五年级奥数列方程解应用题学生版

合集下载

五年级奥数列方程解应用题

五年级奥数列方程解应用题
五年级奥数列方 程解应用题
大家好
1
1.某果园向市场运一批水果,原计划每车装1.6 吨,实际每车装2吨,结果少了4车,一共有多少 辆车?
解:设一共有X辆车 1.6X=2(X-4) 解得 X=20
答;一共有20辆车.个同学参加植树,男生平均每人种3棵, 女生平均每人种2棵,已知男生比女生多种56棵, 男、女生各有多少人?
解:168÷21=8(天) 设有X个晴天,则雨天有(8-X)个
24X+16(8-X)=168 解得 X=5
答:一共有5个晴天.
大家好
7
7.甲乙两个仓库共有大豆138吨,若从甲仓 库运走30吨,从乙仓库运走35吨,这时乙仓 库比甲仓库的一半还多4吨,求两个仓库原 来各有大豆多少吨?
解:设甲仓库有X吨,则乙仓库有(138-X)吨 (138-X)-35- (X-30) ÷2=4 解得:X=76 当X=76时 138-X=62
解:设男生有X人,则女生有(42-X)人 3X-2(42-X)=56 解得 X=28
当X=28时 42-X=14 答:男生有28人,女生有14人.
大家好
3
3.学校买来科技书的册数是文艺书册数的 1.4倍,如果再买12册文艺书,两种书的册数 相等。学校买来两种书各有多少册?
解:设文艺书买来X册,则科技收买来1.4X册 X+12=1.4X 解得 X=20
答:每张桌子60元,每把椅子20元.
大家好
5
5.东方小学五年级举行数学竞赛,共10 个赛 题每做对一题得8分,错一题倒扣5分,张华 全部解答,但只得41分,他做对多少题?
解;设张华做对X道题,则他做错(10-X)道题. 8X-5(10-X)=41 解得: X=7
答:张华做对了7道题.

(完整版)五年级列方程解应用题100题(有答案)

(完整版)五年级列方程解应用题100题(有答案)

(完整版)五年级列方程解应用题100题(有答案)五年级列方程解应用题100题(有答案)最近,五年级的小朋友们正在学习列方程解应用题。

今天,我们来看看一百个列方程解应用题,并附上了答案。

让我们一起来挑战这些问题吧!1. 爸爸有10个苹果,妈妈给了他5个苹果,爸爸一共有多少个苹果?答案:10+5=152. 小明有三个篮球,小强有两个篮球。

他们一共有多少个篮球?答案:3+2=53. 弟弟用10个小方块建了一个正方形,他想知道每边有几个小方块?答案:10÷4=24. 一个数加4等于15,这个数是多少?答案:15-4=115. 一个数减5等于12,这个数是多少?答案:12+5=176. 买了一本书花了15元,比买两本书多花了9元,一本书多少元?答案:15-9=67. 一袋米有8千克,买了两袋米一共多少千克?答案:8×2=168. 我有23块糖,送了小红5块,还剩下几块糖?答案:23-5=189. 某天,小明骑自行车去了学校,一共用了30分钟。

他上学用了20分钟,回家用了多少分钟?答案:30-20=1010. 妈妈给小明10元,买了一本书花了7元,还剩下多少元?答案:10-7=311. 一辆公交车上有40个人,下车的人比上车的人少24个。

下车的人有多少人?答案:40-24=1612. 小华有28本故事书,小明有比小华少5本故事书,小明有多少本故事书?答案:28-5=2313. 一个数减9等于13,这个数是多少?答案:13+9=2214. 一包草莓糖有6颗,小明买了5包草莓糖一共有多少颗?答案:6×5=3015. 一周有7天,这个月有多少天?答案:7×30=21016. 小明有3个橡皮,他想分给他的2个朋友。

每人可以分到几个橡皮?答案:3÷2=1.517. 在一家商店里,一瓶可乐7元,小明买了3瓶可乐,一共花了多少元?答案:7×3=2118. 小华的爸爸比他多25岁,小华现在8岁,他的爸爸多少岁?答案:8+25=3319. 一块巧克力有15块,小红买了2块巧克力,一共花了多少块?答案:15×2=3020. 小兔子买了5个胡萝卜,每个胡萝卜1元钱,一共花了多少元?答案:5×1=521. 小明妈妈给他50元,他花了20元买书,还剩下几元?答案:50-20=3022. 这个月有30天,小明想知道一共有几周?答案:30÷7=4余223. 一包糖有8颗,小明买了3包糖一共有多少颗?答案:8×3=2424. 一本书比另一本书多20页,一本书有多少页?答案:20+20=4025. 某天,小明放风筝用了1小时,其中飞行了45分钟,他使劲拉线用了多少分钟?答案:60-45=1526. 一张纸有10厘米,小华要剪成2段,每段多长?答案:10÷2=527. 小明喝了一瓶汽水,喝了三分之一,这是这瓶汽水的几分之一?答案:3×3=928. 小明有一些糖果,他先吃了5颗,还剩下的糖果有8颗,开始有多少颗糖果?答案:8+5=1329. 弟弟拿东西走了10步,还剩下的路程是全程的几分之一?答案:10×10=10030. 考试总共有20分,小红得了15分,得了总分的几分之几?答案:15÷20=0.7531. 一位老师有30支铅笔,她想把铅笔均分给15位学生。

五年级奥数知识讲解 列方程解应用题(一)

五年级奥数知识讲解 列方程解应用题(一)

五年级奥数知识讲解列方程解应用题(一)千克,根据题意,第二袋剩下的是(x-25)千克,而且第一袋剩下的是第二袋剩下的2倍,因此可以列出等量关系式:2(x-25) = x-18解:根据等量关系式,解方XXX:2x - 50 = x - 18x = 32因此,两袋大米原来各有32千克。

验算:把x=32代入原方程2(x-25) = x-182(32-25) = 32-1814 = 14左边等于右边,因此x=32是原方程的解。

答:两袋大米原来各有32千克。

1.甲乙两个粮仓共有粮食55万千克,甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等。

求甲、乙两仓原来各存粮多少万千克?思路分析:根据题意,甲、乙两仓原来各存粮设为x和55-x万千克。

由于甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等,因此可以列出方程:x-5=55-x-6.解得x=28,因此甲仓原来存粮28万千克,XXX原来存粮27万千克。

2.用5千克含盐20%的盐水,如果要稀释成含盐15%的盐水,需要加多少千克水?思路分析:设需要加的水量为x千克,则原来盐水中盐的重量为5×0.2=1千克,稀释后盐水中盐的重量为5×0.15=0.75千克。

因此,可以列出方程1/(x+5)=0.75/5,解得x=1.67,因此需要加入1.67千克水。

3.有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐比乙筐少了原来总重量的1/5.求甲、乙两筐原来各有多少千克苹果?思路分析:设甲、乙两筐原来各有x和y千克苹果。

根据题意,可以列出方程y+10=x-10和4/5(x+y)=x+y-20.解得x=100,y=80,因此甲筐原来有100千克苹果,乙筐原来有80千克苹果。

1.假设乙筐中苹果重x千克,那么时甲筐中苹果重(x+5)千克。

由于时甲筐比乙筐多余下10-3=7千克,因此有(x+5)-(x)=(7),解得x=2,时甲筐中苹果重7千克,乙筐中苹果重2千克。

小学五年级奥数题 列方程解应用题

小学五年级奥数题 列方程解应用题

小学五年级奥数题列方程解应用题1.解方程求未知数已知一个数加上它的1.8倍等于0.56,求这个数。

设这个数为x,根据题意得到方程x+1.8x=0.56,化简得到2.8x=0.56,解得x=0.2.2.解方程求未知数已知2.9与0.5的积比一个数的5倍少1.65,求这个数。

设这个数为x,根据题意得到方程2.9×0.5=5x-1.65,化简得到x=0.83.3.解方程求未知数已知某数的8倍加上10等于它的10倍减去8,求这个数。

设这个数为x,根据题意得到方程8x+10=10x-8,化简得到2x=-18,解得x=-9.4.解方程求未知数已知XXX有64张画片,XXX送给她12张,这时XXX和XXX的画片数相等。

XXX有画片多少张?设XXX有画片为x,根据题意得到方程x+12=64-x,化简得到x=26.5.解方程求未知数已知甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?设从甲桶里倒x千克的油到乙桶里,根据题意得到方程(45-x)/(24+x)=1.5,化简得到x=9.6.解方程求未知数已知一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?设原数为abc,根据题意得到方程100a+10b+c-100b-10c-a=108,化简得到99a-89b=108,由于a和b都是整数,可以得到a=2,b=1,c=5,原数为215.7.解方程求未知数已知某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?设第一次及格人数为x,不及格人数为y,则根据题意得到方程x=3y+4和x+5=6(y+5),化简得到y=11,x=37,参加竞赛的人数为48.8.解方程求未知数已知10年前XXX的妈妈的年龄是她的7倍,15年后XXX的年龄正好是妈妈年龄的一半,问XXX现在多少岁?设XXX现在的年龄为x,妈妈现在的年龄为y,则根据题意得到方程y-10=7(x-10)和2(y+15)=x+15,化简得到y=55,x=25,XXX现在25岁。

小学五年级奥数题 解方程应用题

小学五年级奥数题 解方程应用题

小学五年级奥数题解方程应用题
题目1
某商店里有一些球,其中红球比白球少5个,总共有26个球。

请问这个商店里有多少个红球和白球各有多少个?
解答1
设红球的数量为x,白球的数量为y。

根据题目中的条件可以列出方程组:
x - y = 5 (红球比白球少5个)
x + y = 26 (总共有26个球)
解这个方程组可以得到红球的数量为15个,白球的数量为11个。

题目2
某花店里有一些玫瑰花和牡丹花,其中玫瑰花的束数是牡丹花束数的3倍,总共有20束花。

请问这个花店里有多少束玫瑰花和牡丹花各有多少束?
解答2
设玫瑰花束数为x,牡丹花束数为y。

根据题目中的条件可以列出方程组:
x = 3y (玫瑰花的束数是牡丹花束数的3倍)
x + y = 20 (总共有20束花)
解这个方程组可以得到玫瑰花束数为15束,牡丹花束数为5束。

题目3
某班级里有男生和女生共20人,男生比女生多5人。

请问这个班级里有多少男生和女生各有多少人?
解答3
设男生的人数为x,女生的人数为y。

根据题目中的条件可以列出方程组:
x - y = 5 (男生比女生多5人)
x + y = 20 (男生和女生共20人)
解这个方程组可以得到男生的人数为12人,女生的人数为8人。

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级上册数学奥数知识点讲解第10课《列方程解应用题》试题附答案第十讲列方程解应用题列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.而找出等量关系又在于熟练运用数量之间的各种已知条件.掌握了这两点就能正确地列出方程。

列方程解应用题的一般步骤是:①弄清题意,找出已知条件和所求问题;②依题意确定等量关系,设未知数X;③根据等量关系列出方程;④解方程;⑤检验,写出答案。

例1列方程,并求出方程的解。

①与减去一个数,所得差与1.35加上苧的和相等,求这个数。

5O例2已知篮球、足球、排球平均每个36元.篮球比排球每个多10元,足球比排军每个多8元,每个足球多少元?例3妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果,如果每天吃6个,则又少8个苹果.问:妈妈买回苹果多少个?计划吃多少天?例4甲、乙、丙、丁四人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?(这是设间接未知数的例题)例6一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多少平方米?例7某县农机厂金工车间有77个工人.已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种重件3个。

但加工3个甲种零件,1个乙种妻侔和9个丙种零件才恰好配成一套.问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套?答案例1列方程,并求出方程的解。

①?减去一个数,所得差与1.35加上;的和相等,求这个数。

5O解:设这个数为x∙则依题意有11 2713--X=——+一3 206112713X20^^T,3χβ20检验:把X=2代入原方程,左边=3,-京=32,与右边相等,所以X=220 32060 20 是原方程的解。

五年级奥数专题 列方程解应用题(学生版)

五年级奥数专题 列方程解应用题(学生版)

列方程解应用题学生姓名授课日期教师姓名授课时长知识定位有些数量关系比较复杂的应用题,用算术方法求解比较困难。

此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。

利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

方程作为一种数学工具对于解题有相当大的帮助,并且在代数学中乃至整个数学中有重要的意义。

列方程与方程组解应用题关键注意以下几点:1、设未知数的主要技巧和手段:把与其他数量关系紧密的关键量设为“x”.2、用代数法来表示各个量:利用“x”表示出所有未知量或变量.3、找准等量关系,构建方程:明显的等量关系与隐含的等量关系的寻找知识梳理1、列一元一次方程解应用题方程是代数学最基本的模型,而一元一次方程是方程中最简单的种类.解一元一次方程的步骤:(1)、去分母(2)、去括号(3)、移项(4)、合并同类项(5)、系数化12、二元一次方程组列方程组解应用题的主要步骤与列方程解应用题基本没有区别,由于可以多设未知数,所以通过列方程组解应用题可以有更多的选择,但解方程组的过程更需要一些技巧方法,其中最关键的步骤是消元,“消元”顾名思义减少方程组中未知数的个数,解方程组的消元方法主要有①代入消元法.②加减消元法.加减消元法:将方程组中的某个未知数的系数调整为相等,将方程组中方程的相减达到消元目的.代入消元法:利用方程组中的某条方程得到某项未知数的代数表达式,然后将它代入方程组中的其他方程达到消元目的.消元后,把方程转化成一元一次方程求解。

3、重点难点解析重点:列方程及方程组解应用题的主要步骤:(1)仔细审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系.(2)设这个量为x,用含x的代数式来表示题目中的其他量.(3)找到题目中的等量关系,建立方程.(4)解方程.(5)通过求到的关键量求得题目答案.难点:(1)恰当的假设未知数(2)从已知条件中寻找等量关系,列出方程或方程组并求解。

小学五年级奥数列方程解应用题练习题

小学五年级奥数列方程解应用题练习题

小学五年级奥数列方程解应用题练习题小学五年级奥数列方程解应用题练习题篇一例题:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。

如两人相向而行,经过3分钟两人相遇。

已知乙每分钟行25千米,问AB两地相距多少米?小学五年级奥数列方程解应用题练习题篇二例题:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?小学五年级奥数列方程解应用题练习题篇三例题:一个两位数,十位数是个位数字的2倍,如果把十位数上的数字与个位上的数字对调,那么所得的两位数比原两位数小27,原两位数是多少?①一个两位数,个位数是十位上的数的3倍,若把这个十位上的数与个位上的数对调,那么所得的两位数比原来的大54,求原两位数。

②一个两位数,个位上的数字与十位上的数字和为10,如果把十位的数字与个位上数字对调,新数就比原数少36,求原来的两位数?③有一个三位数,其各位数字之和是16,十位数字是个位数字与百位数字之和,若把百位数字与个位数字对调,那么新数比原数在594,求原数?小学五年级奥数列方程解应用题练习题篇四例题:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。

已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题教学目标五年级奥数列方程解应用题学生版2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识精讲知识点说明:一、等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、设这个量为x,用含x的代数式来表示题目中的其他量;3、找到题目中的等量关系,建立方程;4、运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.例题精讲板块一、直接设未知数【例 1】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【巩固】一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【巩固】(全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到0.01,π 3.14)【例 2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【例 3】(全国小学数学奥林匹克)abcdefg,则七位数abcdefg应是.某八位数形如2abcdefg,它与3的乘积形如4【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【例 4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【巩固】已知三个连续奇数之和为75,求这三个数。

【例 5】兄弟二人共养鸭550只,当哥哥卖掉自己养鸭总数的一半,弟弟卖出70只时,两人余下的鸭只数相等,求兄弟两人原来各养鸭多少只?【巩固】一人看见山上有一群羊,他自言自语到:“我如果有这些羊,再加上这些羊,然后加上这些羊的一半,又加上这些羊一半的一半,最后再加上我家里的那只,一共有100只羊”.山上的羊群共有______只.【例 6】某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将一组人数调整为二组人数的一半,应从一组调多少人到二组去?【例 7】寒暑表上通常有两个刻度,摄氏度(记为℃)和华氏度(记为F。

),它们之间的换算关系是:摄氏度9325⨯+=华氏度,那么在摄氏多少度时,华氏度的值恰好比摄氏度的值大60.【巩固】寒暑表上通常有两个刻度,摄氏度(记为℃)和华氏度(记为F。

),它们之间的换算关系是:摄氏度9325⨯+=华氏度,那么在摄氏多少度时,华氏度的值恰好是摄氏度的5倍.【例 8】小军原有故事书的本数是小力的3倍,小军又买来7本书,小力买来6本书后,小军所有的书是小力的2倍,两人原来各有多少本书?【巩固】丁丁和玲玲两人摘苹果,丁丁说:“把我摘的苹果给玲玲7个,玲玲摘的苹果的个数就是我的2倍.”玲玲说:“把我摘的苹果给丁丁7个,他的苹果个数就和我的一样多了.”问丁丁和玲玲各摘了多少个苹果?【巩固】水果店运来的西瓜的个数是白兰瓜的个数的2倍.如果每天卖白兰瓜40个,西瓜50个,若干天后卖完白兰瓜时,西瓜还剩360个.水果店运来的西瓜和白兰瓜共多少个?【例 9】六年级学生去秋游,要分成15个组,一部分由8人组成一个小组,另一部分由5个人组成一个小组,8人组成小组的总人数比5人组成小组的总人数多3人,求六年级共有多少名同学参加秋游?【巩固】一次考试,共15道题目,做对一题得8分,做错一题倒扣4分。

小明共得72分,问他做对了几道题?【巩固】一个大人一餐能吃四个面包,四个幼儿一餐只吃一个面包,现有大人和幼儿共100人,一餐刚好吃100个面包,这100人中,大人和幼儿各有多少人?【巩固】松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问,这几天当中有几天有雨?【例 10】五年级一班同学参加学校植树活动,派男、女生共12人去取树苗,男同学每人拿3棵,女同学每人拿2棵,正好全部取完;如果男、女生人数调换一下,则还差2棵不能取回.问:原来男、女生人数各是多少?【巩固】新学期开始,有一批新的教科书要分发到各位学生手中,这批教科书必须由一个小组的学生来搬,这批教科书如果由小组中的男生来搬,每人搬25本,那么还有15本没人搬,如果由小组中的女生来搬,每人搬20本,那么最后一名女生只需要搬10本.已知这个小组的学生一共有8人,求男、女生各有多少名?【例 11】苹果和梨共80斤,价值200元,已知苹果2元一斤,梨2.8元一斤,那么苹果和梨各多少斤?【巩固】买来8角邮票与5角邮票共100张,总值68元.8角邮票和5角邮票各买了多少张?【巩固】一家公司购买了18台设备,包括计算机、投影仪,共计76000元,其中每台计算机价格4000元,投影仪每台6000元,求各台设备购买的数量.【例 12】唐代大诗人李白虽然诗写得好,但是很爱喝酒,杜甫说他是“李白斗酒诗百篇”。

传说李白喝酒曾有一道数学趣题:李白好喝酒,提壶街上走。

遇店加一倍,逢花喝一斗。

三遇店和花,喝光壶中酒。

请问此壶中,原有多少酒。

【巩固】实验室中培养了一种奇特的植物,它生长得非常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤?【例 13】一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:3个球.问:共有多少人参加测验?【巩固】 大强参加6次测验,第三、四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次的平均分比前三次的平均分多3分,那么第四次比第三次多得多少分?【例 14】 10人围成一圈,每人心里想一个数,并把这个数告诉左右相邻的两个人.然后每个人把自己和左右两人的平均数亮出来,如下图所示,那么亮出5的人心中想的数是多少?141312111098765【例 15】 甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.【例 16】 汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)【例 17】 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去,8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?模块二、间接设未知数【例 18】 平行四边形ABCD 的周长是80厘米,以AD 边为底时,高为12厘米;以AB 边为底时,高为20厘米,求平行四边形ABCD 的面积.【巩固】 一个长方形的长与宽的比是32∶,如果长减少450厘米,宽增加450厘米,长方形的面积就减少22500平方厘米,问:原来长方形的面积是多少平方厘米?4504503x2x【例 19】 小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了.求原来每个人各有几个球?【巩固】 甲、乙、丙、丁四个人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四个人做的零件数恰好相等.问丙实际做了零件多少个?【巩固】四个自然数,每次取其中的三个相加,得到四个和,分别为22,24,27和20,求这四个数各是多少?【例 20】甲、乙、丙三位同学每人得到相同数目的果汁糖.甲花了若干天将糖吃完,乙每天吃3块,比甲晚1天吃完;丙每天吃4块,比甲早2天吃完,问:他们每人得到多少果汁糖?【例 21】甲、乙、丙共有100本课外书.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,而且余数也都是1.乙有书本.【巩固】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【例 22】有甲、乙、丙三堆石子,从甲堆中取出8个给乙堆后,甲、乙两堆的石子数就相等了;再从乙堆中取出6个给丙堆,乙、丙两堆的石子数也相等;此时又从丙堆中取2个给甲堆,使甲堆石子数是丙堆石子数的2倍,问:原来甲堆有多少个石子?【巩固】小宝和小峰互相借阅课外书,小宝说:“如果你借给我7本书,我的书就是你的3倍”,小峰说:“如果你借给我8本书,我的书就是你的2倍”,那么他俩各有多少本书?【例 23】某旅游点有儿童票、成人票两种规格的门票卖, 儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各自买票少花120元,问这个旅游团一共有多少人?【巩固】张老师购买了一套教师住宅,原计划采取分期付款方式.一种付款方式是开始第一年先付7万元,以后每年付款1万元;另一种付款方式是前一半时间每年付款2万元,后一半时间,每年付款1万5千元.两种付款方式的付款总数和付款时间都相同.假如一次性付款,可以少付房款1万6千元.现在张老师决定采用一次性付款方式.问:张老师要付房款多少万元?【例 24】箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球。

如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?【巩固】苹果和梨各有若干个,如果5个苹果和3个梨装一袋,那么还多4个苹果,梨恰好装完;如果7个苹果和3个梨装一袋,那么苹果恰好装完,还多12个梨,那么苹果和梨各有多少个?【巩固】教师给幼儿园小朋友分草莓,如果每个小朋友分5个草莓还剩下14个,如果每个小朋友分7分草莓则差4个,求共有多少草莓?共有多少个小朋友?【例 25】有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。

相关文档
最新文档