高等传热学作业要点

合集下载

高等传热学知识重点(含答案)2019

高等传热学知识重点(含答案)2019

高等传热学知识重点1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。

Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度)2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。

3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布:电子的统计分布:Fermi-Dirac(费米-狄拉克)分布:声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布;高温下,FD,BE均化为MB;4.什么是光学声子和声学声子,其波矢或频谱分布各有特性?答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量;光学声子:与光子相互振动,发生散射,故称光学声子;声学声子:类似机械波传动,故称声学声子;5.影响声子和电子导热的散射效应有哪些?答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因):①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的;②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散射、Mie散射,这与光子非常相似;③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。

答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型:Einstein(爱因斯坦)模型:7.分子动力学理论中,L-J势能函数的表达式及其意义。

答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

高等传热学知识点总结2024

高等传热学知识点总结2024

引言概述:在高等传热学中,掌握各种传热方式以及其基本原理是非常重要的。

本文将分析五个大点,其中包括传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射。

每个大点都将进一步分解为五到九个小点,详细阐述相关知识。

通过本文的学习和理解,读者将能够深入了解高等传热学的知识点。

正文内容:一、传热方式的分类1.传热方式的基本分类2.对流传热与传导传热的区别3.辐射传热的特点及其应用4.相变传热的机理及其实例5.传热方式在工程中的应用案例二、传热边界条件1.传热边界条件的定义及分类2.壁面传热通量的计算方法3.壁面传热系数的影响因素4.壁面传热条件的实验测定方法5.边界条件的选择与优化三、传热传导1.传热传导的基本原理2.导热系数的计算方法3.等效导热系数的定义及其应用4.传热传导方程的推导和求解方法5.传热传导的数值模拟方法及其应用四、传热对流1.对流传热的基本原理2.传热换热系数的计算方法3.流体流动与传热的耦合关系4.对流传热的实验测定方法5.传热对流的同非稳态传热问题五、传热辐射1.辐射传热的基本原理2.黑体辐射的特性和计算方法3.辐射传热过程的数学模型4.辐射系数的影响因素及其计算方法5.传热辐射的应用案例和工程实例总结:通过对高等传热学知识点的总结,我们深入了解了传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射等重要知识点。

掌握这些知识,可以帮助我们更好地理解传热现象的基本原理及其在工程实践中的应用。

同时,对于热传导与辐射换热和传热对流以及其边界条件的掌握,有助于我们解决工程中的传热问题,优化设计和提高热能利用效率。

在今后的学习和实践中,我们应不断巩固和拓展这些知识,以更好地应对传热学的挑战,并为实际工程问题提供合理的解决方案。

高等传热学知识点总结

高等传热学知识点总结

多维、线性齐次,乘积解: t ( x, y, z, ) ψ( x, y, z )( ) 令 ψ( x, y, z) X ( x)Y ( y) Z ( z) ,分别求解,然后相乘
t ( x, y, z, ) Cmnp e a ( m
m 1 n 1 p 1
2
m2 m2 )
X( m , x)Y( m , y)Z(m , z)
多维稳态非齐次:边界非齐 fi (r ) 0 or 方程非齐 0 边界非齐次(方程齐次) :分离变量法
t ( x, y) X ( x)Y ( y) ,参照时间与空间的分离变量法
当多个边界非齐次时,等于各单非齐问题的叠加 方程非齐次:等于相应齐次解+非齐次特解 线性、非齐次、非稳态: 热源函数法:在无限大区域,初始时刻 x=x0 处,作用了 一个 t=t0 的热源,当 0 时,
13
0.14
2 Num 0 . 6 6 4 1 R l e
1 3
Pr
大空间自然对流换热: Nu C (GrPr) C ( Ra)
x z yz z
, 利用
1 H
u H
i 1 i
3

H t 2 i ui
t cp
第二章 分离变量法 分离变量法: 将温度分成只与空间有 t (r , ) ψ(r )( ) , 关的 ψ(r ) 和只与时间有关的 ( ) 的乘积。 对于线性齐次非稳态无内热源问题, t
ห้องสมุดไป่ตู้对流
t y
y w, x
对流换热基本计算式:傅里叶定律 qw
牛顿冷却公式 qc h(tw, x t ) ,t 在内流时取管道截面 平均流体温度,外流时取远离壁面的流体温度。

传热学重点难点及典型题精解

传热学重点难点及典型题精解

传热学重点难点及典型题精解
传热学是研究热量传递规律和方式的学科,是热能工程、航空航天、电子工程等专业的重要基础课程。

传热学重点难点及典型题精解主要包括以下几个方面:
1. 传热方式:传热学主要研究三种传热方式,即导热、对流和辐射。

每种传热方式都有其特点和适用场景,需要掌握其基本原理、数学模型和求解方法。

2. 传热过程分析:传热过程分析是传热学中的重点内容,包括稳态传热和非稳态传热。

稳态传热是指温度分布不再随时间变化的情况,非稳态传热则是指温度分布随时间变化的情况。

需要掌握不同传热过程的分析和求解方法。

3. 传热学数学模型:传热学中涉及许多数学模型的建立和求解,如一维、二维和三维传热模型,以及稳态和非稳态传热模型。

需要掌握各种模型的建立方法和求解技巧。

4. 传热学实验:传热学实验是验证理论分析和数学模型的重要手段。

需要掌握各种传热实验的原理、方法和数据分析,以便更好地理解传热学的基本规律和特点。

5. 典型题精解:针对传热学的重点难点,选择典型的例题进行精解,以提高学生的传热学概念理解和解题能力。

传热学重点难点及典型题精解可以帮助学生更好地掌握传热学的基本概念、原理和方法,提高解题能力,为后续的专业课程学习和工程应用打下坚实的基础。

高等传热学知识点总结

高等传热学知识点总结
式 对流:流体各部分之间发生相对位移时,冷热流体相互掺 混所引起的热量传递过程。 对流换热:流体流过固体壁面时所发生的热量传递过程。 影响对流换热的因素:流动起因;流体流动状态;换热表 面几何因素(形状、尺度、相对位置、表面粗糙情况) ;换 热过程有无相变;流体的物性(普朗特数) 。
半无限大物体:
d 2 X ( x) 2 X ( x) 0 2 dx
1 X ( , x) X ( , x ' ) F ( x ' )dx 'd 0 N ( )
为热源强度,当 J 1 时, t ( x, ) 为一维热源函数。 意义:无限大区域中,初始时刻在 x 平面上的单位强 度,瞬时面(线、点)热源所造成的温度分布。 应用: Q c p F ( )d A , J F ( )d 因此, t ( x, )
Dp T v D
表示单位时间内黏性应力 (黏性切应 为黏性耗散函数, 相似原理意义:①实验时, 应当以相似特征数作为安排实 验的依据,并测量各特征数中包含的物理量;②实验结果 应整理成特征数间的关联式; ③实验结果可以推广应用到 与实验相似的情况。 管内湍流换热实验关联式 力与黏性法向应力)对控制体内流体所做的功,不可逆地 转化为热能的那部分 第二章 边界层相似理论和边界层方程 速度边界层:当流体流过固体壁面时,由于流体粘性作 用,使得在固体壁面附近存在速度发生剧烈变化的薄层 速度边界层厚度:速度等于 99%主流速度。 意义:流动区域可分为主流区和边界层区,主流区可看 作理想气体的流动,只在边界层区才需要考虑流体的粘 性作用。 温度边界层:在对流换热时,固体壁面附近温度发生剧 烈变化的薄层,也称热边界层。 温度边界层厚度:过余温度等于 99%主流流体过余温度 意义:温度场也可分为主流区和边界层区,主流区中的 温度变化可看作零,因此只需要确定边界层内的流体温 度分布。 普朗特数: Pr v a 普朗特数反映了流动边界层和温度 边界层的相对大小。其中流体的运动粘度反映了流体中 由于分子运动而扩散动量的能力,这一能力越大,粘性 的影响传递越远,流动边界层越厚。相类似,热扩散率 越大则温度边界层越厚。根据普朗特数大小可将流体分 为高普朗特数流体(百千) 、中~(0.7-10)以及低~0.01 边界层微分方程:外掠平板,2D,常物性,稳态,层 流,不可压缩流体,忽略黏性耗散 数量级分析法

高等传热学

高等传热学

高等传热学问题及答案1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类?2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么?3. 什么是形函数?形函数的两个最基本特征是什么?4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。

5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么?第一题:(1)热传导传热传导模式是因为从一个分子到另一个分子的能量交换,没有分子的实际运动,如果自由电子存在,也可能因为自由电子的运动。

因此,这种形式的热输送在很大程度上取决于介质的性质,如果存在温度差,热传导发生在固体,液体和气体。

书上补充:当两个物体有温差,或者物体内部有温度差时,在物体各部分之间不发生相对位移的情况下,物体微粒(分子,原子或自由电子)的热运动传递了热量。

(2)热对流()a w T T h q -=(牛顿冷却定律) 存在于液体和气体中的分子具有运动的自由,它们随身携带的能量(热量),从热区域移动到冷区域。

由于在液体或气体的宏观运动,热量传递从一个地区到另一个地方 ,加上流体内的热传导能量传递,称为对流换热。

对流可能是自然对流、强制对流,或混合对流。

百度补充:对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程。

由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。

在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。

(3)辐射4w T q εσ= ( 斯蒂藩-玻耳兹曼定律)任何(所有)物体和任何(所有)温度都能产生热辐射。

(绝对零度以上)这是唯一一种发生热传递不需要介质的方式。

热辐射本质上是从物体的表面发射电磁波,由电磁波携带能量进行能量传输。

高等传热学自学及作业安排

高等传热学自学及作业安排

《高等传热学》课程自学及作业安排2014届硕士研究生适用本课程教学方式:以自学为主,教师指导为辅。

考核方法:开卷笔试(50%)+平时成绩(作业及讲课30%)+两次大作业(20%)一、教学资料1.教材孙德兴编.高等传热学—导热与对流的数理解析.北京:中国建筑工业出版社,2005(图书馆均可借到)2.主要参考书张靖周编.高等传热学.北京:科学出版社,2009*王瑞金等编.Fluent技术基础与应用实例.北京:清华大学出版社,20073.参考资料[1]杨强生,高等传热学.上海:上海交通大学出版社,1996[2][美]E.R.G.埃克特,R.M.德雷克著,航青译.传热与传质分析.北京:科学出版社,1983[3][美]M. N.奥齐西克,俞昌铭主译.热传导.北京:高等教育出版社,1983[4]杨强生.对流传热与传质.北京:高等教育出版社,1985[5]赵镇南译.对流传热与传质(第4版).北京:高等教育出版社,2007*[6][美]E.M.斯帕罗,R.D.塞斯著,顾传保,张学学译.辐射传热.北京:高等教育出版社,1982*[7]陶文铨编著.数值传热学.西安:西安交通大学出版社,1988[8]周俊杰等编. FLUENT工程技术与实例分析.北京:中国水力水电出版社,2010(除*外,均提供电子版)4.课件、教案、FLUENT软件及其他提供光盘!二、自学、收集整理资料及讲课1.自学根据教案及课件提前查资料并自学相关内容。

如:2.收集整理资料及讲课每三位同学负责一至二次课内容,具体分工自行商量。

内容包括:(1)收集整理资料按照教案要求,收集、整理、加工相关教学资料,如“典型一维稳态导热现象(参考文献[1]PP27-40)”,形成电子版提交到qq群,供全班同学共享。

(2)讲课其中一位同学讲解该次课教学内容,时间为45分钟,重点讲解教案中提出的“重点需要理解的问题”;另一位同学讲解作业,时间15分钟,重点讲解分析思路。

传热大作业-数值解法-清华-传热学

传热大作业-数值解法-清华-传热学

一维非稳态导热的数值解法一、导热问题数值解法的认识(一)背景所谓求解导热问题,就是对导热微分方程在规定的定解条件下的积分求解。

这样获得的解称为分析解。

近100年来,对大量几何形状及边界条件比较简单的问题获得了分析解。

但是,对于工程技术中遇到的许多几何形状或边界条件复杂的导热问题,由于数学上的困难目前还无法得出其分析解。

另一方面,在近几十年中,随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展十分迅速,并得到日益广泛的应用。

这些数值方法包括有限差分法、有限元法及边界元法等。

其中,有限差分法物理概念明确,实施方法简便,本次大作业即采用有限差分法。

(二)基本思想把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场,用有限个离散点上的值的集合来代替,将连续物理量场的求解问题转化为各离散点物理量的求解问题,将微分方程的求解问题转化为离散点被求物理量的代数方程的求解问题。

(三)基本步骤(1)建立控制方程及定解条件。

根据具体的物理模型,建立符合条件的导热微分方程和边界条件。

(2)区域离散化。

用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置,称为节点。

每一个节点都可以看成是以它为中心的一个小区域的代表,将小区域称之为元体。

(3)建立节点物理量的代数方程。

建立方法主要包括泰勒级数展开法和热平衡法。

(4)设立迭代初场。

(5)求解代数方程组。

(6)解的分析。

对于数值计算所获得的温度场及所需的一些其他物理量应作仔细分析,以获得定性或定量上的一些结论。

对于不符合实际情况的应作修正。

二、问题及求解(一)题目一厚度为0.1m 的无限大平壁,两侧均为对流换热边界条件,初始时两侧流体温度与壁内温度一致,1205f f t t t ===℃;已知两侧对流换热系数分别为h 1=11 W/m 2K 、h 2=23W/m 2K ,壁的导热系数λ=0.43W/mK ,导温系数a=0.3437×10-6 m 2/s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-4、试写出各向异性介质在球坐标系)(ϕθ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。

解:球坐标微元控制体如图所示:热流密度矢量和傅里叶定律通用表达式为:→→→∂∂+∂∂+∂∂-=∆-=k T r k j T r k i r T k T k q r ϕθθϕθsin 11'' (1-1)根据能量守恒:st out g in E E E E ∙∙∙∙=-+ϕθθρϕθθϕϕθθϕθd drd r tT c d drd r q d q d q dr r q p r sin sin 22∂∂=+∂∂-∂∂-∂∂-∙ (1-2) 导热速率可根据傅里叶定律计算:ϕθθd r rd t Tk q rr sin ⋅∂∂-= ϕθθθθd r dr T r k q sin ⋅∂∂-= (1-3)θϕθϕϕrd dr Tr k q ⋅∂∂-=sin将上述式子代入(1-4-3)可得到)51(sin sin )sin ()sin (sin )(222-∂∂=+⋅⋅∂∂∂∂+⋅⋅∂∂∂∂+⋅⋅∂∂⋅∂∂⋅ϕθθρϕθθϕθϕθϕϕθθθθϕθθϕθd drd r tT c d drd r q d rd dr Tr k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到:tTc q T r k T r k r T r r r k p r ∂∂=+∂∂+∂∂∂∂+∂∂∂∂⋅ρϕθθθθθϕθ2222222sin )(sin sin )( (1-6)2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。

试用分离变量法求解长方柱体中的稳态温度场。

解:根据题意画出示意图:(1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+∂∂==∂∂======∂∂+∂∂00000212222θθλθθθδθθθθh y L y y y x x y x(2-1)解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+∂∂==∂∂======∂∂+∂∂00000212222I I II I II h y L y y y x x y x θθλθθθδθθθθ ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+∂∂==∂∂======∂∂+∂∂∏∏∏∏∏∏∏∏0000002222θθλθθδθθθθh y L y y y x x y x (2)首先求解温度场I θ用分离变量法假设所求的温度分布),(y x I θ可以表示成一个x 的函数和一个y 的函数的乘积,即)()(),(11y Y x X y x I =θ (2-2)将上式代入I θ的导热微分方程中,得到012121212=+X dy Y d Y dx X d ,即21''11''1ε=-=Y Y X X ,上式等号左边是x 的函数,右边是y 的函数,只有他们都等于一个常数时才可能成立,记这个常数为2ε。

由此得到一个待定常数的两个常微分方程001221212212=+=-Y dyY d X dxX d εε (2-3) 解得)()()(1x Bsh x Ach x X εε+= (2-4) )sin()cos()(1y D y C y Y εε+= (2-5) 把边界条件0,0=∂∂=yy Iθ代入(2-3-4)得到A=0,所以有 )()(1x Bsh x X ε= (2-6) 把边界条件0,=∂∂=yL y Iθ代入(2-3-5)得到D=0,所以有 )cos()(1y C y Y ε= (2-7) 把边界条件0,=+∂∂=I Ih yL y θθλ联立(2-3-7)得到 λεε/)cot(hL LL =(2-8)设Bi hL L ==λβε/,,则有i B /)cot(ββ=,这个方程有无穷多个解,即常数β有无穷多个值,即)3,2,1( =n n β,所以对应无穷多个ε,即)3,2,1( =n n ε,所以有 )cos()(1y C y Y n n ε= (2-9) 联立(2-3-6)可得∑∞==1)()cos(),(n n n n I x sh y K y x εεθ (2-10)把边界条件2,θθδ==I x 代入上式可得 ⎰⎰=Ln n n Ln dy y sh K dy y 0202)(cos )()cos(εδεεθ (2-11)解得])cos())[sin(/()sin(22n n n n n n L sh K βββδββθ+= (2-12)其中L n n εβ=)()c o s (])c o s ())[s i n (/()s i n (2),(12x L sh y L L sh y x n n n n n n n n I βββββδββθθ∑∞=+= (2-13)(3)求解温度场∏θ与解I θ一样用分离变量法,假设所求温度分布),(y x ∏θ可以表示成一个x 的函数和一个y 的函数的乘积)()(),(22x Y x X y x =∏θ (2-14)将该式子代入∏θ的导热微分方程中得到022222222=+X dy Y d Y dx X d ,即22''22''2ε=-=Y Y X X ,由此可得到两个常微分方程02222=-X dx X d ε (2-15) 022222=+Y dyY d ε (2-16) 解式(2-3-15)时根据x 的边界条件可以把解的形式写为)]([)]([)(2x Bsh x Ach x X -+-=δεδε (2-17) 把边界条件0,==∏θδx 代入上式,得到A=0,所以有)]([)(2x Bsh x X -=δε (2-18) 其中i n n n n B L /)cot(,βββε==)]([)cos(),(1x sh y k y x n n n n I -=∑∞=δεεθ (2-19)把边界条件1,0θθ==∏x 代入上式可得⎰⎰-=LLn n n n dy y x sh K dy y 02'1)(cos )]([)cos(εδεεθ (2-20)])cos())[sin(/()sin(21'n n n n n n L sh K βββδββθ+=(2-21))]([)cos(])cos())[sin(/()sin(2),(11x L sh y L L sh y x n n n n n n n n -+=∑∞=∏δβββββδββθθ (2-22)(4)最终求得稳态温度场)]([)cos(])cos())[sin(/()sin(2)()cos(])cos())[sin(/()sin(2),(),(),(1112x L sh y L L sh x L sh y L L sh y x y x y x n n n n n n n n n n n n n n n n I -+=++=+=∑∑∞=∞=∏δβββββδββθβββββδββθθθθ2-5、地热换热器是管中流动的流体与周围土地之间的换热,可应用于热能的储存、地源热泵等工程实际。

一种布置方式是把管子埋设在垂直于地面的钻孔中。

由于管子的长度远大于钻孔的直径,可把管子的散热简化为一个有限长度的线热源。

当运行的时间足够长以后,系统可以达到基本稳定的状态。

设土地是均匀的半无限大介质,线热源单位长度的发热量为ql ,地表面的温度均匀,维持为t0。

使用虚拟热源法求解土地中的稳态温度场。

解:根据题意画出示意图如下:设有限长热源长度为H ,单位长度热源发热量为l q ,电源强度为)(0w dz q l ⨯,设地面温度维持恒定温度00,t t t -=θ。

(1)求解点热源dz0产生的温度场有限长线热源在某点产生的温度可以看做是许多点源在该点产生的温度场的叠加,因此我们先来看下无限大介质中点源产生的温度场,这是一个球坐标系中的无内热源的稳态导热问题,其导热微分方程为:0)(122=drd r dr d r θ(3-1) 解微分方程可得rc c 12-=θ (3-2) 把边界条件0,=∞→θr 代入上式得到02=c ,所以有rc 1-=θ (3-3) 在球坐标系点热源0dz 单位时间内的发热量等于它在任意球面上产生的热流量Q ,即 01244dz q c r drd Q l =-=-=λππθλ (3-4) 所以得到014dz q c lπλ-=由此可得到球坐标系中点热源0dz 产生的温度场为 0*14dz rq l πλθ=(3-5) (2)分别求出两个线热源产生的温度场线热源产生的温度场可以看作是点热源产生的温度场的叠加,因此有 地下有限长线热源产生的温度场 00114dz rq Hl ⎰=πλθ (3-6) 对称的虚拟热源产生的温度场为 00214dz rq Hl ⎰--=πλθ (3-7) (3)虚拟热源法求解的地热换热器产生的温度场⎥⎥⎦⎤⎢⎢⎣⎡-++++++++-+-=⎥⎥⎦⎤⎢⎢⎣⎡++--+=-+=⎰⎰⎰-z z z z z H z H z H z H q dz z z z z q dz rq dz r q l H l H lHl 22222222002022020000)()(ln 4)(1)(141414ρρρρπλρρπλπλπλθ (3-8)第三章3-1、用热电偶测量呈简谐波周期变化的气流温度,热电偶的感温节点可看作直径为1mm 的圆球,其材料的密度为8900kg/m3,比热容为390J/(Kg •K),测温记录最高和最低温度分别为130℃和124℃,周期为20s 。

若已知气流与热电偶间的对流换热的表面传热系数为20W/(m2•K),试确定气流的真实温度变化范围。

解:气流温度按简谐波变化时,热电偶的温度响应为 )cos(*ϕτθ+=w B (4-1)式中)arctan(122r rf w w A B τϕτ-=+=按题目要求102022πππ===T w ,s hA cv r 925.2820610139089003=⨯⨯⨯⨯==-ρτ,)/(202k m w h ⋅=,根据题目提供的热电偶测量的最高温度、最低温度,求出热电偶测量的温度变化的振幅如下式32124130122=-=+r f w A τ (4-2) 把r w τ,的数据代入上式中得到气流温度变化的振幅4.27=f A ,所以真实气体温度变化的最大值、最小值为C t 0max 4.1544.272124130=++= (4-3) C t 0min 6.994.272124130=-+= (4-4)3-6、已知初始温度均匀的无限大介质中由连续恒定发热的线热源所引起的温度场由式子)4(4),(2τπλτa r E q r t i l --=确定。

相关文档
最新文档