极和发 射极,剩下的那个脚 就是基极b。
2.用数字万用表测量三极管

3.用晶体管特性图示仪测量三极管
击穿电压。
5.集电极最大允许电流
I CM
I CM
是 值下降到额定值的1/3时所允许的最大集电 极电流。
6.集电极最大允许功耗 PCM PCM 是集电极上允许消耗功率的最大值。
I P V BR)CEO、 CM 、 CM (

值由器件手册可查得, 、 、I CEO 可以用晶体管图示仪进行测 量。
相关文档
最新文档