光电信息变换

合集下载

光电技术教学大纲

光电技术教学大纲

光电技术教学⼤纲《光电技术》教学⼤纲课程编号:课程名称:光电技术/ Optoelectronic Technology学时/学分:40/2.5先修课程:⼤学物理、模拟电⼦技术基础、数字电⼦技术基础适⽤专业:光信息科学与技术开课学院(部)、系(教研室):理学院物理系⼀、课程的性质与任务光电技术属于专业必修课,它是将传统的光学技术与现代微电⼦技术和计算机技术紧密结合在⼀起的⼀门⾼新技术,是获取光信息或借助光来提取其它信息,如⼒、温度、声⾳、电流、⽣物的重要⼿段。

通过本课程的学习,要使学⽣获得:1.辐射度学与光度学的基础知识;2.光电导器件的原理与应⽤;3. 光⽣伏特器件的原理与应⽤;4.光电发射器件的原理与应⽤;5. 发光器件与光电耦合器件;6. 光信息的变换;7. 图像信息的光电变换;8. 光电信号的数据采集与计算机接⼝技术。

等⽅⾯的基本概念、基本理论和技术。

掌握各种光电转换器件的基本结构原理、特性和参数,为实际应⽤这些光电探测器打下基础。

⼆、课程的教学内容、基本要求及学时分配(⼀)教学内容1. 光电技术基础辐射度的基本物理量;光度的基本物理量;辐射度与光度中的基本定律;⿊体辐射;半导体对光的吸收和光电效应。

2. 光电导器件光敏电阻的⼯作原理;光敏电阻的主要特性参数;常⽤的光敏电阻;光敏电阻的基本偏置电路和噪声;应⽤举例。

3. 光⽣伏特器件结型光电器件原理;光电池;硅光电⼆极管和硅光电三极管;特殊光电⼆极管(PIN,APD);象限探测器和光电位置传感器;光⽣伏特器件的偏置电路。

4. 光电发射器件光电阴极;光电管与光电倍增管的⼯作原理;光电倍增管的主要特性参数;光电倍增管的供电和信号输出电路;微通道板光电倍增管;光电倍增管的应⽤。

5. 发光器件与光电耦合器件发光⼆极管的⼯作原理与应⽤;半导体激光器;光耦合器件与应⽤。

6. 光信息变换光电信息变换的分类;光电变换电路的分类;⼏何光学⽅法的光电信息变换;物理光学⽅法的光电信息变换和时变光电信息的调制。

光电信息技术

光电信息技术

光电信息技术是将电子学与光学浑然一体的技术,是光与电子转换及其应用的技术。

从广义上讲,光电信息技术就是在光频段的微电子技术,它将光学技术与电子技术相结合实现信息获取、加工、传输、控制、处理、存储于显示。

检测是通过一定的物理方式,分辨出被测参数量并归属到某一范围带,以此来判别被测参数是否合格或参数量是否存在。

测量是将被测的未知量与同性质的标准量进行比较,确定被测量对标准量的倍数,并通过数字表示出这个倍数的过程。

光电检测系统具有光发射机、光学信道和光接收机这一基本环节。

通常分为主动式和被动式两类。

光接收机分为功率检测接收机和外差接收机,功率检测接收机也称作直接检测接收机或非相干接收机。

光载波与被测对象相互作用而将被测量载荷到光载波上,称为光学变换。

光学变换可用各种调制方法来实现。

光信息经光电器件来实现由光向电的信息转换,称为光电转换。

广电系统:光源--光学系统--被测对象--光学变换--光电转换--电信号处理--存储、显示、控制。

光电效应分为外光电效应与内光电效应。

光生伏特效应:由于光照而在PN结两端出现的电动势。

光热效应:某些物质在收到光照射后,由于温度变化而造成材料性质发生变化的现象。

热电检测器件有热释电检测器、热敏电阻、热电偶、热电堆。

特点:1.响应波长无选择性。

2.响应慢。

光电检测器件的特点:1.响应波长有选择性2.响应快。

光电检测器件的特性参数:1.响应度2.光谱响应度3.积分响应度 4.响应时间5.频率响应6.热噪声7.散粒噪声8.信噪比 9.线性度10.工作温度。

光敏电阻设计原则:由于光敏电阻在微弱辐射作用情况下光电导灵敏度Sg与光敏电阻两电极间距离L的平方成反比,在强辐射作用情况下光电导灵敏度Sg与光敏电阻两电极间距离L的二分之三次方成反比,因此Sg与两极间距离L有关。

为了提高光敏电阻的光电灵敏度Sg,要尽可能的缩短光敏电阻两极间的距离L。

光电电阻特点:1.光谱响应度范围相当宽。

2.工作电流大,可达数毫安。

第7章光电信息变换下

第7章光电信息变换下

①光学多普勒(Doppler)差频检测 光学多普勒( ) 多普勒效应——运动物体能改变入射于其上的波动性质的 多普勒效应 运动物体能改变入射于其上的波动性质的 现象。 现象。 V0(rs-r0) V0 多普勒频移∆f=f -f =V (r -r )/λ 多普勒频移
s 0 0 s 0
物体速度
可推出
PD rs-r0 散射光 θ fs
用单一光电器件检测干涉条纹可以在较小的空间 进行。 进行。检测对象一般是干涉条纹的波数或相位随 时间的变化。适用于测量物体整体位移或速度。 时间的变化。适用于测量物体整体位移或速度。 ①干涉条纹光强检测法
利用干涉仪的光干涉, 利用干涉仪的光干涉,以光电器件直接检测条纹的光强变 化来实现测量。 化来实现测量。 用光电接收器检测干涉条纹时, 用光电接收器检测干涉条纹时,光电信号不仅取决于条纹 的光强对比, 的光强对比,而且决定于接收器的光阑尺寸和干涉条纹之 间宽度的比例关系。 间宽度的比例关系。
从信息处理的角度来看,干涉测量实质上是待测 从信息处理的角度来看, 信息对光频载波的调制和解调的过程。 信息对光频载波的调制和解调的过程。各种类型 的干涉仪器或干涉装置是光频波的调制器和解调 器。可用最常见的干涉仪来说明这个模型。 可用最常见的干涉仪来说明这个模型。
2.单频光相干的条纹检测 2.单频光相干的条纹检测
7.4.1 干涉方法的光电信息变换
1. 光电干涉测量技术 各种干涉现象都是以光波波长为基准, 各种干涉现象都是以光波波长为基准,与形成它的外部几 何参数包括长度、距离、角度、面形、微位移、 何参数包括长度、距离、角度、面形、微位移、运动方向 和速度、传输介质等存在着严格的内在联系。 和速度、传输介质等存在着严格的内在联系。
2012.1贾湛制作

图像光电转换的基本过程

图像光电转换的基本过程

图像光电转换的基本过程电视图像的传送是基于光电转换原理,而实现光电转换的关键器件是发送端的摄像管和接收端的显像管。

1. 图像的分解电视系统处理和传送的对象是光的景物,景物存在于三维空间,其光学特性(即景物的亮度和色度信息)不仅随空间位置的不同而不同,而且还与时间有关系(静止景物除外)。

因此,景物信息是三维空间和时间的函数,可用光学信息表达式为:。

但是目前的电视系统仍为平面彩色电视,只传输景物的二维光学信息,因此上式中的z可不考虑。

另外,这里仅讨论黑白平面活动图像,只需传输各像素的亮度信息,其光学信息表达式简化为:。

但是,亮度仍然是x、y、t的三维函数,而经传输通道传送的电信号为电压(或电流),只能是时间的一维函数为:。

实现转换的方法是:将景物信息分解成很多小点,这样就能以每个小点为单位进行光电转换和传送。

因此,对于每个小点来说,其光学特性以及经光电转换得到的电信号就只与时间有关了,也就是将景物信息转化成时间的一维函数。

将景物图像化整为零的方法称为图像的分解,分解之后的小点称为像素。

所谓像素,就是组成图像的元素,即基本单位,具有单值的亮度信息和空间位置。

一幅电视图像由许许多多个像素组成,电视系统能够分解的像素数越多,图像就越清晰、细腻。

在我国的黑白广播电视标准中,一幅图像包含大约40~50万个像素。

图像的结构—导学。

图像的分解是在摄像端的光电转换和扫描过程中完成的。

在接收端,通过显示装置的扫描和电光转换作用,这些被分解的像素又会在屏幕上合成出原来的图像,从而实现电视的全过程。

2.图像的传送一幅图像由许多像素组成,这些像素的亮度信息经光电转换之后变成相应的电信号。

电视系统的任务是将各像素的变换成, 实现转换的方式,有同时传输制和顺序传输制。

●像素信息同时传输制将构成一幅图像的所有像素同时转换成电信号,并同时传送出去称为同时传输制,同时传输制所示,每个像素均需占用一条传输通道,一帧画面分解成几十万个像素就需要几十万条通道,这在技术和经济上都是不现实的。

图像光电转换的基本过程

图像光电转换的基本过程

图像光电转换的基本过程————————————————————————————————作者:————————————————————————————————日期:图像光电转换的基本过程电视图像的传送是基于光电转换原理,而实现光电转换的关键器件是发送端的摄像管和接收端的显像管。

1. 图像的分解电视系统处理和传送的对象是光的景物,景物存在于三维空间,其光学特性(即景物的亮度和色度信息)不仅随空间位置的不同而不同,而且还与时间有关系(静止景物除外)。

因此,景物信息是三维空间和时间的函数,可用光学信息表达式为:。

但是目前的电视系统仍为平面彩色电视,只传输景物的二维光学信息,因此上式中的z可不考虑。

另外,这里仅讨论黑白平面活动图像,只需传输各像素的亮度信息,其光学信息表达式简化为:。

但是,亮度仍然是x、y、t的三维函数,而经传输通道传送的电信号为电压(或电流),只能是时间的一维函数为:。

实现转换的方法是:将景物信息分解成很多小点,这样就能以每个小点为单位进行光电转换和传送。

因此,对于每个小点来说,其光学特性以及经光电转换得到的电信号就只与时间有关了,也就是将景物信息转化成时间的一维函数。

将景物图像化整为零的方法称为图像的分解,分解之后的小点称为像素。

所谓像素,就是组成图像的元素,即基本单位,具有单值的亮度信息和空间位置。

一幅电视图像由许许多多个像素组成,电视系统能够分解的像素数越多,图像就越清晰、细腻。

在我国的黑白广播电视标准中,一幅图像包含大约40~50万个像素。

图像的结构—导学。

图像的分解是在摄像端的光电转换和扫描过程中完成的。

在接收端,通过显示装置的扫描和电光转换作用,这些被分解的像素又会在屏幕上合成出原来的图像,从而实现电视的全过程。

2.图像的传送一幅图像由许多像素组成,这些像素的亮度信息经光电转换之后变成相应的电信号。

电视系统的任务是将各像素的变换成, 实现转换的方式,有同时传输制和顺序传输制。

光电信号处理方法

光电信号处理方法

光电信号的增强
光电信号的增强主要通过光电倍增管、 雪崩二极管等器件实现,这些器件可 以在放大信号的同时,进一步提高信 号的信噪比。
增强后的光电信号可以更好地满足后 续处理的需求,提高整个光电系统的 性能和可靠性。
03 光电信号的数字化处理
数字信号处理的基本概念
数字信号
将连续时间信号转换为离散时间信号的过程。
小波变换
将信号分解成不同频率的子信号,可以对信号进行多尺度分析。
04 光电信号的调制与解调
调制与解调的基本概念
调制
将低频信号转换为高频信号的过程, 以便传输或处理。
解调
将调制后的高频信号还原为低频信号 的过程。
模拟调制技术
AM(调幅)
通过改变载波的振幅传递信息。
FM(调频)
通过改变载波的频率传递信息。
微型化
利用人工智能和机器学习等技术,实现光 电信号处理的智能化和自主化。
随着微纳技术的发展,光电信号处理将朝 着微型化的方向发展,实现更小体积、更 低功耗的系统。
02 光电信号的采集与预处理
光电信号的采集
1
光电信号的采集是光电信号处理的第一步,其目 的是将光信号转换为电信号,以便后续处理。
2
常用的光电信号采集器件包括光电二极管、光电 晶体管、光电池等,它们能够将光信号转换为电 流或电压信号。
光电信号处理
利用电子学和信息处理技术对光电信号进行采集、传 输、转换、增强、分析和理解的过程。
光电信号处理的应用领域
光学通信
利用光电信号处理技术实现高速、大容量的信息 传输。
环境监测
利用光电信号处理技术实现对大气、水质等环境 参数的实时监测。
ABCD
生物医学成像

(完整版)现代光电信息技术的发展及应用

(完整版)现代光电信息技术的发展及应用

现代光电信息技术的发展及应用光拥有极快的速度、极大的频宽、极高的信息容量,在现代信息技术中获取了宽泛的应用。

现代光电信息技术是光学技术、光电子技术、微电子技术,信息技术、光信息技术、计算机技术、图像办理技术等相互交错、相互浸透和相互联合的产物,是多学科综合技术,它研究以光波为信息的载体,经过对光波实行控制、调制、传感、变换、储存、办理和显示等技术方法,获取所需要的信息,其研究内容包含光的辐射、传输、探测、光与物质的相互作用以及光电信息的变换、储存、办理与显示等众多领域。

现代光电信息技术拥有以下特色:其一,有效延长人眼的视觉功能,使其探测阈值达到光子探测的极限水平,而探测的光谱范围在长波方向达到了亚毫米波段,在短波限则延长到紫外线、 x 射线、 y 射线以致高能粒子;其二,以光为信息载体,结共计算机的研究成就,极大地提升了光电系统的响应速度、带宽和信息容量。

使超快速现象(核爆炸、火箭发射等)能够在纳秒( ns)、皮秒( ps )甚至飞秒( fs)量级得以记录,利用光网络的多台计算机传输和办理海量信息得以实现。

正是光电信息技术的上述两个重要的特色推进着信息科学技术的快速发展。

一、光电信息技术的发展1.光电信息技术的发展简况1873 年发现了硒的光电导性(内光电效应)1888 年德国的 H.R. 赫兹察看到紫外线照在金属上时,能使金属发射带电粒子1890 年 P.勒纳经过对带电粒子电荷质量比的测定,证明它们是电子1900 年, M. 普朗克提出黑体辐射能量散布的广泛公式1929 年, L.R.科勒制成银氧铯(Ag-O-Cs )光电阴极 , 出现了光电管1939 年,苏联的V.K. 兹沃雷金制成适用的光电倍增管20 世纪 30 年月末,硫化铅(PbS)红外探测器问世40年月出现用半导体资料制成的温差型红外探测器和测辐射热计50 年月中期,可见光波段的硫化镉(CdS)、硒化镉( CdSe)光敏电阻和短波红外硫化铅光电探测器投入使用20 世纪 60 年月以后的几十年间,红外探测器及红外探测系统获取快速发展2.光电子器件方面的发展简况光源和发光器件方面,最具里程碑意义的是 20 世纪 60 年月激光器的发明 ,最近几年来,激光已宽泛用于通讯、雷达、测距、定位、制导、遥感、工业生产和科学研究中,用以传达信息合各样丈量与控制。

第10章光电信息变换技术的典型应用下

第10章光电信息变换技术的典型应用下
20122012-3-8 8
测温仪的构成
20122012-3-8
9
滤波片和镜头
453¡C
SP1 470¡C EMS ¯ .85
目标
大气窗口
探测器
信号处理和显示
红外测温仪实际上是一种非接触式辐射能量探测器,世界上所有的物 体都会产生红外线辐射。而辐射的能量则与该物体的温度成比例 辐射的能量则与该物体的温度成比例,非 辐射的能量则与该物体的温度成比例 接触式温度测量即是测量物体辐射能量的强弱,并由此得到一个与该 物体温度成比例的信号。
20122012-3-8 2
温度检测
一.工作原理
热体的温度可以通过处理其所发出的辐射能来求得。辐射 高温计就是以发射体的辐射强度和光谱成分来确定热体温 度的仪表。 根据斯蒂芬-波尔兹曼定律。物体在单位时间内单位面 积上,波长从0-∞所辐射的总能量为 E=εσ 4。 =εσT 非黑体的实际温度T与黑体温度T0的关系:
20122012-3-8
是静止着还是走动着。 是静止着还是走动着。
32
照度计
光的照度E 光的照度 的单位是lx( 的单位是 (勒 克斯), ),它是常 克斯),它是常 用的光度学单位 之一, 之一,它表示受 照物体被照亮程 度的物理量, 度的物理量,可 以用照度计来测 量。
20122012-3-8
烟雾
20122012-3-8 34
无线烟雾报警器 无线烟雾报警器
工作在警戒状态时, 工作在警戒状态时,工 作电流仅为15微安 微安, 作电流仅为 微安,报 警发射时工作电流为20 警发射时工作电流为 毫安。 毫安。当探测到初期明 火或者烟雾达到一定浓 度时, 度时,传感器的报警蜂 鸣器立即发出90分贝的 鸣器立即发出 分贝的 连续报警, 连续报警,发出无线报 警信号, 警信号,通知远方的接 收主机。 收主机。报警距离在空 旷地可以达到200米,在 旷地可以达到 米 有阻挡的普通家庭环境 中可以达到20米 中可以达到 米。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2. 信息载荷于透明体的方式
如图7-1(b)所示,为信息载荷于透明体中的情况。在 这种情况下,信息可为透明体的透明度,透明体密度的分 布,透明体的厚度,透明体介质材料对光的吸收系数等都 为载荷信息的方式。 提取信息的方法常用光通过透明介质时光通量的损耗 与入射通量及材料对光吸收的规律求解。即
0 e
这种方式除上述应用外,还可应用于电视摄像、文 字识别、激光测距、激光制导等方面。

4. 信息载荷于遮挡光的方式
如图7-1(d)所示为信息载荷于遮挡光的方式,物体部分或 全部遮挡入射光束,或以一定的速度扫过光电器件的视场, 实现了信息载荷于遮挡光的过程。 例如,设光电器件光敏面的宽度为b,高度为h,当被测物 体的宽度大于光敏面的宽度 b 时,物体沿光敏面高度方向 运动的位移量为 Δ l ,则物体遮挡入射到光敏面上的面积 变化为 Δ A=bΔ l 变换电路输出的面积变化信号电压为 Δ U=EΔ Aξ =E bξ Δ l (7-10) (7-9)
式中,m为光学系统的调制度,τ为光学系统的透过滤, S为光电器件的灵敏度, G为变换电路的变换系数, K为 放大器的放大倍数,ξ= mτSGK称为系统的光电变换系数。 将式(7-1)代入式(7-2)得
US=ξεσT4
(7-3)
表明变换电路输出的电压信号US是温度T的函数,温度 变化必然引起电压的变化。因此,通过测量输出电压, 并进行相应的标定就能够测出物体的温度。
根据这一原理,用这种方式可以对光滑零件表面的 外观质量进行自动检测。
在检测产品外观质量时,变换电路输出的疵病信号 电压
US=E(r1-r2)Bξ
(7-8)
式中E为被测表面的照度,r1为正品(无疵病)表面的 反射系数,r2为疵病表面的反射系数,B为光电器件有 效视场内疵病所占的面积,ξ 为光电变换系数。由式 (7-8)可知,当E,r1和ξ 已知时,输出电压US是r2和 B的函数,因此,可以通过输出信号电压US的幅度判断 表面疵病的程度和面积。
光电信息变换的分类可从两个方面来分,一方面根 据信息载入光学信息的方式分为如图7-1所示的6种光电 信息变换的基本形式;另一方面根据光电变换电路输出 信号与信息的函数关系分为模拟光电变换与模-数光电变 换两类。

7.1.1 光电信息变换的基本形式来自1. 信息载荷于光源的方式
如图7-1(a)所示,为信息载荷于光源中的情况(或 光学信息为光源本身),如光源的温度信息,光源的 频谱信息,光源的强度信息等。根据这些信息可以进 行钢水温度的探测、光谱分析、火灾报警、武器制导、 夜视观察、地形地貌普查和成像测量等的应用。
l
(7-4)
式中α 为透明介质对光的吸收系数,它与介质的浓度C成 正比,即α =μ C。显然,μ 为与介质性质有关的系数。 式(7-4)可改写为 Cl (7-5) e
0
由式(7-5)可见,当透明介质的系数μ 为常数时,光通 量的损耗与介质的浓度C与介质的厚度l有关,采用如图 7-1(a)所示的变换方式,变换电路的输出信号电压Us为 即将变换电路的输出信号电压Us送入对数放大器后,便 可以获得与介质的浓度C与介质的厚度l有关信号。 U s 0 e Cl (7-6) 两边取自然对数后 lnUs=lnU0―μ Cl (7-7)
由式( 7-10 )可见,用这种方式即可以检测被测物体 的位移量Δ l、运动速度v和加速度等参数,又可以测量物 体的宽度 b 。例如,光电测微仪和光电投影显微测量仪等 测量仪器均属于这种方式。
当然可以用这种方式用于产品的光电计数,光控开关, 和主动式防盗报警等。
5. 信息载荷于光学量化器的方式
光学量化是指通过光学的方法将连续变化的信息变换 成有限个离散量的方法。光学量化器包含有光栅摩尔条纹 量化器、各种干涉量化器和光学码盘量化器等。
即将变换电路的输出信号电压Us送入对数放大器后,便可 以获得与介质的浓度C与介质的厚度l有关信号。利用此信 号可以方便地得到介质的浓度C(在介质的厚度l确定的情 况下),或得到介质的厚度l(在介质的浓度C确定的情况 下)。还可以测量液体或气体的透明度(或混浊度),检 测透明薄膜的厚度、均匀度及杂质含量等质量问题。

3. 信息载荷于反射光的方式
如图7-1(c)所示,信息载荷于反射光的方式。反射有 镜面发射与漫反射两种,各具有不同的物理性质和特点。 利用这些性质和特点将载荷于反射光的信息检测出来实现 光电检测的目的。镜面发射在光电技术中常用作合作目标, 用它来判断光信号的有无等信息的检测。例如,在光电准 直仪中利用反射回来的十字叉丝图像与原十字叉丝图像的 重叠状况判断准直系统的状况;在迈克尔逊干涉仪中,动 镜的位置信息载荷与迈克尔逊干涉条纹中,通过检测迈克 尔逊干涉条纹的变化可以检测动镜位置的变化;另外,镜 面发射还用于测量物体的运动、转动的速度,相位等方面。 而漫反射则不同,物体的漫反射本身载荷物体表面性质的 信息,例如反射系数载荷表面粗糙度及表面疵病的信息, 通过检测漫反射系数可以检测物体表面的粗糙度及表面疵 病的性质。
Me, λ=εMe, λ,s= εσT4
(7-1)
式中Me, λ,s为同温度黑体的辐射出射度,ε为物体的发射 系数,与物体的性质、温度及表面状况有关。T为被测 体的温度,即测量的信息量。
在近距离测量时,不考虑大气的吸收,光电传感器 的变换电路输出的电压信号为
US= mτSGKMe, λ=ξMe, λ (7-2)
光信息量化的变换方式在位移量(长度、宽度和角度) 的光电测量系统中得到广泛的应用。
物体自身辐射通常是缓慢变化的,因此,经光电传感 器获得的电信号为缓变的信号或直流信号。为克服直流放 大器的零点漂移、环境温度影响和背景噪声的干扰,常采 用光学调制技术或电子斩波调制的方法将其变为交流信号, 然后再解调出被测信息。
下面用全辐射测温为例讨论信息存在于光源中这类问 题的处理方法。在全辐射测温应用中温度信息存在于光源 的辐射出射度Me, λ,由第1章中的式(1-42)可知物体的 全辐射出射度Me, λ与物体温度的关系为
相关文档
最新文档