LED发光二极管检测方法
LED数码管的识别与检测方法 使用常识

LED数码管的识别与检测方法使用常识LED数码管也称半导体数码管,它是将若干发光二极管按一定图形排列并封装在一起的最常用的数码显示器件之一。
LED数码管具有发光显示清晰、响应速度快、耗电省、体积小、寿命长、耐冲击、易与各种驱动电路连接等优点,在各种数显仪器仪表、数字控制设备中得到广泛应用。
LED数码管种类很多,品种五花八门,这里仅向初学者介绍最常用的小型“8”字形LED数码管的识别与使用方法。
如何识别LED数码管1.结构及特点目前,常用的小型LED数码管多为“8”字形数码管,它内部由8个发光二极管组成,其中7个发光二极管(a~g)作为7段笔画组成“8”字结构(故也称7 段LED数码管),剩下的1个发光二极管(h或dp)组成小数点,如图1(a)所示。
各发光二极管按照共阴极或共阳极的方法连接,即把所有发光二极管的负极(阴极)或正极(阳极)连接在一起,作为公共引脚;而每个发光二极管对应的正极或者负极分别作为独立引脚(称“笔段电极”),其引脚名称分别与图 1(a)中的发光二极管相对应,即a、b、c、d、e、f、g脚及h脚(小数点),如图1(b)所示。
若按规定使某些笔段上的发光二极管发光,就能够显示出图1(c)所示的“0~9”10个数字和“A~F”6个字母,还能够显示小数点,可用于2进制、10进制以及16进制数字的显示,使用非常广泛。
(a)结构图(b)电路图(c)显示符常用小型LED数码管是以印制电路板为基板焊固发光二极管,并装入带有显示窗口的塑料外壳,最后在底部引脚面用环氧树脂封装而成。
由于LED数码管的笔段是由发光二极管组成的,所以其特性与发光二极管相同。
LED数码管的主要特点:能在低电压、小电流条件下驱动发光,并能与CMOS、TTL电路兼容;它不仅发光响应时间极短(<0.1μs)、高频特性好、单色性好、亮度高,而且体积小、重量轻、抗冲击性能好、使用寿命长(一般在10万小时以上,最高可达 100万小时)、成本低。
发光二极管特性测试实验报告

从图 3 可见,红色发光二极管正向导通压降最低,约为 1.8V~2.0V 左右;黄色的正向压降次之,约为 2.0~2.2V,绿色的压降为 3.0~3.2V。
它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通 过管子的电流,否则电流过大会烧毁 LED。限流电阻 R 可用下式计 算:
R = E −VF IF
2、LED 参数 发光二极管的两根引线中较长的一根为正极,应按电源正极。有
的发光二极管的两根引线一样长,但管壳上有一凸起的小舌,靠近小 舌的引线是正极。按发光管出光面特征分圆型、方型、矩型、面发光 管、侧向管、表面安装管等。最为常见为圆型,其直径有:分为 φ3mm、 φ4.4mm、φ5mm、φ8mm、φ10mm 等。国外通常把 φ3mm 的发光二极 管记作 T-1;把 φ5mm 的记作 T-1(3/4);把 φ4.4mm 的记作 T-1(1/4)。
表 2 LED 的 V-I 特性和发光状况
黄光 LED
目测 发光 状态
电流 I/mA
电压 V/V
功率 P/mW
目测 发光
0.0 0.5
0.0
0.0 1.0
0.0
0.0 1.1
0.0
0.0 1.2
0.0
1.0
1.0
2.0
2.0
3.0
3.0
4.0
4.0
5.0
5.0
+5V
R1
100
Rw2
Rw1
1 A2
500
2k
电流表
1
V 电压表
LED
2
实验步骤
图 4 实验原理图
1、将 RW1 和 RW2 电阻调至最大,按图 4 连接,图中 LED 使用红色
发光二极管的测试方法

发光二极管的测试方法发光二极管(LED)是一种能够将电能直接转化为光能的半导体元件。
从市场上常见的LED的类型来看,有红、绿、蓝、黄等不同颜色的LED。
为了确保LED的质量和性能,需要对其进行测试。
下面将介绍一些常用的LED测试方法。
首先是对LED光电参数的测试,主要包括:1. 测试光通量(Luminous Flux): 光通量是LED的发光亮度的量度,单位为流明(lm)。
可以使用一台光度计来测量LED的光通量值。
2. 测试光强度(Luminous Intensity): 光强度是LED光线在特定方向上发射的明亮程度,单位为坎德拉(cd)。
光强度的测试可以通过使用一个集成球、透镜和接口装置结合光度计来完成。
3. 测试色度坐标(Chromaticity Coordinates): 色度坐标是用来描述LED的颜色特性的参数。
可以使用色度仪来测量LED的色度坐标。
此外,还需要对LED的电性能进行测试,主要包括:1. 测试正向电压(Forward Voltage): 当LED处于导通状态时,正向电压是LED正向电流通过后产生的电压降。
可以使用数字式万用表或特定的LED测试仪进行测量。
2. 测试正向电流(Forward Current): 正向电流是指在正向电压下流过LED的电流。
可以通过直流电源和电流表进行测试。
3. 测试反向电流(Reverse Current): 当LED处于反向偏置状态时,如果流过LED的电流过高,则可能导致LED短路。
可以使用数字式万用表或特定的LED测试仪进行测试。
4. 测试开启电压(Breakdown Voltage): LED在反向偏置状态下的电压,即开启电压。
可以使用数字式万用表或特定的LED测试仪进行测试。
最后,还需要对LED的可靠性进行测试,主要包括:1.高温寿命测试:将LED置于恒定高温环境中,通电并持续观察其工作性能的变化情况,以判断其在高温环境下的寿命和稳定性。
发光二极管用万用表发光的方法

发光二极管用万用表发光的方法发光二极管(LED)是一种电子器件,可将电能转化为光能的半导体元件。
它具有低功耗、快速响应时间、长寿命、小体积、耐震动等特点,广泛应用于照明、显示、通信、传感等领域。
万用表是一种常见的电测仪器,适用于测量电压、电流、阻抗等参数。
虽然万用表通常用于测量直流或交流电路中的参数,但可以通过一些特殊设置来测试发光二极管。
首先,为了测试发光二极管,我们需要了解它的基本原理。
发光二极管基于PN结的半导体材料制造而成。
当施加正向偏置电压时,通过PN结的扩散电流会导致载流子的复合,从而将电能转化为光能。
因此,要测试发光二极管,我们主要关注它的正向电压特性。
首先,将万用表设置为电压测量模式,并将量程设置为直流电压较低的档位(通常为2V)。
接下来,我们需要连接发光二极管和万用表。
将发光二极管的正端与万用表的红色测量端子相连,将发光二极管的负端与万用表的黑色测量端子连接。
在连接完成后,我们可以开始测试发光二极管。
此时,发光二极管会发出光。
亮度取决于施加到发光二极管上的正向偏置电压。
通过在万用表上观察测量到的电压值,我们可以了解到这个发光二极管的特性。
需要注意的是,不同的发光二极管具有不同的工作电压范围。
因此,在测试时,我们应该根据不同的发光二极管选择合适的电压量程。
如果测试时测量到的电压超出了选定量程的上限,则需要调整量程设置,并重新进行测试。
此外,发光二极管也有反向击穿电压的特性。
如果万用表的电压极性错误或电压过高,在反向击穿的情况下,发光二极管可能会被损坏。
因此,在测试发光二极管时,应仔细检查电压极性,并确保电压不会超过发光二极管的最大反向击穿电压。
总之,通过使用万用表测试发光二极管,我们可以了解它的正向电压特性。
通过观察测量到的电压值,我们可以判断发光二极管的工作状态和特性。
测试时要注意选择合适的电压量程,并避免电压过高或电压极性错误导致发光二极管损坏。
这种测试方法简单方便,适用于一般的发光二极管应用。
led评估方法

led评估方法LED(Light Emitting Diode),即发光二极管,是一种半导体光源,一直以来被广泛使用于电子显示屏幕、车灯、路灯及室内装饰照明等领域。
然而,为了确保LED的有效性和可靠性,需要进行一系列的评估测试,以验证其性能参数和寿命特性。
以下是常用的LED评估方法及其相关参数。
1. 光通量(Luminous Flux)光通量是LED的最常见评估指标,它表示LED发出的总的光功率。
通常使用光度测量仪(photometer)来测量,并以流明(lumen)为单位表示。
2. 发光效率(Luminous Efficacy)发光效率是表示LED能将电能转化为光能的能力,它是通过比较光通量与消耗的功率(单位:瓦特)来计算。
发光效率通常以流明每瓦(lm / W)为单位表示。
3. 色温(Color Temperature)颜色温度是指白色光的表现,在国际标准中以开尔文(Kelvin)为单位表示。
根据变温炽灯所发出的光谱,将色温分为“暖白光”、“自然白光”、“清白光”和“冷白光”四类。
4. 显色指数(Color Rendering Index)显色指数是衡量各种光源能否准确还原物体颜色的参数,通常使用白炽灯为100作为比较。
显色指数越高,表明光源越能还原物体的真实颜色,但同时也意味着其发光效率会降低。
5. 光衰(Light Decay)光衰是LED灯泡使用过程中光通量降低的现象,通常是因为LED芯片的老化或其它材料的变化导致。
光衰可以按照不同的时间间隔和不同的衰减率(单位:% / h)来评估,以预测LED的寿命和维护需求。
6. 电压当前(Forward Voltage)电压当前是指当LED流经当前时的电压值,它是由LED芯片、晶体管和电流控制器的参数决定的。
电压当前通常以伏尔特(V)为单位来表示,是LED的一个重要参数之一。
7. 明亮度(Brightness)明亮度是指LED灯产生的光的强度,通常以坎德拉(Candela,一般写作“cd”)为单位表示。
半导体发光二极管测试国标(精)

基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。
1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。
由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。
通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。
图 1 LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。
2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。
(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。
变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。
如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。
_h:^E8(_ d图 2 积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。
图3 辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。
而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。
(2)光强和光强分布特性图4 LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。
因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。
发光二极管测量方法

发光二极管测量方法发光二极管(LED)是一种高效率、节能、环保的光源,被广泛应用于LED灯的照明、显示屏、信号灯、车灯等各个领域。
为了保证LED的品质,我们需要进行LED的测量。
下面,我们来分步骤阐述发光二极管测量方法。
第一步:准备工作在进行LED测量之前,需要准备相应仪器。
首先是电源,需要选择一种稳定可靠的电源,以保证LED的工作电流稳定。
其次是万用表或者LED专用测试仪,可以测量LED的电压和电流等参数。
还需要一个适合分波长的光度计,可以测量LED的光通量和光效等参数。
第二步:测量前检查在进行LED测量之前,需要对LED进行检查。
首先是外观,检查是否有损坏、腐蚀等情况。
其次是极性,要清楚哪个引脚是正极哪个引脚是负极。
最后是电气特性,需要检查电压、电流和发光强度等参数是否在规定范围内。
第三步:测量在检查完成后,可以开始测量。
首先是电气测量,将LED连接到电源上,通过电流表测量电流值,通过万用表或者LED专用测试仪测量电压值。
最后将测量结果填入测量数据表格中。
其次是光学测量,通过光度计测量LED的光通量和光效等参数,并将结果填入测量数据表格中。
第四步:数据分析在测量完成后,需要对数据进行分析。
可以将测量结果与LED的规格书进行比较,了解LED是否符合规格。
还可以对数据进行统计,根据数据绘制相应的统计图表,以更直观地了解LED的性能。
以上就是发光二极管测量方法的分步骤阐述。
在进行LED测量时既要注意仪器的选用,也要注意测量前的检查,以保证测量结果的准确性。
同时,对测量数据的分析也是非常重要的,可以帮助我们更全面地了解LED的性能。
发光二极管的测试方法

电特性测试方法: 1.正向电压:目的:测量器件在规定正向工作电流下,两电极间产生的电压降。
测试原理:D ——被测器件; G ——恒流源; A ——电流表; V ——电压表。
正向电压测量原理图测量步骤:正向电压的测量按下列步骤进行: a) 按图连接测试系统,并使仪器预热;b) 调节恒流源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。
规定条件:——环境或管壳温度; ——正向偏置电流。
2.反向电压:目的:测量通过器件的反向电流为规定值时,在两电极之间产生的反向电压。
G测量原理:D ——被测器件; G ——稳压源; A ——电流表; V ——电压表。
反向电压测量原理图测量步骤:反向电压的测量按下列步骤进行: c) 按图连接测试系统,并使仪器预热;d) 调节稳压电源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。
规定条件:——环境或管壳温度; ——反向电流。
3.反向电流:目的:测量在被测器件施加规定的反向电压时产生的反向电流。
测量原理:V A+-GV +-GD——被测器件;G——稳压源;A——电流表;V——电压表。
反向电流测量原理图测量步骤:反向电压的测量按下列步骤进行:e)按图连接测试系统,并使仪器预热;f)调节稳压电源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。
规定条件:——环境或管壳温度;——反向电压。
4.总电容:目的:在被测器件施加规定的正向偏压和规定频率的信号时,测量被测器件两端的电容值。
测量原理:D——被测器件;——隔离电容;CA——电流表;V——电压表L——电感。
总电容测量原理图测量步骤:总电容的测量按下列步骤进行: g) 按图连接测试系统,并使仪器预热;h) 调节电压源和调节电容仪,分别给被测器件施加规定的正向偏压和规定频率的信号,将电容仪刻度盘上读数扣去电容C 0等效值即为被测器件总电容值。
规定条件:——环境或管壳温度; ——正向偏置电压;——电容仪提供规定频率的信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.发光二极管的特点
发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。
其主要特点是:
(1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。
(2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。
(3)单色性好,常见颜色有红、绿、黄、橙等。
(4)体积小。
发光面形状分圆形、长方形、异形(三角形等)。
其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。
(5)防震动及抗冲击穿性能好,功耗低,寿命长。
由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。
(6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。
(7)容易与数字集成电路匹配。
2.发光二极管的原理
发光二极管内部是具有发光特性的PN结。
当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。
普通发光二极管的外形、符号及伏安特性如图1所示。
LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。
当电压超过开启电压时,电流就急剧上升。
因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式L =K IFm
式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。
当IF>10mA时,m=1,式()简化成 L =K IF
即亮度与正向电流成正比。
以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。
LED的正向电压则与正向电流以及管芯的半导体材料有关。
使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏 LED。
若电流过大,就会烧毁LED的PN结。
此外,LED的使用寿命将缩短。
由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。
发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。
目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。
LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。
常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。
3.使用注意事项
(1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。
(2)使用中各项参数不得超过规定极限值。
正向电流IF不允许超过极限工作电流IFM值,并且随着环境温度的升高,必须作降额使用。
长期使用温度不宜超过75℃。
(3)焊接时间应尽量短,焊点不能在管脚根部。
焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。
(4)严禁用有机溶液浸泡或清洗。
(5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。
(6)在发光亮度基本不变的情况下,采用脉冲电压驱动可以节省耗电。
对于LED点阵显示器,采用扫描显示方式能大大降低整机功耗。
4.检查发光二极管的好坏
发光二极管具有单向导电性,使用R×10k档可测出其正、反向电阻。
一般正向电阻应小于30kΩ,反向电阻应大于1MΩ。
若正、反向电阻均为零,说明内部击穿短路。
若正、反向电阻均为无穷大,证明内部开路。
常见发光二极管的种类及主要参数见表2。
需要说明两点:第一,对于同种材料的管芯,由于所掺杂质的不同,发光颜色亦不同;第二,LED属于电流控制型器件,VF随IF而变化,所标VF值仅供参考。
此外,根据外形也可以区分发光二极管的正、负极。
早期生产的管子带金属管座,上面罩一光学透镜,管侧有一突起,靠近突起的是正极。
目前生产的LED,全部用透明或半透明的环氧树脂封装而成,并且利用环氧树脂构成透镜,起放大和聚焦作用,这类管子引线较长的为正极。
注意事项:
本书不推荐使用R×1k档测量LED的正、反向电阻。
因为该档电池电压E<VF,在很多情况下列法使管子导通,这样测出的正向电阻就是无穷大,会给人以假象而造成误判断。
R×10k档的电池电压E》VF,能使LED正向导通或反向截止,很容易区别出正、反向电阻的差异。
仅仅测量正、反向电阻,并不能检查其能否正常发光。
由于发光二极管的正向电压VF一般~,而万用表R×1或R×10档的电池电压为 V,所以不能使管子正向导通并且发光。
R×10k档的电池电压虽然较高,但因内阻太大,提供的正向电流很小,管子也不会正常发光。
采用双表法可以检查发光二极管的发光情况。
最好选同一种型号的两块万用表,均拨一R×1或R×10档,按图1(a)所示串联使用,以提供较高的正向电压。
等效电路见(b)图。
假定两块万用表均采用MF30型,并且均拨到R×1档。
因为一块表的电池电压E=,欧姆中心值R0=25Ω,所以总电压和总电阻分别是
E′= 2E= 2×=3V
R0′= 2R0= 2×25=50Ω
如果把它们看成一块新表,等效电路就简成(c)图。
新表的满度电流是:
IM′= E′/ R0′=2E/ 2R0= E/ R0=IM
可见满度电流值并未改变。
发光二极管在使用时应加上限流电阻R,将正向电流IF限制在10~30mA为宜,避免功耗太记而损坏管子。
一般典型正向电流可选10mA,IF的计算公式为
IF= E-VF/ R
(c)图中的R0′能起到限流作用,因此不必另接限流电阻。
磷砷化镓发光二极管的正向压降较低,为左右。
E′=3V将R0′=50Ω,可求出用双表法测量时的正向电流为
IF= E′-VF/ R0′=3-50=26 mA <30 mA
因此对管子没有危险。
电路接通之后,管子能发出晶莹夺目的红光。
如果选用的两块万用表R×1档欧姆中心值不等,设分别为R01、R02,而两表R×1档的电池电压均为E(E=),则此时
IM′=2 E / R01+ R02
IF=2 E -VF / R01+ R02
实例:测量一只型号不明的发光二极管。
第一步,判定正、负极。
用MF30型万用表的R×10k档测得正向电阻为26kΩ,反向电阻接近无穷大。
测正向电阻时,黑表笔接的就是正极。
第二步,将两块MF30型万用表均拨至R×1档采用双表测量,被测管发出艳丽的红光。
若把发光二极管的极性反接,加上反向电压时管子就不能发光。
然后将两块万用表拨于R×10档,管子发光暗淡。
这是因为总电阻R0′=2×250=500Ω,提供的正向电流较小所致。
此时
IF≈3-500= mA
注意事项:
(1)采用双表法必须先调整好两块万用表的欧姆零点。
(2)为了不损坏被测发光二极管,测量前应计算IM′值,若IM′≥50mA,需选择R×10档。
例如,两块500型万用表R×1档串联后的总电阻R0=20Ω,IM′=IM=75 mA>50 mA。
改用R×1档时IM′= mA,与典型正向电流IF=10mA就比较接近。
实际上发光二极管本身尚有~压降,因此上述结果均留有一定余量。
假如不知道被测发光二极管的正向电压,也不清楚IM′值。
建议先把两块表都拨到R×10档,若发光很暗,再改拨R×1档。