高等传热学复习题(带答案)

合集下载

传热学复习题及其答案

传热学复习题及其答案

传热学复习题及其答案(Ⅰ部分)一、 概念题1、试分析室内暖气片的散热过程,各个环节有哪些热量传递方式?以暖气片管内走热水为例。

答:有以下换热环节及传热方式:(1) 由热水到暖气片管道内壁,热传递方式为强制对流换热; (2) 由暖气片管道内壁到外壁,热传递方式为固体导热;(3) 由暖气片管道外壁到室内空气,热传递方式有自然对流换热和辐射换热。

2、试分析冬季建筑室内空气与室外空气通过墙壁的换热过程,各个环节有哪些热量传递方式?答:有以下换热环节及传热方式:(1) 室内空气到墙体内壁,热传递方式为自然对流换热和辐射换热; (2) 墙的内壁到外壁,热传递方式为固体导热;(3) 墙的外壁到室外空气,热传递方式有对流换热和辐射换热。

3、何谓非稳态导热的正规阶段?写出其主要特点。

答:物体在加热或冷却过程中,物体内各处温度随时间的变化率具有一定的规律,物体初始温度分布的影响逐渐消失,这个阶段称为非稳态导热的正规阶段。

4、分别写出N u 、R e 、P r 、B i 数的表达式,并说明其物理意义。

答:(1)努塞尔(Nusselt)数,λlh Nu =,它表示表面上无量纲温度梯度的大小。

(2)雷诺(Reynolds)数,νlu ∞=Re ,它表示惯性力和粘性力的相对大小。

(3)普朗特数,aν=Pr ,它表示动量扩散厚度和能量扩散厚度的相对大小。

(4)毕渥数,λlh B i =,它表示导热体内部热阻与外部热阻的相对大小。

5、竖壁倾斜后其凝结换热表面传热系数是增加还是减小?为什么?。

答:竖壁倾斜后,使液膜顺壁面流动的力不再是重力而是重力的一部分,液膜流 动变慢,从而热阻增加,表面传热系数减小。

另外,从表面传热系数公式知,公式中的g 亦要换成θsin g ,从而h 减小。

6、按照导热机理,水的气、液、固三种状态中那种状态的导热系数最大? 答:根据导热机理可知,固体导热系数大于液体导热系数;液体导热系数大于气体导热系数。

传热学习题及参考答案

传热学习题及参考答案

《传热学》复习题一、判断题1.稳态导热没有初始条件。

()2.面积为A的平壁导热热阻是面积为1的平壁导热热阻的A倍。

()3.复合平壁各种不同材料的导热系数相差不是很大时可以当做一维导热问题来处理()4.肋片应该加在换热系数较小的那一端。

()5.当管道外径大于临界绝缘直径时,覆盖保温层才起到减少热损失的作用。

()6.所谓集总参数法就是忽略物体的内部热阻的近视处理方法。

()7.影响温度波衰减的主要因素有物体的热扩散系数,波动周期和深度。

()8.普朗特准则反映了流体物性对换热的影响。

()9. 傅里叶定律既适用于稳态导热过程,也适用于非稳态导热过程。

()10.相同的流动和换热壁面条件下,导热系数较大的流体,对流换热系数就较小。

()11、导热微分方程是导热普遍规律的数学描写,它对任意形状物体内部和边界都适用。

( )12、给出了边界面上的绝热条件相当于给出了第二类边界条件。

( )13、温度不高于350℃,导热系数不小于0.12w/(m.k)的材料称为保温材料。

( )14、在相同的进出口温度下,逆流比顺流的传热平均温差大。

( )15、接触面的粗糙度是影响接触热阻的主要因素。

( )16、非稳态导热温度对时间导数的向前差分叫做隐式格式,是无条件稳定的。

( )17、边界层理论中,主流区沿着垂直于流体流动的方向的速度梯度零。

( )18、无限大平壁冷却时,若Bi→∞,则可以采用集总参数法。

( )19、加速凝结液的排出有利于增强凝结换热。

( )20、普朗特准则反映了流体物性对换热的影响。

( )二、填空题1.流体横向冲刷n排外径为d的管束时,定性尺寸是。

2.热扩散率(导温系数)是材料指标,大小等于。

3.一个半径为R的半球形空腔,空腔表面对外界的辐射角系数为。

4.某表面的辐射特性,除了与方向无关外,还与波长无关,表面叫做表面。

5.物体表面的发射率是ε,面积是A,则表面的辐射表面热阻是。

6.影响膜状冷凝换热的热阻主要是。

高等传热学

高等传热学

高等传热学问题及答案1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类?2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么?3. 什么是形函数?形函数的两个最基本特征是什么?4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。

5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么?第一题:(1)热传导传热传导模式是因为从一个分子到另一个分子的能量交换,没有分子的实际运动,如果自由电子存在,也可能因为自由电子的运动。

因此,这种形式的热输送在很大程度上取决于介质的性质,如果存在温度差,热传导发生在固体,液体和气体。

书上补充:当两个物体有温差,或者物体内部有温度差时,在物体各部分之间不发生相对位移的情况下,物体微粒(分子,原子或自由电子)的热运动传递了热量。

(2)热对流()a w T T h q -=(牛顿冷却定律) 存在于液体和气体中的分子具有运动的自由,它们随身携带的能量(热量),从热区域移动到冷区域。

由于在液体或气体的宏观运动,热量传递从一个地区到另一个地方 ,加上流体内的热传导能量传递,称为对流换热。

对流可能是自然对流、强制对流,或混合对流。

百度补充:对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程。

由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。

在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。

(3)辐射4w T q εσ= ( 斯蒂藩-玻耳兹曼定律)任何(所有)物体和任何(所有)温度都能产生热辐射。

(绝对零度以上)这是唯一一种发生热传递不需要介质的方式。

热辐射本质上是从物体的表面发射电磁波,由电磁波携带能量进行能量传输。

传热学期末考试题及答案

传热学期末考试题及答案

传热学期末考试题及答案一、选择题(每题2分,共20分)1. 热传导的三种基本方式是:A. 导热、对流、辐射B. 导热、对流、蒸发C. 导热、对流、凝结D. 导热、蒸发、辐射答案:A2. 傅里叶定律描述的是:A. 热传导B. 热对流C. 热辐射D. 热传递答案:A3. 以下哪种流体流动属于层流:A. 湍流B. 层流C. 过渡流D. 紊流答案:B4. 普朗特数(Pr)是描述哪种物理过程的无量纲数:A. 热传导与粘性B. 热传导与对流C. 热传导与辐射D. 对流与辐射答案:B5. 辐射换热中,黑体辐射的特点是:A. 辐射强度与温度无关B. 辐射强度与温度成正比C. 辐射强度与温度的四次方成正比D. 辐射强度与温度的五次方成正比答案:C6. 以下哪种材料具有最好的热绝缘性能:A. 金属B. 玻璃C. 木材D. 陶瓷答案:C7. 热对流换热系数h与流体的哪种性质有关:A. 密度B. 粘度C. 比热容D. 导热系数答案:B8. 在热传导中,如果温差不变,材料的导热系数增大,热流量将:A. 增大B. 减小C. 不变D. 无法确定答案:A9. 以下哪种情况下,流体的对流换热系数会增大:A. 增加流体的流速B. 减少流体的流速C. 增加流体的粘度D. 减少流体的温度答案:A10. 辐射换热中,辐射强度I与辐射角系数F的关系是:A. I与F成正比B. I与F成反比C. I与F无关D. I与F的平方成正比答案:A二、填空题(每空1分,共20分)1. 热传导的基本定律是______定律,其数学表达式为:q = -k *(dT/dx)。

2. 热对流换热的基本方程是______方程,其表达式为:q = h * A * (Ts - Tf)。

3. 普朗特数Pr是描述流体的______和______的无量纲数。

4. 黑体辐射的辐射强度与温度的关系是______定律,即I = σ * T^4。

5. 热绝缘材料的导热系数通常______,因此具有较好的隔热性能。

传热学复习题及其答案

传热学复习题及其答案

传热学复习题及其答案1. 什么是傅里叶定律?傅里叶定律描述了什么物理现象?傅里叶定律是描述热传导过程中热量传递速率与温度梯度和垂直于热流方向的面积之间的关系。

该定律表明,单位时间内通过单位面积的热量与垂直于热流方向的温度梯度成正比。

数学表达式为:\[ q = -k \frac{dT}{dx} \],其中 \( q \) 是热流密度,\( k \) 是材料的热导率,\( \frac{dT}{dx} \) 是温度梯度。

2. 热对流与热辐射有何区别?热对流是指流体中热量的传递,依赖于流体的流动,热量通过流体的宏观运动从一个位置传递到另一个位置。

而热辐射是指物体通过电磁波辐射能量的过程,它不需要介质,可以在真空中进行。

热对流的传递速率通常与流体的流速和温度差有关,而热辐射的传递速率则与物体的表面温度和辐射特性有关。

3. 描述牛顿冷却定律及其适用条件。

牛顿冷却定律指出,物体表面与周围流体之间的对流换热速率与物体表面温度与流体温度之差成正比。

其数学表达式为:\[ q = hA(T_s - T_\infty) \],其中 \( q \) 是换热速率,\( h \) 是对流换热系数,\( A \) 是换热面积,\( T_s \) 是物体表面温度,\( T_\infty \)是流体的主流温度。

牛顿冷却定律适用于流体流动状态为层流且温度梯度不大的情况。

4. 什么是临界瑞利数?它在自然对流中有何意义?临界瑞利数是一个表征自然对流由层流过渡到湍流的临界值。

当瑞利数达到临界瑞利数时,流体中的自然对流将从层流状态转变为湍流状态,此时换热效率会显著提高。

瑞利数的定义为:\[ Ra =\frac{g\beta(T_s - T_\infty)L^3}{\nu\alpha} \],其中 \( g \)是重力加速度,\( \beta \) 是流体的体积膨胀系数,\( T_s \) 和\( T_\infty \) 分别是物体表面温度和流体温度,\( L \) 是特征长度,\( \nu \) 是流体的运动粘度,\( \alpha \) 是流体的热扩散率。

高等传热学问答题答案

高等传热学问答题答案

高等传热学问题及答案1.简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类?2.有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么?3.什么是形函数?形函数的两个最基本特征是什么?4.加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。

5.特征伽辽金法(CG)在处理对流换热问题时遇到什么困难?特征分离法(CBS)处理对流换热问题的基本思想是什么?1:热传导:热传导的发生有两种情况,一种是分子没有发生实际的运动,能量从一个分子传到了另一个分子;另一种是存在自由电子的运动。

热传导在很大程度上依赖于介质的性质,只要存在温度梯度它可以发生在固体、液体和气体中。

傅里叶定律:q x=−k dTdx热对流:液体或者气体中的自由分子会携带者能量从高温区域运动到低温区域,我们称这种由于液体或气体的宏观运动而引起的流体内部热量传递的现象叫热对量。

热对流包括自由对流、强迫对流和混合对流。

牛顿冷却定律:q=h(T w−T a)热辐射:所有的物体在任何温度下都会发生热辐射。

热辐射的本质是物体表面发射出的可以携带能量的电磁波,当这些电磁波碰到其他物体表面是,一部分发生了反射,一部分发生了透射,剩余的部分被吸收了。

热辐射不需要介质,因此在真空中也可以发生。

斯蒂芬-玻尔兹曼定律:q=εσT4(也叫做4次方定律)两类边界条件:①狄利克雷边界条件:给定边界的温度T=T0=C②纽曼边界条件:给定边界处的热流密度q=−k∂T∂n=h(T w−T a)或者是对流换热系数以及空气的温度-k∂T∂n2:思想:将连续体看做只是在节点处相连接的一组有限个单元的组合体,把节点温度作为基本未知量,然后用形函数和节点温度的线性组合来表示单元内任意一点的温度,建立求解节点温度的有限元方程,求解方程得出有限个离散点上的温度的近似解,并用这一近似解来代替实际物体内连续的温度分布,随着单元数目的增加,近似解就越接近于精确解。

高等传热学复习题参考答案

高等传热学复习题参考答案

高等传热学复习题答案10、燃用气、液、固体燃料时火焰辐射特性。

答:燃料的燃烧反应属于比较剧烈的化学反应。

由于燃烧温度较高,而且燃料的化学成分一般都比较复杂,所以燃烧反应的过程是非常复杂的过程,一般的燃料燃烧时火焰的主要成分还有CO2、H2O、N2、O2等,有的火焰中还有大量的固体粒子。

火焰中还存在大量的中间参悟。

在不同的工况下,可能有不同的中间产物和燃烧产物。

火焰的辐射光谱是火焰中的各种因素作用的结果。

燃烧中间产物或燃烧产物受火焰加热,要对外进行热辐射。

在火焰的高温环境下,固体粒子的辐射光谱多为热辐射的连续光谱,而气体分子的发射光谱多为分段的发射或选择性吸收。

此外,还有各物质的特征光谱对火焰的辐射的影响。

在工业火焰的温度水平下,氧、氢等结构对称的双原子分子没有发射和吸收辐射的能力,它们对于火焰光谱的影响比较小。

而CO2和H2O等结构不对称的分子以及固体粒子对火焰光谱的影响起主导作用。

在火焰中大量的中间产物虽然存在时间很短,但对火焰辐射光谱也有一定的影响。

(该答案仅供参考)11、试述强化气体辐射的各种方法。

答:气体辐射的特点有:①不同种类的气体的辐射和吸收能力各不相同;②气体辐射对波长具有强烈的选择性;③气体的辐射和吸收是在整个容积中进行的,辐射到气体层界面上的辐射能在辐射行程中被吸收减弱,减弱的程度取决于辐射强度及途中所遇到的分子数目。

气体的辐射和吸收是气层厚度L、气体的温度T和分压p(密度)的函数,。

由贝尔定律可知,单色辐射在吸收性介质中传播时其强度按指数递减。

由上述可知,强化气体辐射的方法有:提高气体的温度;减小气体层的厚度,;选择三原子、多原子及结构不对称的双原子气体;减小气体的分压。

(该答案仅供参考)12、固体表面反射率有哪几种?答:被表面反射的能量与投射到表面的能量之比定义为表面反射率。

固体表面反射率有:①双向单色反射率;②单色定向-半球反射率;③单色半球-定向发射率。

13、说明相似理论在对流换热分析中的应用。

传热学期末考试题及答案

传热学期末考试题及答案

传热学期末考试题及答案一、选择题(每题4分,共20分)1. 热量传递的基本方式有哪几种?A. 热传导B. 热对流C. 热辐射D. A、B、C答案:D2. 以下哪种材料的导热系数最低?A. 铜B. 铝C. 木材D. 玻璃答案:C3. 根据牛顿冷却定律,物体表面温度与周围环境温度之差越大,冷却速率:A. 越快B. 越慢C. 无关D. 先快后慢答案:A4. 以下哪种情况下的热辐射是黑体辐射?A. 表面是完美反射体B. 表面是完美吸收体C. 表面是透明体D. 表面是半透明体答案:B5. 传热的基本方程式是:A. Q = mcΔTB. Q = kA(ΔT/L)C. Q = hA(ΔT)D. Q = mcΔP答案:B二、填空题(每题5分,共20分)1. 在稳态导热中,热流密度与温度梯度的比值称为_______。

答案:导热系数2. 热对流的驱动力是_______。

答案:温度差3. 根据斯特藩-玻尔兹曼定律,黑体辐射的总辐射功率与其绝对温度的四次方成正比,其比例系数为_______。

答案:斯特藩-玻尔兹曼常数4. 热交换器中,流体的流动方式有并流、逆流和_______。

答案:交叉流三、简答题(每题10分,共30分)1. 简述热传导的基本原理。

答案:热传导是指热量通过物质内部分子、原子或自由电子的碰撞和振动传递的过程,不需要物质的宏观位移。

2. 描述热对流与热传导在传热过程中的主要区别。

答案:热对流是指流体内部温度不同的各部分之间发生相对运动时,热量伴随流体的宏观位移而传递的过程。

热传导则不涉及流体的宏观位移,仅通过分子间的相互作用进行热量传递。

3. 什么是热辐射?它与热传导和热对流有何不同?答案:热辐射是物体因温度而发射电磁波的过程,不需要介质即可传递热量。

与热传导和热对流不同,热辐射可以在真空中进行。

四、计算题(每题15分,共30分)1. 一个长为2米的铜棒,其横截面积为0.01平方米,两端温度分别为100°C和20°C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等传热学复习题1.简述求解导热问题的各种方法和傅立叶定律的适用条件。

答:导热问题的分类及求解方法:按照不同的导热现象和类型,有不同的求解方法。

求解导热问题,主要应用于工程之中,一般以方便,实用为原则,能简化尽量简化。

直接求解导热微分方程是很复杂的,按考虑系统的空间维数分,有0维,1维,2维和3维导热问题。

一般维数越低,求解越简单。

常见把高维问题转化为低维问题求解。

有稳态导热和非稳态导热,非稳态导热比稳态导热多一个时间维,求解难度增加。

有时在稳态解的基础上分析非稳态稳态,称之为准静态解,可有效地降低求解难度。

根据研究对象的几何形状,又可建立不同坐标系,分平壁,球,柱,管等问题,以适应不同的对象。

不论如何,求解导热微分方程主要依靠三大方法:甲.理论法乙.试验法丙.综合理论和试验法理论法:借助数学、逻辑等手段,根据物理规律,找出答案。

它又分:分析法;以数学分析为基础,通过符号和数值运算,得到结果。

方法有:分离变量法,积分变换法(L a p l a c e变换,F o u r i e r变换),热源函数法,G r e e n函数法,变分法,积分方程法等等,数理方程中有介绍。

近似分析法:积分方程法,相似分析法,变分法等。

分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。

缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。

有的解结构复杂,应用有难度,对人员专业水平要求高。

数值法:是当前发展的主流,发展了大量的商业软件。

方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。

缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。

比拟法:有热电模拟,光模拟等试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。

试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。

可以起到检验理论分析和数值计算结果的作用。

理论越是高度发展,试验法的作用就越强。

理论永远代替不了试验。

但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。

试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。

综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。

如浙大提出计算机辅助试验法(C A T)就是其中之一。

傅立叶定律的适用条件:它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。

2.定性地分析固体导热系数和温度变化的关系3.什么是直肋的最佳形状与已知形状后的最佳尺寸?答:什么叫做“好”?给定传热量下要求具有最小体积或最小质量或给定体积(质量)下要求具有最大传热量。

(对偶优化问题)Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。

1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。

Duffin应用变分法证明了Schmidt假定。

Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。

Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。

长期以来肋片的优化问题受到理论和应用两方面的重视。

对称直肋最优型线和尺寸的无量纲表达式分析:假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲线弧度):yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const当λ为常量时,温度线性分布:θ=c1x+c2,x=H, θ=θ0=c1H+c2设导热面为矩形,将温度解代入微分方程得优化肋的型线方程:c1(dy/dx)-h/λ(c1x+c2)=0y=h/λ(0.5x2+c2x/c1+c4)=(0.5x2+c3x+c4)h/λ这是一条抛物线。

如果该线满足:x=0,y=0x=H,y=δ/2c4=0,c3=c2/c1 =(δλ/h-H2)/2H,θ0=c1H+c1(δλ/h-H2)/2H,c1=2Hθ0/(δλ/h+H2) 特别地若c3=0,δ/H=hH/λ,y=0.5x2h/λ=0.5δ(x/H)2相当与n=∞时的型线,即凹抛物线形状的直肋最省材料。

此时有:c2=0,c1=θ0/H。

整理得:2y/δ=(x/H)2这条抛物线的几何意义是肋各点的的导热截面比,物理意义是肋各点的的导热截面的热流量比。

同时可以求出:(mH)2=2ηf=0.53.4 最佳直肋尺寸问题:给定肋形状y=f(x)及体积或质量后,如何确定肋厚或肋高?或肋高是否越大越好?答案:在选取的δ,H上,肋的传热量达到最大?数学模型为dΦ/dH=0 V(或q m)=CAH=const对矩形等截面肋,绝热边界条件:dΦ/dH=d(λAmθ0th(mH))/dH= d((λVhU/(CH))0.5θ0th((ChU/(λV))0.5H1.5))/dH=(λVhU/C)0.5/H{(ChU/(λV))0.5Hsech2[((ChU/(λV))0.5H1.5)]-0.5H-0.5th[(ChU/(λV))0.5H1.5]}=0(ChU/(λV))0.5Hsech2[((ChU/(λV))0.5H1.5)]-0.5H-0.5th[(ChU/(λV))0.5H1.5]=0mHsech2[mH]]-0.5th[mH]=0解得:mH=1.419对凹抛物线肋,同样可得:mH=1.414对三角型肋,可得:mH=1.3094.评述确定非稳态导热属于“薄”与“厚”的判据。

5.用“薄”壁方法分析用热电偶测量流体温度如何提高精确度。

答:用热电偶等测量燃气温度温度,可以看成是薄壁系统。

在低马赫数条件下,可用下面方程进行描述:在壁面温度比燃气温度低得多时,上式中壁面辐射热量可以忽略不计。

我们整理成:动态误差辐射误差减小动态误差的方法:减小密度,体积和比热容,增加燃气和测温元件间的换热系数和感温元件的换热面积。

即减小系统时间常数。

减小辐射误差的方法:减小系统黑度(测温元件表面涂黑度小的材料,元件和低温壁面之间加遮热罩,增加辐射热阻,调整位置减小角系数),增加换热系数,提高壁面温度。

设计新形式,修正误差,如测出时间常数和温度变化曲线,即可算出动态误差。

1.采用密度和比热容较小的热电偶材料2.采用细直径热电偶3.尽可能增加热电偶插入被测气流的长度4.将金属材料的热电偶接点上镀上黑度较小的金属膜5.采用遮热罩6.采用抽气热电偶6.半无限大固体表面温度周期性波动时,说明其温度传播的衰减性及延迟性。

答:如果壁面上为周期性温度变化:其稳态解为:振幅衰减,其衰减系数:,a↓,T↓衰减快。

相位延迟,延迟相位角:,延迟时间:温度波传播速度:温度波周期T不变。

推进波波长:穿透深度:7.固体表面辐射率有那几种?说明其相互关系。

答:(1)辐射率(黑度,发射率)定向辐射率:Directional半球辐射率:Hemispherical单色(频谱)辐射率:Spectral全色辐射率:Total(2)黑体表面的辐射强度(Intensity)及辐射力(Emissive Power) (贾书P221~227,符号不同)DT I::DS I::DTE:DSE:HTE:HSE:注意:去掉下标b,第一个等式就成了非黑体的辐射强度和辐射力的定义,请注意相关关系(微分和积分之间的关系)(3)非黑体的辐射率(黑度,发射率)之间的关系:3.1 DS:3.2 HS:3.3 DT:和其中:为黑体辐射函数,见杨世铭第三版P2463.4 HT:8.角系数相对性成立的前提条件是什么?答:角系数:有两个表面,编号为 1 和 2 ,其间充满透明介质,则表面1 对表面2 的角系数X1,2 是:表面 1 直接投射到表面 2 上的能量,占表面 1 辐射能量的百分比。

即同理,也可以定义表面 2 对表面 1 的角系数。

从这个概念我们可以得出角系数的应用是有一定限制条件的,即漫射面、等温、物性均匀(2) 微元面对微元面的角系数(3) 微元面对面的角系数(4) 面对面的角系数角系数的相对性讨论:第一类角系数——两微元间的角系数:当即漫射面时,同理,当也为漫射面时,显然,当两个微元面都为漫射面时,有相对性:第二类角系数——微元与有限面间的角系数:当即漫射面,同理,当显然,当一个微元面为漫射体,另一个面也为漫射面且均匀分布时,有相对性:两个面均为漫射面,且有限表面的漫反射强度与面无关为常数即该表面温度均匀、有效辐射均匀第三类角系数——有限面间的角系数:当即漫射面且均匀分布时,同理,当即也为漫射面且均匀分布时,显然,当一个为漫射面且均匀分布,另一个面也为漫射面且均匀分布时,两个面均为漫射面,且两表面的漫反射强度与面无关为常数即该表面温度均匀、有效辐射均匀。

有相对性:9.强化表面辐射的方法有哪些?(1)增加固体表面辐射率:包括增加固体表面粗糙度、使表面粗糙化;以及金属表面氧化、形成表面氧化膜。

(2)应用光谱选择性辐射表面及物性:利用某些对短波和长波具有迥异的表面辐射率的材料,可以制造出所需的各种光谱选择性表面,以达到热控制的目的,(例如有的材料对短波有较高的吸收率,但对长波长的辐射率低,则可减少辐射散热损失)。

(3)利用涂层:有多种红外涂料都能有效的提高表面发射率。

(4)改变两表面的位置以增加角系数,强化表面发射率,优先改变对换热影响大的一面。

(5)添加固体颗粒:在温度比较高的气流中加入粒度适当的固体颗粒,一方面使气流的比热容上升,增加了气体的扰动,使它与固体壁面的对流换热加强;另一方面固体颗粒有较强的辐射能力。

a/.增加对入射辐射的吸收比(黑度)开窄槽,黑体效应涂覆对入射辐射的吸收比大的材料b/.减少本体辐射的辐射率涂覆选择性涂层c/.增加角系数减小辐射面间距离调整辐射面间的角度d/.增加辐射面间温差e/.增加辐射面积10.燃用气、液、固体燃料时火焰辐射特性。

答:气体:二氧化碳、水蒸气、二氧化硫、甲烷和一氧化碳等三原子、多原子以及结构不对称的双原子气体具有相当大的辐射本领。

气体中各种粒子的能量变化源自分子转动能级的变化,分子内原子振动能级的变化,电子轨道的改变以及原子核排列的改变等。

对应于这类转化产生的辐射光谱是分立的谱线。

因此,气体辐射对波长有强烈的选择性,它只在某些波长段内有辐射能力,相应的也只在同样的博长短内才有吸收能力,通常把这种有辐射能力的波长段成为光谱或光带(例如二氧化碳主要有6个波长的光带)。

相关文档
最新文档