定积分中奇偶函数和周期函数处理方法

合集下载

周期函数定积分的计算

周期函数定积分的计算

周期函数定积分的计算1. 周期函数定积分的概念1. 周期函数定积分的概念周期函数定积分是一种特殊的积分,它可以用来计算函数在某一周期内的积分值。

它的计算方法是将函数的积分值分成若干个小的积分段,每个积分段的积分值都是函数在该段内的定值,然后将所有的积分段的积分值求和,就可以得到函数在该周期内的积分值。

2. 周期函数定积分的性质2. 周期函数定积分的性质周期函数定积分的性质包括:1. 周期函数定积分的结果是定值,不受积分区间的变化而变化;2. 周期函数定积分的结果是一个实数,不受函数的变化而变化;3. 周期函数定积分的结果只与函数的周期有关,与函数的幅度无关;4. 周期函数定积分的结果只与函数的周期有关,与函数的起点无关;5. 周期函数定积分的结果只与函数的周期有关,与函数的函数值无关;6. 周期函数定积分的结果只与函数的周期有关,与函数的变化率无关。

:3. 周期函数定积分的计算方法周期函数定积分的计算方法是基于Fourier级数的,即可以将一个周期函数分解成一系列正弦、余弦函数的级数和。

积分可以分解为每一项的积分,然后将每一项的积分结果相加,最后得出周期函数定积分的结果。

具体的计算方法是:首先,将周期函数分解成Fourier级数,即将函数表示为一系列正弦、余弦函数的和,然后将每一项的积分求出,最后将每一项的积分结果相加,得出周期函数定积分的结果。

积分的具体步骤是:首先,将周期函数分解成Fourier级数,即将函数表示为一系列正弦、余弦函数的和;然后,对每一项正弦、余弦函数求积分,得出每一项的积分结果;最后,将每一项的积分结果相加,得出周期函数定积分的结果。

4. 周期函数定积分的应用:4. 周期函数定积分的应用周期函数定积分在物理、数学和工程领域都有广泛的应用。

例如,在物理学中,它可以用来计算电磁场的能量;在数学中,它可以用来计算曲线的面积;在工程领域,它可以用来计算振动系统的能量。

此外,周期函数定积分还可以用来计算热量传递率,以及计算电路中电流和电压的关系。

定积分和不定积分的计算方法总结

定积分和不定积分的计算方法总结

定积分和不定积分的计算方法总结一、不定积分的定义和基本性质不定积分是函数积分的一种形式,表示为∫f(x)dx,其中f(x)为被积函数,dx表示自变量。

1.不定积分的定义不定积分是求导运算的逆运算。

如果F(x)是f(x)的一个原函数,那么F(x) + C也是f(x)的一个原函数,其中C为常数。

因此,∫f(x)dx = F(x) + C。

2.基本性质(1) 常数因子法则:若c是常数,则有∫cf(x)dx = c∫f(x)dx。

(2) 线性法则:若f(x)和g(x)都有原函数,则有∫(f(x) ±g(x))dx = ∫f(x)dx ± ∫g(x)dx。

(3) 逐项积分法则:若f(x)的原函数为F(x),g(x)的原函数为G(x),则有∫(f(x) ± g(x))dx = F(x) ± G(x)。

(4) 分部积分法则:若f(x)和g(x)都具有原函数,则有∫f(x)g(x)dx = F(x)g(x) - ∫(F(x)g'(x))dx,其中F(x)为f(x)的一个原函数,g'(x)为g(x)的导数。

二、定积分的定义和计算方法定积分是计算函数在一个有限区间上的面积的数值,表示为∫[a,b]f(x)dx,其中f(x)为被积函数,[a,b]为积分区间。

1.定积分的定义设f(x)在区间[a,b]上有定义,将[a,b]分为n个小区间,长度为Δx,选择每个小区间上一点ξi,记为Δx = (b-a)/n,ξi = a + iΔx (i = 0,1,2,...,n)。

定义Riemann和为S(f, Δx, ξ) = Σf(ξi)Δx =f(ξ1)Δx + f(ξ2)Δx + ... + f(ξn)Δx。

当n趋于无穷大时,Riemann和的极限称为函数f(x)在区间[a,b]上的定积分,记为∫[a,b]f(x)dx。

2.计算方法(1)几何意义:定积分表示函数f(x)在区间[a,b]上曲线与x轴之间的面积。

定积分的计算

定积分的计算

微积分基本定理的应用
解决实际问题
微积分基本定理可以应用于解决 各种实际问题,如物理中的力做 功、速度和加速度,经济中的成 本和利润等。
数学证明
微积分基本定理是许多数学定理 的证明基础,如中值定理、泰勒 展开等。
优化算法
微积分基本定理在优化算法中也 有广泛应用,如梯度下降法、牛 顿法等。
微积分基本定理的证明
定积分的性质
线性性质
定积分具有线性性质,即对于两个函数的和 或差的积分,可以分别对每个函数进行积分 后再求和或求差。
区间可加性
定积分具有区间可加性,即对于区间[a,b]的任意两个 子区间[α,β]和[β,γ],有 ∫f(x)dx|α,γ=∫f(x)dx|α,β+∫f(x)dx|β,γ。
常数倍性质
定积分具有常数倍性质,即对于任意常数k, 有∫kf(x)dx=k∫f(x)dx。
04 定积分的计算技巧
利用奇偶性简化计算
奇函数在对称区间上的定积分值为0
如果函数$f(x)$是奇函数,即$f(-x)=-f(x)$,那么$int_{-a}^{a}f(x)dx=0$。
偶函数在对称区间上的定积分值为对称区间上积分值的两倍
如果函数$f(x)$是偶函数,即$f(-x)=f(x)$,那么$int_{a}^{a}f(x)dx=2int_{0}^{a}f(x)dx$。
利用周期性简化计算
对于具有周期性的函数,可以利用周 期性将积分区间扩展到整数倍的周期 ,从而简化计算。
如果函数$f(x)$的周期为$T$,那么对 于任意整数$k$, $int_{a}^{b}f(x)dx=int_{a+kT}^{b+kT }f(x)dx$。
利用定积分的几何意义简化计算

定积分应用

定积分应用

A
A
f x dx g x dx
a
a
a
b
f x g ( x) dx
y f (x) y g ( x)
y
y
y f (x)
y
y g ( x)
a 0
b
x
a 0
b
x
a 0
b
x
例2 计算由 y 2 x 和 y x 2 所围成的图形的面积. 2 解1 求两曲线的交点, y x 可得 (0,0) , 1,1) ( 2 y x 所求面积: A A大 A小
曲边梯形的曲边表达为
y f (x)
1 . 直角坐标系情形 平面图形 的面积 2 . 极坐标系情形 或
x f ( y)
参数方程
x (t ) L: y (t )
复习. 定积分的几何意义 f x 在 a, b上连续,
方法一

b
a
f ( x)dx A
A

h y dy
d c
y 1
xe
y
y 3
Y轴
x0
y
Y轴
y
x0
A e dy
y 1 3
3
d
x f ( y)
c
0
x
0 1
x
推广
d
y
平面曲线围成的图形
x f ( y) x f ( y) x g ( y) yc
yd
x g ( y)
c
0
d d c c
x
A
y f (x)
1 . 直角坐标系情形 平面图形 的面积 2 . 极坐标系情形 或

定积分的计算方法

定积分的计算方法

定积分的计算方法定积分是微积分中的重要概念,用于求解曲线下的面积、曲线的长度、质心、体积等问题。

在实际问题中,计算定积分可以帮助我们了解各种变化的数量或者性质。

本文将详细介绍定积分的计算方法。

一、基本概念和性质1.定积分的定义设函数y=f(x)在[a,b]上有界,将[a,b]分为n个小区间,每个小区间长度为Δx,取小区间内任意一点ξi,构造对应的面积Si=Δx*f(ξi)。

定积分的定义为:当n趋于无穷大,Δx趋向于0时,所有小区间内面积的和的极限,即为函数f(x)在[a,b]上的定积分,表示为∫a^b f(x)dx。

2.定积分的基本性质(1)线性性质:若函数f(x)在[a,b]上可积,则对于任意实数k,有∫a^b kf(x)dx= k∫a^b f(x)dx。

(2)加法性质:若函数f(x)和g(x)在[a,b]上可积,则有∫a^bf(x)dx + ∫a^b g(x)dx = ∫a^b [f(x)+g(x)]dx。

(3)区间可加性:若函数f(x)在区间[a,b]上可积,且a<c<b,则有∫a^b f(x)dx = ∫a^c f(x)dx + ∫c^b f(x)dx。

二、定积分计算的方法1.利用基本初等函数的积分表对于一些基本初等函数,我们已知它们的积分表达式,可以直接进行计算。

例如,∫x^2 dx = 1/3 x^3 + C。

2.使用换元法当被积函数中含有复杂的函数表达式时,我们可以进行变量替换,使得被积函数中的形式简化,以便求解。

例如,对于∫(3x^2+2x+1)^2 dx ,令u=3x^2+2x+1 ,则有du=(6x+2)dx ,原定积分可以转化为∫u^2 du ,然后再对u进行积分,最后将u还原为x。

3.利用分部积分法若被积函数是两个函数的乘积,可以利用分部积分法来简化计算。

分部积分公式为∫udv=uv-∫vdu。

例如,对于∫x*sin(x)dx ,令u=x ,dv=sin(x)dx ,则有du=dx ,v=-cos(x) ,根据分部积分公式可得∫x*sin(x)dx = -x*cos(x)+∫cos(x)dx = -x*cos(x)+sin(x)+C。

定积分中奇偶函数和周期函数处理方法

定积分中奇偶函数和周期函数处理方法

定积分计算中周期函数和奇偶函数的处理方法一、基本方法一、奇偶函数和周期函数的性质在定积分计算中,根据定积分的性质和被积函数的奇偶性,及其周期性,我们有如下结论1、若()x f 是奇函数即()()x f x f --=,那么对于任意 的常数a,在闭区间][a a ,-上,()0=⎰-aa dx x f ;2、若()x f 是偶函数即()()x f x f -=,那么对于任意的常数a,在闭区间][a a ,-上()()⎰⎰-=a aadx x f dx x f 02;3、若()x f 为奇函数时,()x f 在][a a ,-的全体原函数均为偶函数;当()x f 为偶函数时,()x f 只有唯一原函数为奇函数即()⎰xdt t f 0.事实上:设()()C dt t f x d x f x+=⎰⎰0,其中C 为任意常数;当()x f 为奇函数时,()⎰xdt t f 0为偶函数,任意常数C 也是偶函数⇒()x f 的全体原函数()C dt t f x+⎰0为偶函数;当()x f 为偶函数时,()⎰xdt t f 0为奇函数,任意常数0≠C 时为偶函数⇒()C dt t f x +⎰0既为非奇函数又为非偶函数,⇒()x f 的原函数只有唯一的一个原函数即()⎰xdt t f 0是奇函数;4、若()x f 是以T 为周期的函数即()()x f x T f =+,且在闭区间][T ,0上连续可积,那么()()()⎰⎰⎰+-==Ta aTTT dx x f dx x f dx x f 022;5、若()x f 是以T 为周期的函数即()()x f x T f =+,那么()⎰xdt t f 0以T 为周期的充要条件是 ()00=⎰Tdt t f事实上:()()()()()⎰⎰⎰⎰⎰+=+=++Tx Tx xTx x dt t f dt t f dt t f dt t f dt t f 0,由此可得()()⎰⎰=÷x Tx dt t f dt t f 0⇔()⎰Tdt t f 0;二、定积分中奇偶函数的处理方法1. 直接法:若果被积函数直接是奇函数或者偶函数,之间按照奇偶函数的性质进行计算即可,但要注意积分区间;2. 拆项法:观察被积函数,在对称区间如果被积函数复杂但可以拆成奇偶函数和的形式,则分开积分会简化计算;3. 拼凑法:被积函数在对称区间直接积分比较困难,并且不能拆项,可以按照如下方法处理:设()()()x f x f x p -+= ,()()()x f x f x q --=,则()()()2x q x p x f +=,从而就转换为了奇函数和偶函数在对称区间的计算;三、定积分中周期函数的处理方法对于周期函数的定积分,最主要是能够确定被积函数的周期特别是三角函数与复合的三角函数的周期,并熟悉周期函数的积分性质,基本上就能解决周期函数定积分的问题; 二、典型例题例1 设()x f f 在][a a ,-上连续可积,证明:1若f 为奇函数则()0=⎰-aadx x f 2若f 为偶函数,则()()⎰⎰-=aaadx x f dx x f 02;证明:1因为()()x f x f --=,而()()()⎰⎰⎰+=--aaa adx x f dx x f dx x f 0()()()()()⎰⎰⎰⎰--+-=+-=aaa adx x f x d x f dx x f dx x f 0对前一项中令x t -=,则()()()()()⎰⎰⎰⎰-=-=-=--aaaadx x f dx x f dt t f x d x f 0000 所以()()()00=+-=⎰⎰⎰-aaaadx x f dx x f dx x f .2因为()()x f x f -=, 而 ()()()⎰⎰⎰+=--aaa adx x f dx x f dx x f 0()()()()()⎰⎰⎰⎰--+-=+-=aaa adx x f x d x f dx x f dx x f 0,对前一项中 令t x -=相似的有()()()()⎰⎰⎰=-=---aa adx x f dt t f x d x f 0,所以()()⎰⎰-=aaadx x f dx x f 02.例2 设f 在)(∞∞-,上连续,且以T 为周期,证()()()⎰⎰⎰+-==Ta aTT T dx x f dx x f dx x f 022;证明: 由()()()()⎰⎰⎰⎰++++=Ta aaTTa Tdx x f dx x f dx x f dx x f 0,在上式右端最后一个积分中,令t T x +=则有 ()()()()⎰⎰⎰⎰-==+=+0aTa Ta a dx x f dt t f dt t T f dx x f ,即有()()()()()⎰⎰⎰⎰⎰+=-+=Ta aaTaTdx x f dx x f dx x f dx x f dx x f 0,成立再证()()⎰⎰-=22T T Tdx x f dx x f ,因为()()()⎰⎰⎰+=TT T Tdx x f dx x f dx x f 220对于()⎰TT dx x f 2令T x t -= 则()()⎰⎰+=TT T T dtT t f dx x f 22,因为()()x f T x f =+所以有()()⎰⎰--=+0202T T dx x f dt T t f ,()()()()⎰⎰⎰⎰-=+=20222T TT T T Tdx x f dx x f dx x f dx x f ;例3 求定积分 ()dx x x xI cos 2411++=⎰-;解:被积函数为偶函数,()()dx x x x dx x x xI ⎰⎰++=++=-1242411cos 2cos⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡++=1sin 158201sin 3151235x x x例4 求定积分⎰=πn dx x I 0sin ,其中n 为自然数;解:注意到x sin 是偶函数且以π为周期,因此利用性质可以简化计算n xdx n dx x n dx x n dx x n dx x I n 2sin 2sin 2sin sin sin 20222======⎰⎰⎰⎰⎰-ππππππ.例5]3[ 计算:⎰π20cos sin xdx x m n 自然数n 或m 为奇数;解 :由周期函数积分性质得⎰⎰-==πππxdx x xdx x I m n m n m n cos sin cos sin 20,当n 为奇数时,由于被积函数为奇函数,故0,=m n I 当m 为奇数时设2,1,0,12=+=k k m …时=m n I ,()()0sin sin sin 1sin 2==---⎰ππππx R x d x x n 其中()u R 为u 的某个多项式不含常数项 因此0,=m n I例6 求定积分 dx x xx x ⎰-+++44231sin ;解:因为被积函数是为奇函数,且在对称区间故01sin 4423=+++⎰-dx x xx x 例7 求定积分I=dx x x x x ⎰--+-2225242cos ;解:I=dx xx x dx xx ⎰⎰---+--+2225222242cos 42,因为2542cos xx x -+是奇函数,而2242x x -+是偶函数,所以I=2()dx xx x dx x x ⎰⎰--=+-+2222222422042=()π28422202-=--⎰dx x例8 求定积分I=()()dx x x 3arctan 3604--⎰; 解:设3-=x t 则I=()()dx x x 3arctan 3604--⎰=tdt t arctan 334⎰- 因为()x x x f arctan 4=是奇函数所以0=I例9 求定积分I=⎰+π2cos 1sin dx x xx ;解:令t x +=2π,则dt dx =,因为][π,0∈x ,所以⎢⎣⎡⎥⎦⎤-∈2,2ππt , dt t t dt t t t dt t t dt t t t I ⎰⎰⎰⎰---+=+++=+⎪⎭⎫ ⎝⎛+=222022222222sin 1cos sin 1cos sin 1cos 2sin 1cos 2ππππππππππ ()4]sin arctan [sin sin 1122022πππππ==+=⎰t t d t例10 求定积分 I=⎰-+-+++1122231)1ln(dx x x x x ; 分析:若此题采用常规求法,会发现过程相当复杂,但是利用奇偶函数的性质就能很容易求出;原函数可以看做一个奇函数fx=3)1ln(22+++x x x 和一个偶函数ux=3122+-x x 之和;解:I= ⎰-+-+++1122231)1ln(dx x x x x = ⎰-+++11223)1ln(dx x x x + dx x x ⎰-+-112231 =+02 dx x x ⎰+-12231 =2=+-⎰dx x 102)341(10]3arctan 34[2x x - π3942-= 例11 求定积分I=⎰-+-+-21212)11lncos 41(dx xxx ; 分析:如果此题按照一般解法直接进行求解,那么会发现很繁琐,注意到()xxx f +-=11lncos 为奇函数在对称区间上积分为零,因此就可以简化积分,而241x -在⎢⎣⎡⎥⎦⎤-21,21上积分恰好是以原点为圆心,半径为21的上半圆周面积, s=2)21(21π= 8π 解:I=⎰-+-+-21212)11ln cos 41(dx x xx = dx x ⎰--2121241+dx xx⎰-+-212111lncos=dx x ⎰--2121241÷ 0 = 2dx x ⎰--2121241 = 2⨯8π = 4π 例12 设()x f 在][a a ,-()0>a 上连续,证明()()()dx x f x f dx x f aaa][0-+=⎰⎰-,并由此计算⎰-+44sin 11ππdx x ;解:若记()()()x f x f x p -+=,()()()x f x f x q --=,显而易见()x p 为偶函数,()x q 为奇函数,而且()()()2x q x p x f +=.所以有()()()()()()dx x f x f dx x p dx x q dx x p dx x f a a aa a a aa ⎰⎰⎰⎰⎰-+==+=---00][2121 利用上述公式可得2][tan 2sec 2cos 2]sin 11sin 11[sin 11404024024440====-++=+⎰⎰⎰⎰-ππππππx xdx dx x dx x x dx x例13 求定积分I=⎰-+22)1ln(dx e x x ;分析:此题的积分区间][2,2-关于原点对称,从这一点性质中我们可以联想到奇偶函数的性质,但注意到被积函数既不是奇函数也不是偶函数,我们可以将其凑成奇偶函数;按照上一题的结果我们可以知道()()()][21x f x f x u --=为奇函数,而()()()][21x f x f x w -+=为偶函数解:()()()()()()2211ln ]1ln 1ln [21][21x e x e x e x x f x f x u x x x -+=+++=--=-()()()dx x e x dx x x e x dx e x I x x x ⎰⎰⎰---⎥⎦⎤⎢⎣⎡-+=+-+=+=222222222211ln ]21211ln [1ln3821202102222=+=+⎰⎰-x dx x dx x 例14 求定积分⎰=πn n dx x x I 0sin 其中N n ∈;分析:被积函数不是周期函数,无法直接用周期函数的定积分性质计算,采用分部积分比较繁琐,可以考虑还原; 令t x n =-π 则dt dx -=()()⎰⎰---==ππππn n n dt t n t n dx x x I 0sin sin⎰⎰⎰⎰⋅+-=+-=ππππππ000sin sin sin sin dx x n n dx x x dt t n dt t t n n n移向得:πππππ20222sin sin 2n xdx n dx x n I n ===⎰⎰ 所以 π2n I n =例15 求定积分 ()⎰+=ππ20sin dx x x I n ;解:()⎰⎰⎰+=+=πππππ0sin sin 2sin 2dx x dx x x dx x x I n[]ππππππππ4222sin cos 2sin sin 200=+=+--=+=⎰⎰x x x xdx xdx x例16 求定积分 ⎰+=π02222cos sin dx xb x a dxI解:注意到被积函数是以π为周期的偶函数,因此可用定积分中相应性质简化计算()⎰⎰⎰+=+=+=-2022222222202222tan tan 2cos sin cos sin ππππdx x a b x d dx x b x a dx dx x b x a dx I()[]abx b a ab x ba ab x d πππ=⎪⎭⎫⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=-⎰222tan arctan 2tan 1tan 2例17 求定积分()⎰-+22223cos sin ππxdx x x ;解:注意到是对称区间,函数可以应用定积分的奇偶性来计算()()d xx x xdx x xdx x xdx x x⎰⎰⎰⎰-+=+=+---20222222222322223sin 1sin 20cos sin cos cos sin πππππππ8sin 2sin 2204202πππ=-=⎰⎰xdx xdx例18 证()x f 是以T 为周期的周期函数,则()()⎰⎰=TnTdx x f n dx x f 0;证明:因为()()()∑⎰⎰-=+=110n k Tk kTnTdx x f dx x f 故只需证明()()()⎰⎰=+TTk kTdx x f dx x f 01由题设可知()()kT x f x f += 现令kT t x +=,当kT x =时,0=t ; 当()T k x 1+=时,T t =且dt dx = ()()()()⎰⎰⎰=+=+TT T k kTdt t f dt kT t f dx x f 01所以有()()()⎰∑⎰⎰==-=Tn k TnTdx x f n dx x f dx x 0100 例19 设()x f 是以π为周期的周期函数,证明()()()()⎰⎰+=+πππ0202sin dx x f x dx x f x x ;分析:()()()()⎰⎰+=+πππ0202sin dx x f x dx x f x x 等价于()()++⎰dx x f x x π0sin()()()()⎰⎰+=+ππππ022sin dx x f x dx x f x x 所以 ()()⎰+ππ2sin dx x f x x = ()()⎰-+ππ0sin dxx f x x 即()()()()⎰⎰-+=+ππππ02sin sin dxx f x x du u f u u 由题设()()x f n x f =+π 可令 π+=x u证明:()()⎰+π20sin dx x f x x()()()()()()()()⎰⎰⎰⎰+++=+++=ππππππ2020sin sin sin sin duu f u u dx x f x x dx x f x x dx x f x x 令π+=x u ,则()()()()()()()⎰⎰⎰-+=+++++ππππππππ002sin sin sin dx x f x x dx x f x x du u f u u ()()()()()()⎰⎰⎰-+++=+ππππ0020sin sin sin dx x f x x dx x f x x dx x f x x()()⎰+=ππ02dx x f x例20 设函数()⎰=xdt t x s 0cos1 当n 为正整数,且()ππ1+≤≤n x n 时,证明()()122+≤≤n x s n ; 2求()xx s x +∞→lim证明:1因为0cos ≥x ,且()ππ1+≤≤n x n ,所以()⎰⎰⎰+<≤ππ10cos cos cos n xn dx x dx x dx x ,又因为具有周期,在长度的积分区间上积分值相等:⎰⎰=+ππcos cos dx x dx x a a,从而⎰⎰=ππcos cos dx x n dx x n()()n n xdx xdx n 211cos cos 220=--=⎪⎪⎭⎫ ⎝⎛-=⎰⎰πππ 同理可得到()()12cos 10+=⎰+n dx x n π2由1有()()()ππn n x x s n n 1212+≤≤+,当∞→n 去极限,由夹逼定理得,()π2lim =+∞→x x s x例21 设函数()x f 在)(∞∞-,上连续,而且()()()dt t f t x x F x ⎰-=02;证明:1若()x f 为偶函数,则()x F 也是偶函数;2若()x f 单调不减,则()x F 单调不减1证明:令u t -=,则()()()()()()()()x F du u f u x du u f u x dt t f t x x F xx x =-=--=--=-⎰⎰⎰-000222故()x F 为偶函数;2 由于被积函数连续,所以()x F 可导,且()()()()()()()()x xf dt t f x f x x dt t f dt t tf dt t f x x F xx x x -=-+=⎥⎦⎤⎢⎣⎡-=⎰⎰⎰⎰00'00'22()()[]00≥-=⎰xdt x f t f ,因此()x F 在)(∞∞-,上单调不减例22 设()x f 在)(∞∞-,上连续,以T 为周期,令()()⎰=xdt t f x F 0,求证:1()x F 一定能表成:()()x kx x F ϕ+=,其中k 为某常数,()x ϕ是以T 为周期的周期函数; 2()()⎰⎰=∞→Tx x dx x f T dt t f x 0011lim ; 3若有())(()∞∞-∈≥,0x x f ,n 为自然数,则当()T n x nT 1+<≤时,有()()()()⎰⎰⎰+<≤Tx T dx x f n dt t f dx x f n 01;证明:1 即确定常数k,使得()()kx x F x -=ϕ以T 为周期,由于T 因此,取()⎰=Tdt t f Tk 01,()()kx x F x -=ϕ,则()x ϕ是以T 为周期的周期函数; 此时 ()()()x x dt t f Tx F Tϕ+⎥⎦⎤⎢⎣⎡=⎰12 ()()()x dt t f Tx dt t f Txϕ+=⎰⎰00.且()x ϕ在)(∞∞-,上连续并以T 为周期,于是()x ϕ在()x ϕ在[]T ,0有界,在()+∞∞-,也有界;因此()()()()⎰⎰⎰=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡∞→∞→Tx T x x dt t f T x x dt t f T dt t f x 00011lim 11lim ϕ 3因()0≥x f ,所以当()T n x nT 1+<≤时,()()()()()()()⎰⎰⎰⎰⎰+=<≤=+ToTn xonTT dt t f n dt t f dt t f dt t f dt t f n 110例23 设()x f 是)(∞∞-,上的连续函数,试运用周期函数性质证明()()⎰⎰-+=+222220sin 2sin cos πππdx x b afdx x b x a f ;证明:因为()α++=+x b a x b x a sin sin cos 22,其中ba=αtan ,令tx =+α,()()()()⎰⎰⎰++=++=+πααππα222202220sin sin sin cos dt t b afdx x b afdx x b x a f()()⎰⎰++++=απππα2222222sin sin dt t b a ftd b a f令t x =-π2,则()()⎰⎰+=++ααππ222222sin sin dt t b a f dt t b af,所以左端=()⎰+π2022sin dx x b af,按照周期函数的性质知⎰⎰⎰+-==ππππ202332c c所以左端=()()⎰⎰+++-232222222sin sin ππππdx x b afdx x b af,x t -=π,知()()d x x b afdx x b af⎰⎰-+=+222223222sin sin ππππ故()⎰-+=2222sin 2ππdx x b a f例24 设()⎰+=2sin πx xdt t x f ,证明1()()x f x f =+π;2求出()x f 的最大最小值;证明:1()⎰++=+23sin πππx x dt t x f ,设π+=u t ,当π+=x t 时,x u =;当23π+=x t 时,2π+=x u ,则()()x f du u dt t x f x x x x ===+⎰⎰+++232sin sin ππππ 2 因为右端连续,故()x f 可导,()x x x f sin cos '-=,又()x f 为周期函数,故只讨论一个周期内即可,现讨论][π,0∈x 当40π≤≤x 时,()0'≥x f ,当434ππ≤<x 时,()0'<x f ,当ππ≤≤x 43时,()0'≥x f 所以当4π=x 时取最大值,2sin 4434==⎪⎭⎫⎝⎛⎰πππdt t f ;当43π=x 时取最大值,2sin 434543-==⎪⎭⎫ ⎝⎛⎰πππdt t f ;参考文献1曹绳武,王振中,于远许高等数学重要习题集大连理工大学出版社 2001 2郝涌,卢士堂考研数学精解华中理工大学出版社 19993李永乐,李正元考研复习全书国家行政出版社 20124林益,邵琨,罗德斌等数学分析习题详解 2005课程论文成绩考核表学生姓名专业班级题目评审者考核项目评分指导教师1 平时态度与遵守纪律的情况满分20分2 掌握基本理论、专业知识、基本技能的程度和水平满分20分3 抽签答题的正确性满分20分4 完成任务的情况与水平按规范化要求满分20分5 答辩时讲述的条理性与系统性满分20分总评成绩总评成绩等级优、良、中、及格、不及格指导教师签字:。

定积分计算中周期和奇偶函数处理

定积分计算中周期和奇偶函数处理

定积分计算中周期和奇偶函数处理周期函数是指函数在一些区间内的取值具有重复的特征,即满足f(x+T)=f(x),其中T为正常数,称为函数的周期。

在定积分计算中,对于周期函数的处理常常采用周期性的性质来简化计算。

首先,对于周期函数 f(x) 的定积分∫[a, b] f(x) dx,如果函数的周期为 T,即 f(x + T) = f(x),那么我们可以将积分区间展开成多个周期,即∫[a, b] f(x) dx = ∑(n=0)^(N-1) ∫[a + nT, a + (n+1)T] f(x) dx,其中 N 是使得 a + NT < b 成立的最小整数。

利用函数的周期性,我们可以把积分区间展开成多个周期,然后结合周期函数的相等性质,将积分化简成一个周期的积分。

在实际计算时,可以根据具体的周期函数的性质来进行变换和化简,以便得到简单形式的定积分。

例如,对于正弦函数 sin(x),它的周期为2π。

如果要计算函数sin(x) 在区间[0, 4π] 的定积分∫[0, 4π] sin(x) dx,我们可以将积分区间展开成多个周期,即∫[0, 4π] sin(x) dx = ∫[0, 2π]sin(x) dx + ∫[2π, 4π] sin(x) dx。

因为 sin(x) 是奇函数,即满足sin(-x) = -sin(x),所以可以将第二个积分改写为∫[-2π, 0] sin(x) dx。

由于 sin(x) 是周期函数,所以在整个区间上的积分结果是相等的,即∫[-2π, 0] sin(x) dx = ∫[0, 2π] sin(x) dx。

因此,原积分可以简化为∫[0, 2π] sin(x) dx + ∫[0, 2π] sin(x) dx = 2∫[0,2π] sin(x) dx。

类似地,对于周期函数的定积分,可以利用函数的周期性和对称性质来进行一些简化处理。

其次,奇函数和偶函数在定积分计算中也有一些特殊的性质。

定积分的计算方法与技巧解析

定积分的计算方法与技巧解析
环境微生物教学在环境工程专业的设置中,应兼顾培养学 生的基础理论学习和实验技能的培养。因此,将实验提升为独 立课程的同时应增加实验的课时数目。可以设置大肠杆菌生长 曲线测定、饮用水的细菌学检测、水及土壤样品DNA提取及电 泳等实验。课程的实验体系涵盖了微生物实验基本操作(培养 基的配制、接种、形态鉴定、微生物分离及计数)及环境样品 分子生物学方面的实验过程,实验结合实际环境问题,设置更 为合理,利于学生对课程整体有全面和直观的认识[6]。
出定积分的值。
2.5 利用被积函数的性质及积分区间的特点求解定积分
在求解定积分时,有时候被积函数具有奇偶性和周期性,
而积分区间也比较特殊,这时可利用性质求解[1-2]:
(1)若函数 在区间
上连续且为奇函数,


(2)若函数 则:
在区间
上连续且为偶函数,

;②
(3)若 在上 可积,且是周期为 的周期函数, 为 任意实数,则有[3]:
定积分的换元法主要针对当被积函数中含有
等因子时,可

消去根号,或通过作三角代换消去根号,再进行求解,值得注意的是换元必
相应改变定积分的上下限。
例3 求

解令
,则
。当
时, ;当
时, 。
例4 解令
。 ,则
。当
时,
;当 时, 。
2.4 利用分部积分法 分部积分法主要用于求解当被积函数是两类函数的乘积的形式的定积分,分部积分法 的关键是要正确选择 和 。分部积分法在解题过程中可以多次使用,但应注意在多次 使用分部积分法时要“从一而终”,即若第一次选取指数函数作为 ,那么后面再次使用③
, 为自然数;④正弦函
数在周期区间上的积分值为0,余弦函数在半周期区间上的积分 值为0。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分中奇偶函数和周期函数处理方法The final edition was revised on December 14th, 2020.定积分计算中周期函数和奇偶函数的处理方法一、基本方法(一)、奇偶函数和周期函数的性质在定积分计算中,根据定积分的性质和被积函数的奇偶性,及其周期性,我们有如下结论1、若()x f 是奇函数(即()()x f x f --=),那么对于任意 的常数a ,在闭区间][a a ,-上,()0=⎰-aa dx x f 。

2、若()x f 是偶函数(即()()x f x f -=),那么对于任意的常数a ,在闭区间][a a ,-上()()⎰⎰-=a a adx x f dx x f 02。

3、若()x f 为奇函数时,()x f 在][a a ,-的全体原函数均为偶函数;当()x f 为偶函数时,()x f 只有唯一原函数为奇函数即()⎰xdt t f 0.事实上:设()()C dt t f x d x f x+=⎰⎰0,其中C 为任意常数。

当()x f 为奇函数时,()⎰xdt t f 0为偶函数,任意常数C 也是偶函数⇒()x f 的全体原函数()C dt t f x+⎰0为偶函数;当()x f 为偶函数时,()⎰xdt t f 0为奇函数,任意常数0≠C 时为偶函数⇒()C dt t f x+⎰0既为非奇函数又为非偶函数,⇒()x f 的原函数只有唯一的一个原函数即()⎰xdt t f 0是奇函数。

4、若()x f 是以T 为周期的函数(即()()x f x T f =+),且在闭区间][T ,0上连续可积,那么()()()⎰⎰⎰+-==Ta aTT T dx x f dx x f dx x f 022。

5、若()x f 是以T 为周期的函数(即()()x f x T f =+),那么()⎰xdt t f 0以T 为周期的充要条件是 ()00=⎰Tdt t f事实上:()()()()()⎰⎰⎰⎰⎰+=+=++Tx Tx xTx x dt t f dt t f dt t f dt t f dt t f 0,由此可得()()⎰⎰=÷xTx dt t f dt t f 0⇔()⎰Tdt t f 0。

(二)、定积分中奇偶函数的处理方法1. 直接法:若果被积函数直接是奇函数或者偶函数,之间按照奇偶函数的性质进行计算即可,但要注意积分区间。

2. 拆项法:观察被积函数,在对称区间如果被积函数复杂但可以拆成奇偶函数和的形式,则分开积分会简化计算。

3. 拼凑法:被积函数在对称区间直接积分比较困难,并且不能拆项,可以按照如下方法处理:设()()()x f x f x p -+= ,()()()x f x f x q --=,则()()()2x q x p x f +=,从而就转换为了奇函数和偶函数在对称区间的计算。

(三)、定积分中周期函数的处理方法对于周期函数的定积分,最主要是能够确定被积函数的周期(特别是三角函数与复合的三角函数的周期),并熟悉周期函数的积分性质,基本上就能解决周期函数定积分的问题。

二、典型例题例1 设()x f f 在][a a ,-上连续可积,证明:(1)若f 为奇函数则()0=⎰-aadx x f (2)若f 为偶函数,则()()⎰⎰-=aaadx x f dx x f 02。

证明:(1)因为()()x f x f --=,而()()()⎰⎰⎰+=--aaa adx x f dx x f dx x f 0()()()()()⎰⎰⎰⎰--+-=+-=aaa adx x f x d x f dx x f dx x f 0对前一项中令x t -=,则()()()()()⎰⎰⎰⎰-=-=-=--aaa adx x f dx x f dt t f x d x f 0所以()()()00=+-=⎰⎰⎰-aaa adx x f dx x f dx x f .(2)因为()()x f x f -=, 而 ()()()⎰⎰⎰+=--aaaadx x f dx x f dx x f 0()()()()()⎰⎰⎰⎰--+-=+-=aaa adx x f x d x f dx x f dx x f 0,对前一项中 令t x -=相似的有()()()()⎰⎰⎰=-=---aaadx x f dt t f x d x f 0,所以()()⎰⎰-=aaadx x f dx x f 02.例2 设f 在)(∞∞-,上连续,且以T 为周期,证()()()⎰⎰⎰+-==Ta aTT T dx x f dx x f dx x f 022。

证明: 由()()()()⎰⎰⎰⎰++++=Ta aaTTa Tdx x f dx x f dx x f dx x f 0,在上式右端最后一个积分中,令t T x +=则有()()()()⎰⎰⎰⎰-==+=+0aTa T a a dx x f dt t f dt t T f dx x f ,即有()()()()()⎰⎰⎰⎰⎰+=-+=Ta aaTaT dx x f dx x f dx x f dx x f dx x f 0000,成立再证()()⎰⎰-=22T T Tdx x f dx x f ,因为()()()⎰⎰⎰+=T T T Tdx x f dx x f dx x f 220对于()⎰TT dx x f 2令T x t -= 则()()⎰⎰+=TT TT dt T t f dx x f 22,因为()()x f T x f =+所以有()()⎰⎰--=+0202T T dx x f dt T t f ,()()()()⎰⎰⎰⎰-=+=20222T TT T T Tdx x f dx x f dx x f dx x f 。

例3 求定积分 ()dx x x xI cos 2411++=⎰-。

解:被积函数为偶函数,()()dx x x x dx x x xI ⎰⎰++=++=-1242411cos 2cos⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡++=1sin 158201sin 3151235x x x例4 求定积分⎰=πn dx x I 0sin ,其中n 为自然数。

解:注意到x sin 是偶函数且以π为周期,因此利用性质可以简化计算n xdx n dx x n dx x n dx x n dx x I n 2sin 2sin 2sin sin sin 20222======⎰⎰⎰⎰⎰-ππππππ.例5]3[ 计算:⎰π20cos sin xdx x m n (自然数n 或m 为奇数)。

解 :由周期函数积分性质得⎰⎰-==πππxdx x xdx x I m n mnm n cos sin cos sin 20,当n 为奇数时,由于被积函数为奇函数,故0,=m n I 当m 为奇数时(设2,1,0,12=+=k k m …)时=m n I ,()()0sin sin sin 1sin 2==---⎰ππππx R x d x x n其中()u R 为u 的某个多项式(不含常数项) 因此0,=m n I例6 求定积分 dx x xx x ⎰-+++44231sin 。

解:因为被积函数是为奇函数,且在对称区间故01sin 4423=+++⎰-dx x xx x 例7 求定积分I=dx x x x x ⎰--+-2225242cos 。

解:I=dx xx x dx xx ⎰⎰---+--+2225222242cos 42,因为2542cos xx x -+是奇函数,而2242x x -+是偶函数,所以I=2()dx xx x dx x x ⎰⎰--=+-+2222222422042=()π2842222-=--⎰dx x例8 求定积分I=()()dx x x 3arctan 3604--⎰。

解:设3-=x t 则I=()()dx x x 3arctan 364--⎰=tdt t arctan 334⎰- 因为()x x x f arctan 4=是奇函数所以0=I例9 求定积分I=⎰+π2cos 1sin dx x xx 。

解:令t x +=2π,则dt dx =,因为][π,0∈x ,所以⎢⎣⎡⎥⎦⎤-∈2,2ππt , dt t t dt t t t dt t t dt t t t I ⎰⎰⎰⎰---+=+++=+⎪⎭⎫ ⎝⎛+=222022222222sin 1cos sin 1cos sin 1cos 2sin 1cos 2ππππππππππ ()4]sin arctan [sin sin 11220202πππππ==+=⎰t t d t例10 求定积分 I=⎰-+-+++1122231)1ln(dx x x x x 。

分析:若此题采用常规求法,会发现过程相当复杂,但是利用奇偶函数的性质就能很容易求出。

原函数可以看做一个奇函数f(x)=3)1ln(22+++x x x 和一个偶函数u(x)=3122+-x x 之和。

解:I= ⎰-+-+++1122231)1ln(dx x x x x = ⎰-+++11223)1ln(dx x x x + dx x x ⎰-+-112231 =+0 2 dx x x ⎰+-12231 =2=+-⎰dx x 102)341(10]3arctan 34[2x x - π3942-= 例11 求定积分I=⎰-+-+-21212)11lncos 41(dx xxx 。

分析:如果此题按照一般解法直接进行求解,那么会发现很繁琐,注意到()xxx f +-=11lncos 为奇函数在对称区间上积分为零,因此就可以简化积分,而241x -在⎢⎣⎡⎥⎦⎤-21,21上积分恰好是以原点为圆心,半径为21的上半圆周面积, s=2)21(21π= 8π 解:I=⎰-+-+-21212)11ln cos 41(dx x xx = dx x ⎰--2121241+dx xx⎰-+-212111lncos=dx x ⎰--2121241÷ 0 = 2dx x ⎰--2121241 = 2⨯8π = 4π 例12 设()x f 在][a a ,-()0>a 上连续,证明()()()dx x f x f dx x f aaa][0-+=⎰⎰-,并由此计算⎰-+44sin 11ππdx x 。

解:若记()()()x f x f x p -+=,()()()x f x f x q --=,显而易见()x p 为偶函数,()x q 为奇函数,而且()()()2x q x p x f +=.所以有()()()()()()dx x f x f dx x p dx x q dx x p dx x f a a aa a a aa⎰⎰⎰⎰⎰-+==+=---00][2121 利用上述公式可得2][tan 2sec 2cos 2]sin 11sin 11[sin 11404024024440====-++=+⎰⎰⎰⎰-ππππππx xdx dx x dx x x dx x例13 求定积分I=⎰-+22)1ln(dx e x x 。

相关文档
最新文档