催化裂化计算方法
催化裂化催化剂

一般再生烟气带出的催化剂中,70.5%是﹤20μ的,28.6%是20— 40μ的,即损失的催化剂大部分是细粉。
机械强度 为了避免在生产过程中催化剂过度粉碎以保证良好的流化质量和
催化裂化工艺---催化裂化催化剂
大家知道催化剂是通过改变反应历程,降低反应的活化能,从 而提高反应速度,另外催化剂还有选择性,它可以促进目的产物反应 速度的提高。
催化剂的作用是促进化学反应,从而提高反应氢的处理量。催化 剂还能对产品的产率分布及质量的好坏起重要作用。
例如:在450—500℃及常压的条件下,从热力学的角度来判断, 烃类可以进行分解、芳构化、异构化、氢转移等反应,但是有些反应 如异构化、氢转移等反应速度很慢,在工业上是没有实际意义的。
催化剂的表面是化学反应的场所。 在生产过程中,由于高温及水蒸气的作用,小孔径的微孔遭到破 坏,平均孔径增大而比表面积减小,这种现象叫老化
④硅酸铝催化剂的酸性
在催化剂的表面,Al, O, Si 组成AL:O: Si的结构(b )。
由于AL:O键趋向正电荷较强 Si,使Al带有正电性,即为非质 子酸。
热裂化 催化裂化
反应机理 自由基 正碳离子
活化能 210—293KJ/mol 42——125KJ/mol
一、催化裂化催化剂的组成和结构 工业上广泛使用的裂化催化剂可分为两大类:
一类是无定型的硅酸铝,其中包括天然活性白土、合成普通 (低铝)硅酸铝。另一类是结晶型硅酸铝,又称分子筛催化剂。
1、天然白土催化剂 白土催化剂是经过酸化处理的天然白土也叫活性白土。它的主要
最新万吨年催化裂化反应—再生系统计算

万吨年催化裂化反应—再生系统计算摘要催化裂化装置主要由反应—再生系统、分馏系统、吸收稳定系统和能量回收系统构成,其中反应—再生系统是其重要组成部分,是装置的核心。
设计中以大庆原油的混合蜡油与减压渣油作为原料,采用汽油方案,对装置处理量为250万吨/年(年开工8000小时)的催化裂化反应—再生系统进行了一系列计算。
根据所用原料掺油量低,混合后残炭值较低,其硫含量和金属含量都较小且由产品分布和回炼比较小,抗金属污染能力强,催化剂的烧焦和流化性能较好及在此催化剂作用下,汽油辛烷值较高这些特点,故采用汽油方案。
设计中,采用了高低并列式且带有外循环管的烧焦罐技术,并对烧焦罐式再生器和提升管反应器进行了工艺计算,其中再生器的烧焦量达32500㎏/h,烧焦罐温度为680℃,稀相管温度为720℃,由于烟气中CO含量为0,则采用高效完全再生。
在烧焦罐中,烧焦时间为1.8s,罐中平均密度为100㎏/m3,烧焦效果良好。
在提升管反应器设计中,反应温度为505℃,直径为1.62 m,管长为29 m,反应时间为3s,沉降器直径为2 m,催化剂在两器中循环,以减少催化剂的损失,提高气—固的分离效果,在反应器和再生器中分别装有旋风分离器,旋风分离器的料腿上装有翼阀,在提升管和稀相管出口处采用T型快分器。
由设计计算部分可知,所需产品产率基本可以实现。
关键词:催化裂化,反应器,再生器,提升管,烧焦罐,完全再生AbstractThe catalytic cracker constitutes reaction-regeneration system、fraction system、 absorption-stabilization system and power-recovery system. The most important and core part of the unit is reaction-regeneration system. The DaQing Crude wax oil and vacuumdistillation residue are taken as feedstock. This paper is a series of processing calculation mainly about reaction-regeneration system. With gasoline scheme, capacity is designed to be 150 Mt/a under the condition of 8000 hours’ operating time.After being mixed the contents of blending residuum, sulphur and metal as well as the carbon residue in feedstock are low. As the even distribution of product, superior properties of resisting metal pollution and the catalyst’s coke burning and fluidization as well as the higher octane number of gasoline with the function of this catalyst, the gasoline scheme are taken.In the design, technology of coke-burning drum with outsider-circulation tube is applied. The drum is of high-low parallel style. The processing calculation is about reproducer of coke-burning drum style and riser, coke-burning capacity is 32500㎏/h, the temperatures of coke-burning drum and dilute phase riser are respectively 680℃and 720℃. Accounting that there is no carbon monoxide in off-gase. The high efficient regeneration is applied. In the coke-burning drum, the scorching time is 1.8s and its average density is 100 ㎏/m3, thus the effect of coke-burning is good. The temperature of riser is 505℃. Its diameter is 1.62m and the length is 29m. While its reaction time is 3s and the diameter of settling vessel is 2m. Catalysts circulate in the drum and reactor. In order to reduce the loss of catalyst and improve the effect of gas-solid separation, cyclones are equipped in both reactor and reproducer. There is trickle vavle on the dipleg of the latter, whilethe T-rapid separation unit is fitted in the exit of riser and dilute phase riser. From the date, the unit can substantially reach the required yield. Keywords: Catalystic cracking, Reactor, Reproducer, Riser, Coke-burning drum毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
催化裂化计算公式

催化裂化计算公式催化裂化是石油炼制工艺中常用的一种方法,通过在一定的温度和压力条件下,利用催化剂对石油馏分进行裂解和转化,得到更高价值的产品。
催化裂化反应的计算公式主要包括裂解反应速率公式、选择性公式和生长率公式。
下面将详细介绍这些公式。
1.裂解反应速率公式催化裂化的核心是裂解反应,也是得到高价值产品的关键步骤。
裂解反应速率公式可以描述反应速率与反应物浓度之间的关系,常用的裂解反应速率公式为Arrhenius公式:r = k * C^n * exp(-E/RT)其中,r为裂解反应的速率,k为反应速率常数,C为反应物的浓度,n为反应级数,E为反应的活化能,R为气体常数,T为反应温度。
2.选择性公式催化裂化过程中,会产生许多不同的裂解产物,选择性公式可以描述不同产物的生成速率与不同因素之间的关系。
一般来说,选择性公式可以根据不同的产物选择适当的描述方式,比如用分率、摩尔比或摩尔分数等。
例如,对于裂解产物燃料油和液化气的选择性公式可以表示为:Se=K1*F1+K2*F2其中,Se为选择性系数,K为选择性常数,F为反应物的摩尔比。
3.生长率公式催化裂化反应中,一些分子会通过生长过程生成更大的分子,这些生长过程可以通过生长率公式描述。
一般来说,生长率公式可以基于碳原子的增长数量表示。
G=A*C^m其中,G为生长率,A为生长常数,C为反应物的浓度,m为生长度。
需要注意的是,上述公式只是催化裂化反应计算中的常用公式,实际应用中还需要结合具体的反应机理和实验数据进行修正和拟合。
此外,催化裂化反应过程中还涉及到反应器设计、催化剂选择、操作参数优化等多方面的问题,需要综合考虑才能得到准确的计算结果。
催化裂化计算方法

催化裂化物料平衡和热平衡计算方法前 言催化裂化过程是石油二次加工的重要过程之一。
监测一个催化裂化装置,唯一正确的方法就是定期考察装置的物料平衡、热平衡和压力平衡。
通过经常收集和研究装置运行的物料平衡和热平衡,才能更好地了解和理解装置运行的历史和现状,予期其未来,并为优化装置操作奠定基础。
进料质量、操作条件、催化剂和设备状况的任何变化,都将影响装置的物料平衡及热平衡。
要想深入了解和理解装置运行的物料平衡和热平衡,首先就必须正确做好物料平衡和热平衡计算。
为此目的,本文首先介绍了催化裂化物料平衡和热平衡的计算方法。
第一节 计 量1油品计量油品计量一般有二种方法:油罐检尺/输油体积法和在线差压式流量计测定法。
1.1 油罐检尺/输油体积法:油罐检尺/输油体积法是炼厂中应用最广泛,计量也较为准确的方法之一。
在通过油罐检尺/输油体积而对油量进行计量时,应根据国家标准GB/T 1885—1998石油计量表计算。
石油计量表按原油、产品和润滑油分类建立。
现已为世界大多数国家采用,在石油贸易中更具通用性。
催化裂化所用原料及产品均应使用石油计量表——产品部分。
石油计量所采用的密度计为玻璃密度计。
GB/T 1885—1998《石油计量表》——产品部分的简要说明及使用方法如下:1.1.1 石油计量表的组成标准密度表 表59A 表59B 表59D体积修正系数表 表60A 表60B 表60D其他石油计量表 表E1 表E2 表E3 表E4表59B—产品标准密度表和表60B—产品体积修正系数表是GB/T1885—1998《石油计量表》的组成部分之一。
表59B用于润滑油以外的石油产品,由已知试验温度下的视密度(密度计读数)查取标准密度(20℃温度下的密度)。
表60B用于润滑油以外的石油产品,由标准密度和计量温度查取由计量温度下体积修正到标准体积(20℃温度下体积)的体积修正系数(VCF20)。
1.1.2 产品计量产品按空气中的质量计算数量。
催化裂化两器内的压力平衡计算1

稀相区
Zc
密相区Hf
分布器区hj
图2流化床的整体特性示意图
ρ
密
相
区弹
溅
区湍流扩散区
0 HfZcTDH
图3流化床沿轴向密度及分布曲线示意图。
(1)分布器区高度及压降的计算:
hj/d0=141.85[ρpdp/(ρgdo)]0.273[ρgu0do/μ]-0.654[u02/(gd0)]0.408(1)
L ————提升管长度,m
Dt————管径,m
各分项的计算:
2)提升管静压
ΔPs=ρp(1-ε)gL=ρgL ----------(21)
ε的计算,Kunio Kato建议用下式预测:
ε/(1-ε)=230[(ug-ut)/ut]1. 5Gs提-1D-0.4ut1. 8-----------------(22)
例1:
已知:一再藏量W1=30ⅹ103kg有效截面积At1=15.9m2
充气密度ρBT=903kg/m3u1=1.0m/s
求:Hf1=?
解:由Ho1= W1/(ρBTAt1)=30ⅹ103/(903ⅹ15.9)≈2.08 (m)
由u1=1.0m/s查图5可得Hf1/ Ho1≈1.38
Hf1=1.38 Ho1=1.38ⅹ2.08=2.87m
△pB1———一再藏量总差压、 MPa
对80万吨/年装置可由图4查得。
(2)二再:ρB2=10151.8u3- 0..24△pB2+122.9 (kg/m3)(11)
u3————二再密相表观气速 m/s
△pB2———二再藏量总差压, Mpa, 由图4查得。
W1~△PB1
W(T)
60
W2~△PB2
催化裂化催化剂

08.04.2020
页岩油化工厂催化裂化技术讲座
3
2、无定型硅酸铝催化剂 1958年我国开始生产小球状93-5毫米 合成硅酸铝催化剂,用于
移动床。 1965年开始生产微球状920-100微米 合成硅酸铝。 ①高铝低铝催化剂和合成方法 硅酸铝的主要成分是氧化硅和氧化铝,依铝含量的不同,合成硅
酸铝又分为低铝和高铝。 低铝硅酸铝含Al2O3 10-13% 高铝硅酸铝含Al2O3 25% 合成的方法是:由Na2SiO3 俗称水玻璃 Al2 (SO4)3,溶液按一定比例配 合生成凝胶,再经过水洗,过滤,成型,干燥,活化等步骤制成。
08.04.2020
页岩油化工厂催化裂化技术讲座
10
⑶分子筛催化剂的结构
每个单元晶胞结构,每个单元晶胞由八个削角八面体构成,削角八面体 的每个顶端是Si或Al原子,其间由氧原子相连接。由八个削角八面体围成的 空洞称为“八面沸石笼”。它是催化反应进行的主要场所。其体积为820埃。
进入八面沸石笼的主要通道是由十二员环组成,其平均直径为0.8— 0.9nm。钠离子的位置有多处。
项目 新鲜催化剂 平衡催化剂
松动 0.40 0.63
沉降 0.44 0.69
密实 0.53 0.79
催化剂的堆积密度常用于计量催化剂的体积重量,催化剂的颗 粒密度对催化剂的流化性能有重要的影响。
08.04.、活性、稳定性
(1)活性:是指催化剂促进化学反应的能力。
由于AL:O键趋向正电荷较强 Si,使Al带有正电性,即为非质 子酸。
在有少量的水存在在时,由 于AL原子带正电性使水分子离解 为H+与OH-,其中OH-与带正电的 性的Al结合,而则H+在Al原子附 近呈游离状态,此即质子酸。 (如a)
催化裂化提升管反应器的模拟计算

催化裂化提升管反应器的模拟计算随着工业化的发展,石油化工行业的发展也越来越迅速。
催化裂化作为一种重要的石油化工工艺,在石油加工中起着至关重要的作用。
为了提高催化裂化反应器的工艺效率,模拟计算被广泛应用于催化裂化提升管反应器的设计和优化。
催化裂化是指在催化剂的作用下,利用热和压力对石油馏分进行裂解,以获得较高价值的石油化工产品。
催化裂化提升管反应器是催化裂化的核心设备之一,其主要作用是在高温高压下进行反应,将石油馏分分解成较小的分子。
在催化裂化反应器中,催化剂不仅起到了分解石油馏分的作用,还可以在反应过程中进行再生,以提高反应器的使用寿命。
催化裂化提升管反应器的设计和优化需要对反应过程进行深入的研究和分析。
传统的试验方法需要耗费大量的时间和成本,而模拟计算则可以在较短的时间内得出准确的结果。
通过对反应器的物理模型、反应机理和催化剂特性等因素进行模拟计算,可以有效地优化反应器的设计和操作条件,提高反应器的工艺效率。
在催化裂化提升管反应器的模拟计算中,需要考虑多种因素。
首先是反应器的物理模型,包括反应器的几何形状、反应器内部流体的流动状态等。
其次是反应过程的机理,包括反应物分子的分解过程、反应生成物的生成过程等。
最后是催化剂的特性,催化剂的选择和性质将直接影响反应器的反应效率和寿命。
在进行催化裂化提升管反应器的模拟计算时,需要采用一些常见的数学模型和计算方法。
其中,流体动力学模型可以用于描述反应器内部流体的流动状态,反应动力学模型可以用于描述反应过程的机理和反应速率,催化剂模型可以用于描述催化剂的特性和反应机理。
通过将这些模型进行组合和优化,可以得出准确的模拟结果,为反应器的设计和优化提供重要的参考。
催化裂化提升管反应器的模拟计算是一种重要的研究方法,可以有效地优化反应器的设计和操作条件,提高反应器的工艺效率。
在未来,随着计算机技术的不断发展和应用场景的不断拓展,催化裂化提升管反应器的模拟计算将会得到更广泛的应用和发展。
催化裂化工艺计算与技术分析

催化裂化工艺计算与技术分析[例4-1] 已知某催化裂化装置操作条件、产品分布等数据(见表4-6),求提升管油气停留时间。
解:(1)计算提升管入口油气流率,如表4-7所示。
= 26887m 3/h= 7.5 m 3/s(2) 计算提升管出口处油气流率,如表4-8所示。
1011401012732735204.22986+⨯+⨯⨯=i V= 54821m 3/h = 15.2m 3/s (3)计算油气线速 提升管横截面积:F = 0.25 πD 2= 0.25×3.14×1.22= 1.13 m 2计算入口油气流速: U i = V i /F = 7.5/1.13 = 6.6 m/s 计算出口油气流速: U o =V o /F = 15.2/1.13 = 13.5 m/s提升管内油气平均流速= 9.6 m/s(4) 计算油气平均停留时间 t = L / U m = 25 / 9.6 = 2.6 sYc =∆C k ·Rc(1+R F ) ( 4-3) 式中:∆C k ——催化剂的焦炭差,%(重);R F ——回炼比。
流量计有多种,应根据不同的流量计要求,进行校正。
(1)质量流量计是目前为许多炼厂所采用的先进的流量计,这种流量计不受检测点条件变化的影响,可以直接取得总通过量,前后数据相减即可。
(2)差压式流量计是利用流体流经节流装置时所产生的压力差实现流量测量的。
应用最广泛的节流1011161012732734931874+⨯+⨯=o V )6.65.13ln(6.65.13ln-=-=io i o m U U U U U装置是孔板,其次是喷嘴。
使用差压式流量计时,液体体积流量可用下式表示:V 实= C △实Pρ (5-1)式中:V 实—流体体积流量, m 3/h;△P —孔板前后压差,Pa ;ρ实—操作条件下流体的密度,m 3/kg ; C —常数。
流体质量流量可表示为:P CG △实实⋅=ρ (5-2)G 实——液体质量流量,t/h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d4t为操作温度t时液体密度与4 ℃时水的密度之比。
r可由附录查得。
1.2.3 举例:回炼油流量仪表指示值为150m3/h,设计密度为630kg/m3现在操作温度为360℃,ρ20=850kg/m3求在操作温度下的体积流量是多少?
V20=Vt×VCF20…………………(1)
计算产品在空气中的质量(商业质量)时,应进行空气浮力修正,将标准密度(kg/m3)减去空气浮力修正值1.1kg/m3,再乘以标准体积,就得到产品质量(m),见公式(2)。
m=V20×(ρ20-1.1)…………………(2)
1.1.3 产品数量计算举例
某一产品测得输油温度为40℃,输油体积为1240.62m3,用石油密度计测得该产品40℃下的视密度为753.0kg/m3,计算输油质量。
1.2.1 校正公式
差压式流量计采用下式计算所通过的液体体积流量:
式中V—液体在操作条件下的体积流量,m3/h
ΔP—孔板前后压差,Pa (mmH2O柱或 mmHg柱)
ρ实—操作条件下液体的密度
K—常数,与孔板大小、形状等有关
用差压式流量计所测定的液体质量流量可表示为:
式中G—液体质量流量,t/h
在实际使用时,仪表人员会根据设计条件(设计孔板大小,设计液体密度等)给出仪表指示流量表,供操作人员使用。但是,在生产过程中,由于液体的实际密度和设计时所选用的密度(液体的性质及液体通过节流装置时的温度)不同,因此,实际流量与仪表指示流量值会有差别,需进行校正。校正方法如下:
由产品在试验温度40℃下的视密度753.0kg/m3,查表59B,得 ρ20=770.0kg/m3
由标准密度770.0kg/m3和输油温度40℃,查表60B得
VCF20=0.9775
V20=1240.62×0.9775
≈1212.706m3
输油质量=1212.706×(770.0-1.1)
≈932449.6 kg
≈932.45t
在对油罐检尺/输油体积法进行计量时,除应采用GB/T 1885—1998外,还应注意以下几点:
为了获取较正确的油罐或输油管线中油品温度及油品密度,应对油罐上、中、下和所输油品不同时间分别取样,等量混合后,测其温度、视密度及测视密度时的温度;
视密度是在非标准温度下获得的玻璃石油密度计读数;
1.1.2 产品计量
产品按空气中的质量计算数量。
当在非标准温度下使用石油密度计测得产品的视密度时,应该用表59B查取该产品的标准密度(ρ20)。
在计算产品数量时,产品在计量温度下的体积,通常要换算成标准体积,产品的标准体积(V20)用计量温度下的体积(Vt)乘以计量温度下的体积修正到标准体积的体积修正系数(VCF20)获得,见公式(1),而体积修正系数是用标准密度和计量温度查表60B获得的。
催化裂化物料平衡和热平衡计算方法
前 言
催化裂化过程是石油二次加工的重要过程之一。监测一个催化裂化装置,唯一正确的方法就是定期考察装置的物料平衡、热平衡和压力平衡。通过经常收集和研究装置运行的物料平衡和热平衡,才能更好地了解和理解装置运行的历史和现状,予期其未来,并为优化装置操作奠定基础。进料质量、操作条件、催化剂和设备状况的任何变化,都将影响装置的物料平衡及热平衡。
式中V实、G实、ρ实分别为操作条件下体积流量(m3/h)、质量流量(t/h)和液体密度(kg/m3)
V表读数、G表读数、ρ设分别为设计条件下的体积流量(m3/h)、质量流量(t/h)和液体密度(kg/m3)
1.2.2 操作条件下液体密度的计算
在不是很高的压力下(例如催化裂化物流计量的条件),压力对液体密度的影响很小,一般可以忽略不计。但温度对其影响则很大,必须予以校正。一般可以测得实际液体在20℃时的密度,将其校正到操作温度下液体密度的方法有三种。
要想深入了解和理解装置运行的物料平衡和热平衡,首先就必须正确做好物料平衡和热平衡计算。为此目的,本文首先介绍了催化裂化物料平衡和热平衡的计算方法。
第一节 计 量
1油品计量
油品计量一般有二种方法:油罐检尺/输油体积法和在线差压式流量计测定法。
1.1油罐检尺/输油体积法:
油罐检尺/输油体积法是炼厂中应用最广泛,计量也较为准确的方法之一。在通过油罐检尺/输油体积而对油量进行计量时,应根据国家标准GB/T1885—1998石油计量表计算。石油计量表按原油、产品和润滑油分类建立。现已为世界大多数国家采用,在石油贸易中更具通用性。催化裂化所用原料及产品均应使用石油计量表——产品部分。石油计量所采用的密度计为玻璃密度计。GB/T 1885—1998《石油计量表》——产品部分的简要说明及使用方法如下:
1.2.2.1 使用GB/T 1885—1998〈石油计量表〉,查出操作温度下的油品密度。
1.2.2.2 查图法:由图可以通过液体的比重和操作温度,查出液体在操作温度下的比重。图见附录。 由图可以看出,油品比重与温度的关系不是直线关系。因此,当操作温度高于《石油计量表》所给出的温度时,应使0℃以下。
1.1.1 石油计量表的组成
标准密度表 表59A 表59B 表59D
体积修正系数表 表60A 表60B 表60D
其他石油计量表 表E1 表E2 表E3 表E4
表59B—产品标准密度表和表60B—产品体积修正系数表是GB/T 1885—1998《石油计量表》的组成部分之一。 表59B用于润滑油以外的石油产品,由已知试验温度下的视密度(密度计读数)查取标准密度(20℃温度下的密度)。表60B用于润滑油以外的石油产品,由标准密度和计量温度查取由计量温度下体积修正到标准体积(20℃温度下体积)的体积修正系数(VCF20)。
根据国家质检部门的要求,定期由油罐检测部门检测油罐大小或校正输油计量表。
1.2 差压式流量计测量法
有些物料量不能用油罐检尺/输油体积法,只能依靠流量计计量。例如,为了节约能量,常常采用常压渣油、减压渣油等热进料。在这种情况下,只能用流量计计量。流量计有多种:采用孔板流量计、靶式流量计、椭圆齿轮流量计、涡轮流量计等差压式流量计,其表示的数值均为瞬时流量,即单位时间内流过管道某一截面的流体数量大小,常以体积流量(m3/h)或质量流量(t/h)表示。