三角函数-解三角形的综合应用
三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
备考2023年中考数学二轮复习-图形的变换_锐角三角函数_解直角三角形的应用-综合题专训及答案

备考2023年中考数学二轮复习-图形的变换_锐角三角函数_解直角三角形的应用-综合题专训及答案解直角三角形的应用综合题专训1、(2018扬州.中考模拟) 有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50cm,拉杆的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面MN相切于点D.在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平地面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C 端拉旅行箱时,CE为80cm,=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:,,)2、(2017南京.中考模拟) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).3、(2018嘉兴.中考模拟) 已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H.(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30 ,连接AG交PD于F,连接BF,tan∠BFE= ,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 ,连接QG交BC于点M,求QM的长.4、(2019金华.中考真卷) 如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。
(2)如图,点E在⊙O上,连结CE与⊙O交于点F。
若EF=AB,求∠OCE的度数.5、(2019包河.中考模拟) 如图,AB是⊙O的直径,点C在⊙O上,EO⊥AB,垂足为O,EO交AC于E,过点C作⊙O的切线CD交AB的延长线于点D.(1)求证:∠AEO+∠BCD=90°;(2)若AC=CD=3,求⊙O的半径。
第4课:解三角形与三角函数综合应用

第四课:解三角形与三角函数综合应用第一部分:知识点1.三角形中的边角关系:三角形中大边对大角,小边对小角;三角形中任意两边之和大小第三边;2.正弦定理:2sin sin sin a b c R A B C===,其中R 是△ABC 外接圆半径. 3.余弦定理:2222222222cos ,2cos ,2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-余弦定理变形: 222222222cos ,cos ,cos ,222b c a a c b a b c A B C bc ac ab+-+-+-===4.三角形的面积公式有:11,sin ,22S ah S ab C S === 其中,h 是BC 边上高,P 是半周长.5.利用正、余弦定理及三角形面积公式等解任意三角形(1)已知两角及一边,求其它边角;已知两边及其中一边的对角,求另一边的对角,用正弦定理.(2)已知三边,求三个角;已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理.第二部分:练习题1. 在中,,,,求tan A 的值和的面积.2.在△ABC 中,已知3=a ,b =2,B =45°,求A 、C 及c .3.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,已知a 、b 、c 成等比数列,且22a c ac bc -=-, 求∠A 的大小及c B b sin 的值。
4已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c5在∆ABC 中,已知=a c 060=B ,求b 及A6在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,2274sin cos 22B C A +-=. (1)求角A 的度数;(2)若a =3,b +c =3,求b 和c 的值.7.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a cos cos )2(=-.(Ⅰ)求角B 的大小;(Ⅱ)若cos 2A a ==,求ABC ∆的面积. 8.在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B , C 成等差数列.(Ⅰ)若b =3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.9.已知ABC ∆的三个内角A ,B ,C 所对的边分别是a ,b ,c ,tan tan tan A B A B +=,,2=a c =(Ⅰ)求tan()A B +的值; (Ⅱ)求ABC ∆的面积.10. 在中,已知1230,cos ,13ABC S A ∆==求(1)AB AC u u u r u u u r g ,(2)若1c b -=,求a 。
三角函数解三角形综合

1.已知函数fx=sinωx﹣2sin2+mω>0的最小正周期为3π,当x∈0,π时,函数fx 的最小值为0.1求函数fx的表达式;2在△ABC中,若fC=1,且2sin2B=cosB+cosA﹣C,求sinA的值.解:Ⅰ.依题意:函数.所以.,所以fx的最小值为m.依题意,m=0..Ⅱ∵,∴..在Rt△ABC中,∵,∴.∵0<sinA<1,∴.2.已知函数其中ω>0,若fx的一条对称轴离最近的对称中心的距离为.I求y=fx的单调递增区间;Ⅱ在△ABC中角A、B、C的对边分别是a,b,c满足2b﹣acosC=c•cosA,则fB恰是fx的最大值,试判断△ABC的形状.解答解:Ⅰ∵,=,∵fx的对称轴离最近的对称中心的距离为,∴T=π,∴,∴ω=1,∴.∵得:,∴函数fx单调增区间为;Ⅱ∵2b﹣acosC=c•cosA,由正弦定理,得2sinB﹣sinAcosC=sinC•cosA2sinBcosC=sinAcosC+sinCcosA=sinA+C,∵sinA+C=sinπ﹣B=sinB>0,2sinBcosC=sinB,∴sinB2cosC﹣1=0,∴,∵0<C<π,∴,∴,∴.∴,根据正弦函数的图象可以看出,fB无最小值,有最大值y max=1,此时,即,∴,∴△ABC为等边三角形.3.已知函数fx=sinωx+cosωx++cosωx﹣﹣1ω>0,x∈R,且函数的最小正周期为π:1求函数fx的解析式;2在△ABC中,角A、B、C所对的边分别是a、b、c,若fB=0,•=,且a+c=4,试求b的值.解答解:1fx=sinωx+cosωx++cosωx﹣﹣1==.∵T=,∴ω=2.则fx=2sin2x﹣1;2由fB==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=a+c2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.4.已知函数.1求fx单调递增区间;2△ABC中,角A,B,C的对边a,b,c满足,求fA的取值范围.解答解:1fx=﹣+sin2x=sin2x﹣cos2x=sin2x﹣,令2kπ﹣≤2x﹣≤2kπ+,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z, 则fx的增区间为﹣+kπ, +kπk∈Z;2由余弦定理得:cosA=,即b2+c2﹣a2=2bccosA,代入已知不等式得:2bccosA>bc,即cosA>,∵A为△ABC内角,∴0<A<,∵fA=sin2A﹣,且﹣<2A﹣<,∴﹣<fA<,则fA的范围为﹣,.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知A为锐角,且bsinAcosC+csinAcosB=a.1求角A的大小;2设函数fx=tanAsinωxcosωx﹣cos2ωxω>0,其图象上相邻两条对称轴间的距离为,将函数y=fx的图象向左平移个单位,得到函数y=gx图象,求函数gx在区间﹣,上值域.解:1∵bsinAcosC+csinAcosB=a,∴由正弦定理可得:sinBsinAcosC+sinCsinAcosB=sinA,∵A为锐角,sinA≠0,∴sinBcosC+sinCcosB=,可得:sinB+C=sinA=,∴A=.2∵A=,可得:tanA=,∴fx=sinωxcosωx﹣cos2ωx=sin2ωx﹣cos2ωx=sin2ωx﹣,∵其图象上相邻两条对称轴间的距离为,可得:T=2×=,解得:ω=1,∴fx=sin2x﹣,∴将函数y=fx的图象向左平移个单位,得到图象对应的函数解析式为y=gx=sin2x+﹣=sin2x+,∵x∈﹣,,可得:2x+∈,,∴gx=sin2x+∈,1.6.已知向量,向量,函数.Ⅰ求fx单调递减区间;Ⅱ已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,,c=4,且fA恰是fx 在上的最大值,求A,b,和△ABC的面积S.解:Ⅰ∵=+1+sin2x+=sin2x﹣cos2x+2=sin2x﹣+2,…∴, 所以:fx的单调递减区间为:.…Ⅱ 由1知:,∵时,,由正弦函数图象可知,当时fx 取得最大值3,…7分∴,…8分由余弦定理,a 2=b 2+c 2﹣2bccosA,得:,∴b=2,…10分∴.…12分7.已知函数.Ⅰ作出在一个周期内的图象;Ⅱ分别是中角的对边,若,求的面积.()cos sin 6f x x x π⎛⎫=++ ⎪⎝⎭()f x a b c ,,ABC △ A B C ,,() 1a f A b ===,,ABC △利用“五点法”列表如下:……………………………………………………4分 画出在上的图象,如图所示:Ⅱ由Ⅰ,在中,,所以.由正弦定理可知,,所以,………………9分又,∴,∴,∴. 因此.…………………………12分 ()f x 5 33ππ⎡⎤-⎢⎥⎣⎦,()sin 3f A A π⎛⎫=+ ⎪⎝⎭ABC △0A π<<3A π=sin sin a b A B =1sin sin 3B =1sin 2B =203B π<<6B π=2C π=11122S ab ==ABC △8.已知函数fx=m+2cos2x•cos2x+θ为奇函数,且f=0,其中m∈R,θ∈0,πⅠ求函数fx的图象的对称中心和单调递增区间Ⅱ在△ABC中,角A,B,C的对边分别是a,b,c,且f+=﹣,c=1,ab=2,求△ABC的周长.解答解:Ⅰf=﹣m+1sinθ=0,∵θ∈0,π.∴sinθ≠0,∴m+1=0,即m=﹣1,∵fx为奇函数,∴f0=m+2cosθ=0,∴cosθ=0,θ=.故fx=﹣1+2cos2xcos2x+=cos2x•﹣sin2x=﹣sin4x,由4x=kπ,k∈Z得:x=kπ,k∈Z,故函数fx的图象的对称中心坐标为:kπ,0,k∈Z,由4x∈+2kπ, +2kπ,k∈Z得:x∈+kπ, +kπ,k ∈Z,即函数fx的单调递增区间为+kπ, +kπ,k∈Z,Ⅱ∵f+=﹣sin2C+﹣,C为三角形内角,故C=,∴c2=a2+b2﹣2abcosC==,∵c=1,ab=2,∴a+b=2+,∴a+b+c=3+,即△ABC的周长为3+.9.已知向量=sin,1,=cos,cos2,记fx=•.Ⅰ若fx=1,求cosx+的值;Ⅱ在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足2a﹣ccosB=bcosC,求f2A的取值范围.解答解:Ⅰ向量=sin,1,=cos,cos2,记fx=•=sincos+cos2=sin+cos+=sin+,因为fx=1,所以sin=,所以cosx+=1﹣2sin2=,Ⅱ因为2a﹣ccosB=bcosC,由正弦定理得2sinA﹣sinCcosB=sinBcosC所以2sinAcosB﹣sinCcosB=sinBcosC所以2sinAcosB=sinB+C=sinA,sinA≠0,所以cosB=,又0<B<,所以B=,则A+C=,即A=﹣C,又0<C<,则<A<,得<A+<,所以<sinA+≤1,又f2A=sinA+,所以f2A的取值范围.10.已知向量,函数fx=.1求函数fx的最小正周期及在上的值域;2在△ABC中,若fA=4,b=4,△ABC的面积为,求a的值.解答解:1向量,函数fx==2+sin2x+2cos2x=3+sin2x+cos2x=3+2sin2x+,可得函数fx的最小正周期为=π,x∈,即有2x+∈﹣,,可得sin2x+∈﹣,1,则在上的值域为2,5;2在△ABC中,若fA=4,b=4,△ABC的面积为,可得3+2sin2A+=4,即sin2A+=,由0<A<π,可得<2A+<,可得2A+=,即A=,由=bcsinA=•4c•sin=c,解得c=1,则a2=b2+c2﹣2bccosA=16+1﹣8×=13,即a=.11.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…12..已知向量x ∈R,设函数fx=﹣1.1求函数fx 的单调增区间;2已知锐角△ABC 的三个内角分别为A,B,C,若fA=2,B=,边AB=3,求边BC .解答解:由已知得到函数fx=﹣1=2cos 2x+2sinxcosx ﹣1=cos2x+sin2x=2cos2x ﹣;所以1函数fx 的单调增区间是2x ﹣∈2kπ﹣π,2kπ,即x ∈kπ﹣,kπ+,k ∈Z ;已升级到最新版2已知锐角△ABC 的三个内角分别为A,B,C,fA=2,则2cos2A ﹣=2,所以A=,又B=,边AB=3,所以由正弦定理得,即,解得BC=.13.. 1求函数的单调递减区间;2在中,角的对边分别为,若,的面积为,求a 的最小值.2()sin 2f x x x =+()f x ABC ∆,,A B C ,,a b c ()12A f =ABC∆试题解析:1, 令,解得,,∴的单调递减区间为. 14.已知fx=•,其中=2cosx,﹣sin2x,=cosx,1,x ∈R .1求fx 的单调递减区间;2在△ABC 中,角A,B,C 所对的边分别为a,b,c,fA=﹣1,a=,且向量=解答解:1由题意知.3分∵y=cosx 在a 2上单调递减,∴令,得∴fx 的单调递减区间,6分2∵,∴,又,∴,即,8分∵,由余弦定理得a 2=b 2+c 2﹣2bccosA=b+c 2﹣3bc=7.10分因为向量与共线,所以2sinB=3sinC,由正弦定理得2b=3c .∴b=3,c=2.12 分.111()cos 22sin(2)2262f x x x x π=-=-+3222262k x k πππππ+≤-≤+536k x k ππππ+≤≤+k Z ∈()f x 5[,]36k k ππππ++k Z ∈15.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA ﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…16.在△ABC中,角A,B,C所对的边分别为a,b,c,fx=2sinx﹣Acosx+sinB+Cx∈R,函数fx的图象关于点,0对称.Ⅰ当x∈0,时,求fx的值域;Ⅱ若a=7且sinB+sinC=,求△ABC的面积.解答解:Ⅰfx=2sinx﹣Acosx+sinB+C=2sinxcosA﹣cosxsinAcosx+sinA=2sinxcosxcosA﹣2cos2xsinA+sinA=sin2xcosA﹣cos2xsinA=sin2x﹣A,由于函数fx的图象关于点,0对称,则f=0,即有sin﹣A=0,由0<A<π,则A=,则fx=sin2x﹣,由于x∈0,,则2x﹣∈﹣,,即有﹣<sin2x﹣≤1.则值域为﹣,1;Ⅱ由正弦定理可得===, 则sinB=b,sinC=c,sinB+sinC=b+c=,即b+c=13,由余弦定理可得a2=b2+c2﹣2bccosA,即49=b2+c2﹣bc=b+c2﹣3bc,即有bc=40,则△ABC的面积为S=bcsinA=×40×=10.17.已知函数fx=2sinxcosx﹣3sin2x﹣cos2x+3.1当x∈0,时,求fx的值域;2若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cosA+C,求fB的值.解答解:1∵fx=2sinxcosx﹣3sin2x﹣cos2x+3=sin2x﹣3﹣+3=sin2x﹣cos2x+1=2sin2x++1,∵x∈0,,∴2x+∈,,∴sin2x+∈,1,∴fx=2sin2x++1∈0,3;2∵=2+2cosA+C,∴sin2A+C=2sinA+2sinAcosA+C,∴sinAcosA+C+cosAsinA+C=2sinA+2sinAcosA+C,∴﹣sinAcosA+C+cosAsinA+C=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA=== ,∴A=30°,由正弦定理可得sinC=2sinA=1,C=90°,由三角形的内角和可得B=60°,∴fB=f60°=218.设函数fx=cos2x﹣+2cos2x.1求fx的最大值,并写出使fx取得最大值时x的集合;2求fx的单调递增区间;3已知△ABC中,角A,B,C的对边分别为a,b,c,若fB+C=,b+c=2,求a的最小值.解答解:1由三角函数公式化简可得fx=cos2x﹣+2cos2x=cos2xcos+sin2xsin+2cos2x=﹣cos2x﹣sin2x+1+cos2x=cos2x﹣sin2x+1=cos2x++1,当2x+=2kπ即x=kπ﹣k∈Z时,fx取得最大值2,此时x的集合为{x|x=kπ﹣,k∈Z};2由2kπ+π≤2x+≤2kπ+2π可解得kπ+≤x≤kπ+,∴fx的单调递增区间为得kπ+,kπ+,k∈Z;3由2可得fB+C=cos2B+2C++1=,∴cos2B+2C+=,由角的范围可得2B+2C+=,变形可得B+C=,A=, 由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc=b+c2﹣3bc=4﹣3bc≥4﹣32=1当且仅当b=c=1时取等号,故a的最小值为119.已知函数,x∈R.1求函数fx的最大值和最小正周期;2设△ABC 的内角A,B,C 的对边分别a,b,c,且c=3,fC=0,若sinA+C=2sinA,求a,b 的值.解答解:1 (3)∵,∴,∴fx 的最大值为0,最小正周期是…6分2由,可得∵0<C <π,∴0<2C <2π,∴∴,∴∵sinA+C=2sinA,∴由正弦定理得①…9分由余弦定理得∵c=3∴9=a 2+b 2﹣ab②由①②解得,…12分20..已知向量,设函数.1求在上的最值;2在中,分别是角的对边,若,,求的值.()()3sin 22,cos ,1,2cos m x x n x =+=()f x m n =⋅()f x 0,4π⎡⎤⎢⎥⎣⎦ABC ∆,,a b c ,,A B C ()4,1f A b ==ABC ∆a;2.21.已知函数fx=sin 2x+sin2x .1求函数fx 的单调递减区间;2在△ABC 中,角A,B,C 的对边分别为a,b,c,若f =,△ABC 的面积为3,求a 的最小值.解答解:1∵fx=sin 2x+sin2x=+sin2x=sin2x ﹣+,∴2kπ+≤2x ﹣≤2kπ+,k ∈Z,解得:kπ+≤x ≤kπ+,k ∈Z,∴函数fx 的单调递减区间为:kπ+,kπ+,k ∈Z .()()min max 4,5f x f x ∴==()12sin 234,sin 2662f A A A ππ⎛⎫⎛⎫=++=∴+= ⎪ ⎪⎝⎭⎝⎭1352,2666663AA A ππππππ⎛⎫+∈∴+=∴= ⎪⎝⎭1sin 2ABC S bc A ∆==2c ∴=2222cos 3a b c bc A a ∴=+-=∴=2∵f=,即: sin2×﹣+=,化简可得:sinA﹣=,又∵A∈0,π,可得:A﹣∈﹣,,∴A﹣=,解得:A=,∵S△ABC=bcsinA=bc=3,解得:bc=12,∴a==≥=2.当且仅当b=c时等号成立.故a的最小值为2.22.已知函数fx=2sinxcosx+2,x∈R.1求函数fx的最小正周期和单调递增区间;2在锐角三角形ABC中,若fA=1,,求△ABC的面积.解答解:1fx=2sinxcosx+=sin2x+=2sin2x+,∴函数fx的最小正周期为π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得,∴函数fx的单调增区间是k,k k∈Z,2由已知,fA=2sin2A+=1,∴sin2A+=,∵0<A<,∴,∴2A+=,从而A=,又∵=,∴,∴△ABC的面积S===.23.已知向量=sinx,﹣1,向量=cosx,﹣,函数fx=+•.1求fx的最小正周期T;2已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且fA恰是fx在0,上的最大值,求A和b.解答解:1∵向量=sinx,﹣1,向量=cosx,﹣,∴fx=+•=sin2x+1+sinxcosx+=+1+sin2x+= sin2x﹣cos2x+2=sin2x﹣+2,∵ω=2,∴函数fx的最小正周期T==π;2由1知:fx=sin2x﹣+2,∵x∈0,,∴﹣≤2x﹣≤,∴当2x﹣=时,fx取得最大值3,此时x=,∴由fA=3得:A=, 由余弦定理,得a2=b2+c2﹣2bccosA,∴12=b2+16﹣4b,即b﹣22=0,∴b=2.24.在中,分别是角的对边,且满足. 1求角的大小;2设函数,求函数在区间上的值域.25.已知函数在处取最小值.ABC ∆c b a ,,C B A ,,CBc b a cos cos 2=-C 23sin sin 2cos cos sin 2)(2-+=C x C x x x f )(x f ]2,0[π2()2sin coscos sin sin (0)2f x x x x ϕϕϕπ=+-<<x π=1求的值;2在中,分别为内角的对边,已知求角.试题分析:1利用三角恒等变换公式化简函数解析式得,由在处取最小值及查求得;2由可得,再由正弦定理求出,从而求出角的值,即可求角.2因为,所以,因为角为的内角,所以. 又因为所以由正弦定理,得, 也就是, 因为,所以或. 当时,; 当时,. 26.已知函数的最小正周期为.ϕABC∆,,a b c ,,A B C 1,()a b f A ===C ()sin()f x x ϕ=+x π=0ϕπ<<2πϕ=()f A =6A π=sin B B C ()2f A =cos 2A =A ABC ∆6A π=1,a b ==sin sin a bA B=sin 1sin 22b A B a ===b a >4B π=34B π=4B π=76412C ππππ=--=34B π=36412C ππππ=--=2()2sin(0)2xf x x ωωω=->3π1求函数在区间上的最大值和最小值; 2已知分别为锐角三角形中角的对边,且满足,,求的面积.答案及解析:26.1,;2.试题分析:1利用三角恒等变换相关公式化简函数解析式得,由周期为,可求的值,由三角函数性质可求函数的最值.2及正弦定理可求得,从而是求出解的值,由可求出角及角,由正弦定理求出边,即可求三角形面积.27.已知函数.Ⅰ求函数fx 的单调递增区间;Ⅱ在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知,a=2,,求△ABC 的面积.解答解:Ⅰ =sin2xcos+cos2xsin+cos2x=sin2x+cos2x=sin2x+cos2x=sin2x+.令 2kπ﹣≤2x+≤2kπ+,k ∈z,求得 kπ﹣≤x ≤kπ+,()f x 3[,]4ππ-,,a b c ABC ,,A B C 2,()1b f A ==2sin b A =ABC ∆min ()1f x =max ()1f x =33+()2sin()16f x x πω=+-3πω2sin b A =sin B =B ()1f A =4A π=51246C πππ==+a函数fx的单调递增区间为kπ﹣,kπ+,k∈z.Ⅱ由已知,可得 sin2A+=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得 sinC=,…∴S=ab•sinC==.28.已知函数fx=Asinωx+φA>0,ω>0,|φ|<,x∈R,且函数fx的最大值为2,最小正周期为,并且函数fx的图象过点,0.1求函数fx解析式;2设△ABC的角A,B,C的对边分别为a,b,c,且f=2,c=,求a+2b的取值范围.解答解:1根据题意得:A=2,ω=4,即fx=2sin4x+φ,把,0代入得:2sin+φ=0,即sin+φ=0,∴+φ=0,即φ=﹣,则fx=2sin4x﹣;2由f=2sinC﹣=2,即sinC﹣=1,∴C﹣=,即C=,由正弦定理得: ==2R,即=2R=1,∴a+2b=2RsinA+4RsinB=sinA+2sinB=sinA+2sin﹣A=sinA+2sin cosA﹣2cossinA=sinA+cosA﹣sinA=cosA,∵<cosA<1,即<cosA<,∴a+2b的范围为,.29.已知函数fx=2cos2x+cos2x+.1若fα=+1,0<a<,求sin2α的值;2在锐角△ABC中,a,b,c分别是角A,B,C的对边;若fA=﹣,c=3,△ABC的面积S△ABC=3,求a的值.解答解:1化简可得fx=2cos2x+cos2x+=1+cos2x+cos2x﹣sin2x=cos2x﹣sin2x+1=cos2x++1,∴fα=cos2α++1=+1,∴cos2α+=,∵0<α<,∴0<2α+<,∴sin2α+==,∴2∵fx=cos2x++1,∴fA=cos2A++1=﹣,∴cos2A+=﹣,又∵A∈0,,∴2A+∈,,∴2A+=,解得A=又∵c=3,S △ABC =bcsinA=3,∴b=4由余弦定理得a 2=b 2+c 2﹣2bccosA=13, ∴a=30.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=πωπωωx x x x f 0>ω,R ∈x ,且函数)(x f 的最小正周期为π.1求函数)(x f 的解析式;2在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值.参考答案1, ……………3分 又,所以,, ………………………………………………5分所以,. …………………………………………………6分π()cos 12sin 16f x x x x ωωω⎛⎫=+-=+- ⎪⎝⎭πT =2=ωπ()2sin 216f x x ⎛⎫=+- ⎪⎝⎭2,故, 所以,或, 因为是三角形内角,所以.……9分 而,所以,, …………………………11分 又,所以,,所以,,所以,. …………………………………14分31.已知函数2()sin(2)2cos 1()6f x x x x π=--∈+R .Ⅰ求()f x 的单调递增区间;Ⅱ在△ABC 中,三个内角,,A B C 的对边分别为,,a b c ,已知()12f A =,且△ABC 外求a 的值. 试题解析:Ⅰ∵x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π ………………2分x x 2cos 212sin 23+==)62sin(π+x ………………3分 由∈+≤+≤+-k k x k (226222πππππZ 得,∈+≤≤+-k k x k (63ππππZ 5分π()2sin 2106f B B ⎛⎫=+-= ⎪⎝⎭π1sin 262B ⎛⎫+= ⎪⎝⎭ππ22π66B k +=+π5π22π66B k +=+Z ∈k B π3B =3cos 2BA BC ac B ⋅=⋅=3=ac 4=+c a 1022=+c a 7cos 2222=-+=B ac c a b 7=a∴)(x f 的单调递增区间是∈++-k k k ](6,3[ππππZ (7)Ⅱ∵21)62sin()(=+=πA A f ,π<<A 0,62626ππππ+<+<A于是6562ππ=+A ∴ 3π=A ∵ABC ∆外接圆的半径为由正弦定理2sin a R A =,得2sin 3a R A ===,32.在中,分别是角A,B,C 的对边,已知,且1求的大小;2设且的最小正周期为,求在的最大值;试题解析:1∵ ∴∴ 又∵0<x < ∴A=2.==++=+== sin x+∵ = ∴=2 ∴=sin2x+∵ ∴2x+, ∴时.33.已知函数fx=sinxcosx++1.1求函数fx 的单调递减区间;2在△ABC中,a,b,c分别是角A、B、C的对边fC=,b=4,•=12,求c.解答解:1fx=sinx cosx﹣sinx+1=sin2x﹣+1=sin2x++.令≤2x+≤,解得≤x≤.∴函数fx的单调递减区间是,,k∈Z.2∵fC=sin2C++=,∴sin2C+=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.34.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2﹣b2=ac,且b=c.1求角A的大小;2设函数fx=1+cos2x+B﹣cos2x,求函数fx的单调递增区间.解答解:1在△ABC中,因为,所以.…在△ABC中,因为,由正弦定理可得,所以,,,故…2由1得===…,得即函数fx 的单调递增区间为…35.ABC 的三个内角A,B,C 所对的边分别为a,b,c,已知46cos ,a .55A == 1当3B π=时,求b 的值;2设B x =02x π⎛⎫<< ⎪⎝⎭,求函数()22x f x b =+的值域.36.已知函数fx=sinxsinx+cosx .1求fx 的最小正周期和最大值;2在锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c,若f =1,a=2,求三角形ABC面积的最大值. 解答解:1fx=sin 2x+sinxcosx=﹣cos2x+sin2x=sin2x ﹣.∴fx的最小正周期T==π,fx的最大值是.2∵f=sinA﹣+=1,∴sinA﹣=,∴A=.∵a2=b2+c2﹣2bccosA,∴12=b2+c2﹣bc,∴b2+c2=12+bc≥2bc,∴bc≤12.∴S==bc≤3.∴三角形ABC面积的最大值是3.37.已知向量=cos2x, sinx﹣,=1,,设函数fx=.Ⅰ求函数fx取得最大值时x取值的集合;Ⅱ设A,B,C为锐角三角形ABC的三个内角,若cosB=,fC=﹣,求sinA的值.解答解:Ⅰ∵向量=cos2x, sinx﹣,=1,,∴函数fx==cos2x+sinx﹣2=cos2x+sin2x+cos2x﹣sinxcosx=cos2x﹣sin2x+=cos2x++故当cos2x+=1时,函数fx取得最大值,此时2x+=2kπ,解得x=kπ﹣,k∈Z,故x取值的集合为{x|x=kπ﹣,k∈Z};Ⅱ∵A,B,C为锐角三角形ABC的三个内角,且cosB=,∴sinB==,又fC=cos2C++=﹣,∴cos2C+=﹣,∴2C+=,解得C=,∴sinA=sin﹣B=cosB+sinB==38..已知向量=sin2x+2,cosx,=1,2cosx,设函数fx=1求fx的最小正周期与单调递增区间;2在△ABC中,a,b,c分别是角A,B,C所对应的边,若fA=4,b=1,得面积为,求a的值.解答解:1∵向量=sin2x+2,cosx,=1,2cosx,∴函数fx=•=sin2x+2+2cos2x=sin2x+cos2x+3=2sin2x++3,∵ω=2,∴T=π,令2kπ﹣≤2x+≤2kπ+,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则fx的最小正周期为π;单调递增区间为kπ﹣,kπ+,k∈Z;2由fA=4,得到2sin2A++3=4,即sin2A+=,∴2A+=或2A+=,解得:A=0舍去或A=,∵b=1,面积为,∴bcsinA=,即c=2,由余弦定理得:a2=b2+c2﹣2bccosA=1+4﹣2=3,则a=.39..设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足S=.Ⅰ求B;Ⅱ若b=,设A=x,,求函数y=fx的解析式和最大值.解答解:Ⅰ∵S=acsinB,cosB=,S=a2+c2﹣b2,∴acsinB=•2accosB,∴tanB=,又B∈0,π,∴B=;Ⅱ由Ⅰ知B=,△ABC的内角和A+B+C=π,又A>0,C>0,得0<A<,由正弦定理,知a===2sinx,c==2sin﹣x,∴y=﹣1a+2c=2﹣1sinx+4sin﹣x=2sinx+2cosx=2sinx+0<x<,当x+=,即x=时,y取得最大值2.40.在△ABC中,a,b,c分别是内角A,B,C的对边,且2a﹣ccosB﹣bcosC=0.1求∠B;2设函数fx=﹣2cos2x+B,将fx的图象向左平移后得到函数gx的图象,求函数gx的单调递增区间.解答解:1由2a﹣ccosB﹣bcosC=0及正弦定理得,2sinA﹣sinCcosB﹣sinBcosC=0,即2sinAcosB﹣sinB+C=0,因为A+B+C=π,所以sinB+C=sinA,因为sinA≠0,所以cosB=,由B是三角形内角得,B=,2由1得,B=,则fx=﹣2cos2x+B=﹣2cos2x+,所以gx=﹣2cos2x++,=﹣2cos2x+=2sin2x,由得,故函数gx的单调递增区间是:.41..已知函数 fx=sin2x﹣cos2x﹣,x∈R.1求函数fx的最小正周期和单调递减区间;2设△ABC的内角A,B,C的对边分别为a,b,c且c=,fC=0.若sinB=2sinA,求a,b的值.解答解:1∵fx=sin2x﹣cos2x﹣,x∈R.=sin2x﹣﹣=sin2x﹣﹣1∴T==π∴由2kπ+≤2x﹣≤2kπ+,k∈Z可解得:x∈kπ,kπ+ ,k∈Z∴fx单调递减区间是:kπ,kπ+,k∈Z2fC=sin2C﹣﹣1=0,则sin2C﹣=1∵0<C<π,∴C=∵sinB=2sinA,∴由正弦定理可得b=2a①∵c=,∴由余弦定理可得c2=a2+b2﹣ab=3②由①②可得a=1,b=2.42..在锐角△ABC中,角A,B,C的对边分别为a,b,c,且,1求角B的值;2设A=θ,求函数的取值范围.解:1∵由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,sinB+C=sinAcosB,∴cosB= ,∴B=.…2锐角△ABC中,A+B=,∴θ∈,,…=1﹣cos+2θ﹣cos2θ=1+sin2θ﹣cos2θ=sin2θ﹣cos2θ+1=2sin2θ﹣+1.…9分∵θ∈,,∴2θ﹣∈,,∴2<2sin2θ﹣+1≤3.所以:函数fθ的取值范围是2,3.…12分。
三角函数平面向量及解三角形的综合运用

三角函数平面向量及解三角形的综合运用运用三角函数、平面向量和解三角形的综合运用时,常涉及到问题的空间几何解析、力学问题、电磁场问题等等。
本文将从求解平面三角形、力学问题和电磁场问题三个方面进行综合运用的详细说明。
1.求解平面三角形在平面三角形的解析中,我们经常会使用到三角函数的性质。
例如,已知三角形的两边和一个角,可以通过余弦定理求解出第三边的长。
另外,已知三个角或三个边中的一对和对应的一个角,我们可以利用正弦定理求解出其他的边和角。
举例说明:假设有一个平面三角形ABC,其中已知AB=3,AC=4,∠BAC=60°。
求解BC的长度和∠ABC、∠ACB的大小。
首先,我们可以利用余弦定理计算出BC的长度:BC² = AB² + AC² - 2·AB·AC·cos(∠BAC)BC² = 3² + 4² - 2·3·4·cos(60°)BC²=9+16-24·0.5BC²=25-12=13BC=√13接下来,利用正弦定理求解∠ABC和∠ACB的大小:sin(∠ABC) / AB = sin(∠BAC) / BCsin(∠ABC) / 3= sin(60°) / √13sin(∠ABC) = 3·sin(60°) / √13∠ABC = arcsin(3·sin(60°) / √13)sin(∠ACB) / AC = sin(∠BAC) / BCsin(∠ACB) / 4 = sin(60°) / √13sin(∠ABC) = 4·sin(60°) / √13∠ACB= arcsin(4·sin(60°) / √13)通过以上计算,我们可以得出BC≈3.605,∠ABC≈39.23°,∠ACB≈80.77°。
三角函数解三角形题型归类

三角函数解三角形题型归类一知识归纳:(一)任意角、弧度制及任意角的三角函数 1.角的概念(1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 . (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S = .(3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 .(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°.(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α= ,cos α= ,tan α= .(2)任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0) 4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念1.三角函数诱导公式⎝ ⎛⎭⎪⎫k 2π+α(k ∈Z)的本质奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角).2.两角和与差的三角函数公式(1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.3.二倍角公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,cos 2α=1+cos 2α2,sin 2α=1-cos α2;(3)tan 2α=2tan α1-tan 2α.(三)正、余弦定理及其变形: 1.正弦定理及其变形 在△ABC 中,a sin A=b sin B=c sin C=2R (其中R 是外接圆的半径);a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 2.余弦定理及其变形a 2=b 2+c 2-2bc cos A ; cos A =b 2+c 2-a 22bc.b 2= ; cos B = ;c 2= . cos C = .3.三角形面积公式:S △ABC =12ah =12ab sin C =12ac sin B =_________________=abc 4R =12(a +b +c )·r (R是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .2.整体法:求y =A sin(ωx +φ)(ω>0)的单调区间、周期、值域、对称轴(中心)时,将ωx +φ看作一个整体,利用正弦曲线的性质解决.3.换元法:在求三角函数的值域时,有时将sin x (或cos x )看作一个整体,换元后转化为二次函数来解决.4.公式法:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =A tan(ωx +φ)的最小正周期为π|ω|. (2016年 全国卷1)4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =2c =,2cos 3A =,则b =(A (B (C )2 (D )3 6.将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为 (A )2sin(2)4y x π=+ (B )2sin(2)3y x π=+(C )2sin(2)4y x π=-(D )2sin(2)3y x π=-14.已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-=————————————. (2015年 全国卷1)8. 函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且a = 求ABC ∆的面积.(2014年 全国卷1) 2.若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为 A .①②③ B. ①③④ C . ②④D. ①③16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测学科网得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .(2013年 全国卷1)9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b = (A )10 (B )9(C )8(D )516.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.(2012年 全国卷1)9.已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π417.(本小题满分12分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,sin sin c C c A =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆b ,c .三、题型归纳题型一、三角函数定义的应用1.若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于( )A.-33 B.33C.- 3D. 3变式1.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4题型二、三角函数值的符号2.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4变式2.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43 题型三、同角三角函数关系式的应用3.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.454.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32 B.32 C .-34 D.34变式3.已知sin α-cos α=2,α∈(0,π),则tan α等于( ) A .-1 B .-22 C.22D .1 题型四 诱导公式的应用5.(1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=________. (2)sin(-1 200°)cos 1 290°+cos(-1 020°)sin(-1 050°)=______变式4.已知角α终边上一点p(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为 题型五、三角函数的图形变换6.(1)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位(2)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:(1)f (x )的解析式;(2)将y =f (x )图象上所有点向左平移π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.变式5.已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.题型六、三角函数的性质问题7.(1)函数y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间为________.(2)已知函数f (x )=cos ⎝⎛⎭⎫ωx +φ-π2⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝⎛⎭⎫x +π6取得最小值时x 的集合为( )A.⎩⎨⎧⎭⎬⎫x |x =k π-π6,k ∈Z B.⎩⎨⎧⎭⎬⎫x |x =k π-π3,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =2k π-π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z(3)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( ) A.关于点⎝⎛⎭⎫π2,0对称 B.关于直线x =5π12对称C.关于点⎝⎛⎭⎫5π12,0对称D.关于直线x =π12对称(4)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x 是( ) A.奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B.偶函数且图象关于点(π,0)对称 C.奇函数且图象关于直线x =π2对称 D.偶函数且图象关于点⎝⎛⎭⎫π2,0对称 变式6.已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.题型七、最值与值域问题8.已知函数2()(sinx cosx)cos 2f x x =++。
三角函数的应用解三角形

三角函数的应用解三角形三角函数是数学中的一个重要概念,广泛应用于解决各种与三角形相关的问题。
通过运用三角函数的知识,我们可以准确地计算并解决各类三角形相关的数学题。
本文将介绍三角函数的应用,并举例说明如何利用三角函数来解决三角形问题。
1. 正弦函数的应用正弦函数是三角函数中最常用的函数之一,它在解决三角形问题中具有重要作用。
我们知道,在一个任意三角形ABC中,正弦函数的定义为:sinA = 边BC/边AC,sinB = 边AC/边BC,sinC = 边AB/边AC。
根据这个定义,我们可以通过已知的边长和角度来求解未知的边长或角度。
举个例子,假设我们已知三角形ABC中的角A和边BC的长度,我们需要求解边AC和角B的值。
根据正弦函数的定义,我们可以列出以下方程:sinA = 边BC/边AC通过移项和替换公式,我们可以得到:边AC = 边BC/sinA角B = 180° - 角A - 角C通过以上公式,我们可以根据已知条件计算出边AC和角B的值,从而解决三角形问题。
2. 余弦函数的应用余弦函数也是三角函数中常用的函数之一,它在解决三角形问题中同样具有重要作用。
在一个任意三角形ABC中,余弦函数的定义为:cosA = 边BC/边AC,cosB = 边AC/边BC,cosC = 边AB/边AC。
同样地,我们可以通过已知的边长和角度来求解未知的边长或角度。
举个例子,假设我们已知三角形ABC中的角A和边AC的长度,我们需要求解边BC和角C的值。
根据余弦函数的定义,我们可以列出以下方程:cosA = 边BC/边AC通过移项和替换公式,我们可以得到:边BC = 边AC * cosA角C = 180° - 角A - 角B通过以上公式,我们可以根据已知条件计算出边BC和角C的值,从而解决三角形问题。
3. 正切函数的应用正切函数是三角函数中另一个常用的函数,它同样可以应用于解决三角形问题。
在一个任意三角形ABC中,正切函数的定义为:tanA = 边BC/边AC,tanB = 边AC/边BC,tanC = 边AB/边AC。
2021年高三冲刺备考【新题型】——三角函数与解三角形-解析

2022年高三备考【新题型】——三角函数与解三角形青岛青奥教育——见识新情况,扩展宽思路一、解答题1.如图,在四边形ABCD中,CD =BC =cos 14CBD ∠=-.(1)求BDC ∠; (2)若3A π∠=,求ABD △周长的最大值. 【答案】(1)6π;(2)12 【分析】(1)在BCD △中,利用正弦定理可求得结果;(2)在BCD △中,由余弦定理可求得4BD =,在ABD △中,3A π∠=,设,AB x AD y ==,由余弦定理得22161cos 22x y A xy -+==,即2216x y xy -+=,利用基本不等式求得()max x y +,进而求出 ABD △周长的最大值. 【详解】(1)在BCD △中,cos CBD ∠=sin 14CBD ∠∴== 利用正弦定理得:sin sin CD BCCBD BDC=∠∠,sin 1sin 2BC CBDBDC CD⋅∠∴∠===又CBD ∠为钝角,BDC ∴∠为锐角,6BDC π∴∠=(2)在BCD △中,由余弦定理得2222cos2BC BD CD CBD BC BD ∠+===⋅-解得:4BD =或5BD =-(舍去) 在ABD △中,3A π∠=,设,AB x AD y ==由余弦定理得22222161cos 222AB AD D x y A AB B AD xy -+=⋅-+==,即2216x y xy -+= 整理得:()2163x y xy +-=,又0,0x y >>利用基本不等式得:()()2231346x y x y xy +=≤-+,即()2416x y +≤,即()264x y +≤,当且仅当4x y ==时,等号成立,即()max 8x y +=,所以()max 8412AB AD BD ++=+= 所以 ABD △周长的最大值为12 【点睛】方法点睛:本题考查利用正余弦定理解三角形,及利用基本不等式求三角形周长的最值,利用条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值,考查学生的转化能力与运算解能力,属于中档题.2.已知函数()cos 14f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域; (2)是否同时存在实数a 和正整数n ,使得函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点?若存在,请求出所有符合条件的a 和n 的值;若不存在,请说明理由.【答案】(1)⎡⎣;(2)答案见解析. 【分析】(1)利用三角恒等变换得出()24f x x π⎛⎫=+ ⎪⎝⎭,根据正弦型函数的值域求解;(2)由题意可知,函数()y f x =与直线y a =在[]0,n π上恰有2021个交点,然后对实数a 的取值进行分类讨论,考查实数a 在不同取值下两个函数的交点个数,由此可得出结论.【详解】(1)()cos 12(sin cos )cos 14f x x x x x x π⎛⎫=+-=+⋅- ⎪⎝⎭22sin cos 2cos 1sin 2cos 224x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭,当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,20,42x ππ⎡⎤+∈⎢⎥⎣⎦,∴[]sin 20,14x π⎛⎫+∈ ⎪⎝⎭,则()f x ⎡∈⎣. (2)假设同时存在实数a 和正整数n 满足条件,函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点,即函数()y f x =与直线y a =在[]0,n π上恰有2021个交点. 当[]0,x π∈时,92,444x πππ⎡⎤+∈⎢⎥⎣⎦,作出函数()f x 在区间[]0,π上的图象如下图所示:①当a >a <()y f x =与直线y a =在[]0,n π上无交点,②当a =a =()y f x =与直线y a =在[]0,π上有一个交点,此时要使函数()y f x =与直线y a =在[]0,n π上恰有2021个交点, 则2021n =;③当1a <<或1a <<时,函数()y f x =与直线y a =在[]0,π上有两个交点,此时函数()y f x =与直线y a =在[]0,n π上有偶数个交点,不符合题意; ④当1a =时,函数()y f x =与直线y a =在[]0,π上有三个交点,此时要使函数()y f x =与直线y a =在[]0,n π上恰有2021个交点,则1010n =;综上所述,存在实数a 和n 满足题设条件:a =2021n =;a =2021n =;1a =时,1010n =.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,利用函数在区间上的零点个数求参数,解本题第(2)问的关键就是要注意到函数()y f x =与直线y a =的图象在区间[]0,π上的图象的交点个数,结合周期性求解.3.如图是一“T ”型水渠的平面视图(俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m m (从拐角处,即图中A ,B 处开始).假定渠内的水面始终保持水平位置(即无高度差).(1)在水平面内,过点A 的一条直线与水渠的内壁交于P ,Q 两点,且与水渠的一边的夹角为02πθθ⎛⎫<<⎪⎝⎭,将线段PQ 的长度l 表示为θ的函数; (2)若从南面漂来一根长为7m 的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?请说明理由.【答案】(1)4sin cos l θθ=+π02θ⎛⎫<< ⎪⎝⎭;(2)这根竹竿能从拐角处一直漂向东西向的水渠,理由详见解析. 【分析】(1)计算sin PA θ=,4cos QA θ=,得到函数解析式.(2)设4()sin cos f θθθ=+,求导得到单调区间,计算函数的最小值7>,得到答案.【详解】 (1)PA =,4cos QA θ=,所以l PA QA =+,即4cos l θ=π02θ⎛⎫<< ⎪⎝⎭.(2)设4()sin cos f θθθ=+,π0,2θ⎛⎫∈ ⎪⎝⎭,由)332222cos 4sin ()sin cos sin cos f θθθθθθθθθ-'=-+=, 令()0f θ'=,得0tan 2θ=, 且当()00,θθ∈,()0f θ'<;当0π,2θθ⎛⎫∈ ⎪⎝⎭,()0f θ'>, 所以()f θ在()00,θ上单调递减;在0π,2θ⎛⎫⎪⎝⎭上单调递增, 所以当0θθ=时,()f θ取得极小值,即为最小值.当0tan θ=sin θ=,0cos θ=所以min 0()()4f f θθ===即这根竹竿能通过拐角处的长度的最大值为.因为7>,所以这根竹竿能从拐角处一直漂向东西向的水渠. 【点睛】本题考查了三角函数的应用,利用导数求最值,意在考查学生的计算能力和综合应用能力.4.如图,在平面直角坐标系xOy 中,点P ,Q 是以AB 为直径的上半圆弧上两点(点P 在Q 的右侧),点O 为半圆的圆心,已知2AB =,BOP θ∠=,POQ α∠=.(1)若点P 的横坐标为45,点Q 的纵坐标为12,求cos α的值; (2)若1PQ =,求AQ BP ⋅的取值范围.【答案】(1(2)10,2⎡⎤⎢⎥⎣⎦【分析】(1)计算3sin 5θ=,4cos 5θ=,()1sin 2αθ+=,()cos 2αθ+=-,利用和差公式计算得到答案. (2)3πα=,故()cos ,sin P θθ,cos ,sin 33Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1sin 62AQ BP πθ⎛⎫⋅=+- ⎪⎝⎭,计算得到答案. 【详解】(1)根据题意:3sin 5θ=,4cos 5θ=,()1sin 2αθ+=,()sin sin αθθ+<,故,2παθπ⎛⎫+∈ ⎪⎝⎭,()cos αθ+=故()()()cos cos cos cos sin sin ααθθαθθαθθ=+-=+++=. (2)1OP OQ PQ ===,故3πα=,故()cos ,sin P θθ,cos ,sin 33Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ()10B ,,()1,0A -,故()cos 1,sin cos 1,sin 33AQ BP ππθθθθ⎛⎫⎛⎫⎛⎫⋅=+++⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1cos 1cos 1sin sin sin 3362πππθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫=++-++=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.20,3πθ⎡⎤∈⎢⎥⎣⎦,则5,666πππθ⎡⎤+∈⎢⎥⎣⎦,故11sin 0,622πθ⎛⎫⎡⎤+-∈ ⎪⎢⎥⎝⎭⎣⎦.【点睛】本题考查了三角恒等变换,向量的数量积,意在考查学生的计算能力和综合应用能力.5.如图,某污水处理厂要在一正方形污水处理池ABCD 内修建一个三角形隔离区以投放净化物质,其形状为三角形APQ ,其中P 位于边CB 上,Q 位于边CD 上,已知20AB =米,6PAQ π∠=,设PAB θ∠=,记()ABCD fPAQ θ=∆正方形面积面积,当()f θ越大,则污水净化效果越好.(1)求()f θ关于的函数解析式,并求定义域; (2)求()fθ最大值,并指出等号成立条件?【答案】(1)()=4cos cos()3f πθθθ-,()124;(2) =6πθ时,()fθ最大值是3【分析】(1)在ABP △中求AP ,在ADQ △中求AQ ,再求出PAQ ∆面积得解. (2要求()f θ最大值,恒等转化成sin()A x k 型利用三角函数性质可得解.【详解】(1)在ABP △中,PAB θ∠=, 20AB =∴ 20=coscos ABAP ; 在ADQ △中3DAQ πθ∠=-,∴20=cos()cos()33AD AQ1100sin 26cos cos()3PAQ S AP AQ ππθθ∆=⋅=-()400=4cos cos()1003cos cos()3f πθθθπθθ=--由题知04πθ<<,且034∴124ππθ<<()=4cos cos()3f πθθθ∴-,()124(2)()=4cos cos()=2sin(2)136f ππθθθθ-++124ππθ<< ,22363∴ 当2=62ππθ+时,即=6πθ时()f θ最大值是3【点睛】本题考查三角恒等变换在三角函数图象和性质中的应用.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成sin()A x k 或cos()A x k 的形式;(2)根据自变量的范围确定x ωϕ+的范围,根据相应的正弦曲线或余弦曲线求值域或最值.6.某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O 及其内接等腰三角形ABC 绕底边BC 上的高所在直线AO 旋转180︒而成,如图2.已知圆O 的半径为10cm ,设BAO θ∠=,02πθ<<,圆锥的侧面积为2cm S (S 圆锥的侧面积RI π=(R -底面圆半径,I -母线长))(1)求S 关于θ的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积S 最大.求S 取得最大值时腰AB 的长度【答案】(1)2400sin cos S πθθ=,(02πθ<<);(2 【分析】(1)根据题意,设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E ,分析可得220cos AB AE θ==,sin 20sin cos BD AB θθθ==,由圆锥的侧面积公式可得S 的表达式,即可得答案;(2)由(1)可得S 的表达式可得231400sin cos 400(sin sin )2S πθθπθθ==-,设3()=-f x x x ,(01)x <<,求导求出其在区间(0,1)上的最大值,求出x 的值,即可得当sin θ=,即cos θ=时,侧面积S 取得最大值,计算即可得答案. 【详解】解:(1)根据题意,设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E , 在AOE ∆中,10cos AE θ=,220cos AB AE θ==, 在ABD ∆中,sin 20sin cos BD AB θθθ=⋅=,所以21220sin cos 20cos 400sin cos 2S πθθθπθθ=⨯⨯⨯=,(02πθ<<). (2)由(1)得:()231400sin cos 400sin sin 2S πθθπθθ==-,设()3f x x x =-,(01x <<),则()213f x x '=-,令()2130f x x '=-=,可得x =当0,3x ⎛∈ ⎝⎭时,()0f x '>,函数()f x 在区间0,3⎛⎝⎭上单调递增,当,13x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,函数()f x 在区间3⎛⎫⎪ ⎪⎝⎭上单调递减,所以()f x 在3x =时取得极大值,也是最大值;所以当sin θ=,即cos θ=时,侧面积S 取得最大值,此时等腰三角形的腰长20cos AB θ==答:侧面积S 取得最大值时,等腰三角形的腰AB 的长度为cm 3.【点睛】本题考查导数的实际应用,利用导数求函数的单调性、极值和最值,还涉及圆锥的侧面积公式和三角函数的恒等变形,关键是求出S 的表达式.7.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求证:()()f x g x ≤; (2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值. 【答案】(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果. (2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果.【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤, 所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤.(2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”. 令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时, 因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<, 所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减. 从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立. 当01c <<时, 存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=. ()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为()M x 在区间[]00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立” 当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤, 综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立. 所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立, 则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.8.如图,半圆O 的直径为2,A 为直径延长线上的一点,2OA =,B 为半圆上任意一点,以AB 为一边作等边三角形ABC .设AOB θ∠=.(1)当56πθ=,求四边形OACB 的面积; (2)当θ为何值时,线段OC 最长并求最长值.【答案】(12)当23πθ=时,OC 的最大值为3【分析】(1)利用余弦定理求出AB ,分别求出OAB ABC ∆∆,的面积即可;(2)根据余弦定理,正弦定理用θ表示出,sin ,cos AB OAB OAB ,利用余弦定理得出OC 关于θ的函数,根据三角恒等变换求出最值. 【详解】解:(1)在OAB ∆中,由余弦定理得2222cos AB OA OB OA OB θ=+-⋅514212cos 6π=+-⨯⨯5=+于是四边形OACB 的面积为21sin 2AOB ABC S S S OA OB AB θ∆∆=+=⋅+111222=⨯⨯⨯+=(2)在OAB ∆中,由余弦定理得2222cos AB OA OB OA OB θ=+-⋅14212cos 54cos θθ=+-⨯⨯⨯=-,∴AB =∴AC =在OAB ∆中,由正弦定理得sin sin AB OBOABθ=∠, 即sin sinOB OAB AB θ∠==又OB OA <,所以OAB ∠为锐角,∴cosOAB ∠==∴cos cos cos cos sin sin 333OAC OAB OAB OAB πππ⎛⎫∠=∠+=∠-∠ ⎪⎝⎭=-在OAC ∆中,由余弦定理得:2222cos OC OA AC OA CA OAC =+-⋅∠454cos 22θ⎛⎫=+--⨯52cos 54sin 6πθθθ⎛⎫=+-=+- ⎪⎝⎭.∵(0,)θπ∈, ∴当23πθ=时,OC 的最大值为3. 【点睛】本题考查了解三角形和三角函数的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.9.已知向量()2cos ,1a x =,()3sin cos ,1b x x =+-,函数()f x a b =⋅.(1)若()065f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值; (2)若函数()y fx ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数,求正数ω的取值范围.【答案】(1(2)104ω<≤ 【分析】(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由()065f x =,结合026x π+的范围以及平方关系得出0cos 26x π⎛⎫+ ⎪⎝⎭的值,由002266x x ππ⎛⎫+- ⎪⎝⎭=结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间2,33ππ⎛⎫⎪⎝⎭应该包含在()y f x ω=的一个增区间内,根据包含关系列出不等式组,求解即可得出正数ω的取值范围. 【详解】(1)())2cos cos 12cos 22sin 26f x a b xx x x x x π⎛⎫=⋅=+-=+=+ ⎪⎝⎭因为()065f x =,所以062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭.因为0,42x ππ⎡⎤∈⎢⎥⎣⎦,所以0272366x πππ≤+≤所以04cos 265x π⎛⎫+==- ⎪⎝⎭.所以00001cos 2cos 2cos 2sin 2662626x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦413525⎛⎫=-+⨯=⎪⎝⎭(2)()2sin 26y f x x πωω⎛⎫==+ ⎪⎝⎭. 令222262k x k ππππωπ-≤+≤+,k Z ∈得36k k x ππππωωωω-≤≤+,k Z ∈ 因为函数()y fx ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数所以存在0k Z ∈,使得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+⎪ ⎪⎝⎭⎝⎭所以有0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩ 因为0>ω,所以016k >- 又因为2123322πππω-≤⨯,所以302ω<≤,则03312k ≤+,所以056k ≤从而有01566k -<≤,所以00k =,所以104ω<≤. 【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.10.已知向量()()sin ,cos 3a x x ωωω=>,()cos ,sin 2b πϕϕϕ⎛⎫=<⎪⎝⎭,函数()5f x a b π=⋅+满足2445f x f x πππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,且在区间2,189ππ⎛⎫⎪⎝⎭上单调,又不等式()4f x f π⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立.(1)求函数()f x 的解析式; (2)若函数()20205y f x x ππ=--+在区间[](),0m m m ->的零点为123100,,,,x x x x ,求()10011ii x f x =+⎡⎤⎣⎦∑的值.【答案】(1)()sin(5)+45f x x+ππ=;(2)15π.【分析】(1)根据()5f x a b π=⋅+利用向量数量积公式与正弦的和角公式化简,再根据题意可得()f x 的对称轴与对称中心等.同时利用()f x 在区间2()189ππ,上单调求出关于周期的不等式,继而求得解析式.(2)将题意转换为函数()y f x =的图象与1+520y x ππ=+的图象在区间[,]m m -上有100个交点.再利用函数的对称点分析求解即可. 【详解】(1)()sin cos cos sin sin()555f x a b x x x πππωϕωϕωϕ=⋅+=++=++因为()()044f +x f x ππ-+--=,所以(0)4π-,是函数()f x 的一个对称中心, 由()()4f x f π≤,得4x π=为函数()f x 的一条对称轴,所以()4424k T T ,k ππ--=+∈Z ,即(21)22k ,k ,ππω+=∈Z 所以21=k ,k ω+∈Z . 又因为函数()f x 在区间2()189ππ,上单调,所以2=91862T ππππω-=≤, 即6ω≤,又3ω>,所以5ω=. 又因为542+k ,k Z ,ππϕπ⨯=+∈所以34k ,k Z ,πϕπ=-∈又2,πϕ≤所以4πϕ=. 所以()sin(5)+45f x x+ππ=.(2)由题意,方程1()+520f x x ππ=+在区间[,]m m -上有100个实根,即函数()y f x =的图象与1+520y x ππ=+的图象在区间[,]m m -上有100个交点.由5=,,4x+k k ππ∈Z 得,520k x k ππ=-∈Z , 所以(,)205ππ-为函数()y f x =的图象的一个对称中心.易知(,)205ππ-也是函数1+520y x ππ=+的图象的对称中心,所以()y f x =与1+520y x ππ=+的图象交点成对出现,且每一对均关于点(,)205ππ-对称, 所以1231002()50520x x x x ππ++++=⨯-⨯=-.123100()()()()250205f x f x f x f x ππ++++=⨯⨯=,所以1001[+()]i i i x f x =∑=123100123100+++++()()()()=15x x x x f x f x f x f x π++++.【点睛】本题主要考查了三角函数的性质综合运用,需要根据条件得出三角函数的对称轴、对称点以及周期范围等信息,进而列出参数的不等式进行求解.同时也考查了三角函数的对称点的求和应用.属于难题.11.如图,已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,点,A B 分别是()f x 的图象与y 轴、x 轴的交点,,C D 分别是()f x 的图象上横坐标为3π、2π的两点,//CD x 轴,,,A B D 三点共线.(1)求,ωϕ的值;(2)若关于x的方程()3f x k x =+在区间,123ππ⎡⎤⎢⎥⎣⎦上恰有两个实根,求实数k 的取值范围. 【答案】(1) 3ω=,=4πϕ;(2)12k -<≤-【分析】(1)结合AB BD =及中点坐标可求B ,根据点C 与点D 对称性求出对称轴512x π=,然后可求()f x 的最小正周期T ,进而可求ω,再由点B 代入解析式求出ϕ;(2)由(1)可知,()3f x k x =+,可求得sin 33cos 344k x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,设()cos 3,,4123g x x x πππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦,结合y k =与()g x 的图象即可求出k 的取值范围.【详解】根据题意,点A 与点D 关于点B 对称,则点B 的横坐标为0+2=24ππ,又点C 与点D 关于直线532212x πππ+==对称,f x 的最小正周期T 满足541246T πππ=-=,解得23T π=,即3ω=, 由五点法做图可知,3+=4πϕπ⨯,且0ϕπ<<, =4πϕ∴;由(1)知,函数()sin 34f x x π⎛⎫=+⎪⎝⎭,由()3f x k x =+得sin 334x k x π⎛⎫+= ⎪⎝⎭, sin 33cos 344k x x x ππ⎛⎫⎛⎫∴=+=+ ⎪ ⎪⎝⎭⎝⎭设()cos 3,,4123g x x x πππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦, 画出()g x 在,123x ππ⎡⎤∈⎢⎥⎣⎦上的函数图象,如图所示; 根据题意, y k =与()g x 恰有两个交点,实数k 应满足1k -<≤. 【点睛】本题考查三角函数的图象性质及其应用,同时考查了数形结合的思想和计算求解的能力,难度较难. 12.如图,已知点O 为直线l 外一点,直线l 上依次排列着A ,B ,C ,D 四点,满足:(1)∠AOC 为锐角,BOC COD ∠=∠; (2)2tan tan tan AOB AOD AOC ∠⋅∠=∠ (3)112tan tan tan AOC BOC AOB+=∠∠∠.(Ⅰ)求∠AOC 的值;(Ⅱ)若1AB BC ==,求CD 的值. 【答案】(Ⅰ)4π(Ⅱ)2 【分析】(1))设AOC α∠=,BOC COD β∠=∠=,得到2tan()tan()tan αβαβα-+=,化简得到答案.(2)根据正弦定理得到(2)sin()sin()CD CD αβαβ+-=+,将tan 1α=和1tan 3β=代入计算得到答案.【详解】(1)设AOC α∠=,BOC COD β∠=∠=.由2tan tan tan AOB AOD AOC ∠⋅∠=∠,得2tan()tan()tan αβαβα-+=,即22222tan tan tan 1tan tan αβααβ-=-, 所以2tan 1α=,4πα=.(2)在OCD 中,由角平分线定理得CD ODBC OB=, 在OAD ∆中,由正弦定理得2sin sin()sin()OD AD CDA αβαβ+==++, 在OAB ∆中,由正弦定理得1sin sin()sin()OB AB A αβαβ==--, 两式相除得(2)sin()sin()OD CD OB αβαβ+-=+.即(2)sin()sin()CD CD αβαβ+-=+. 将tan 1α=代入112tan tan tan AOC BOC AOB+=∠∠∠得1tan 3β=.将tan 1α=和1tan 3β=代入(2)sin()sin()CD CD αβαβ+-=+. 解得2CD =. 【点睛】本题考查了正弦定理,三角恒等变换,意在考查学生的综合应用能力和转化能力.13.已知O 为坐标原点,对于函数()sin cos f x a x b x =+,称向量(),a M b O =为函数()f x 的伴随向量,同时称函数()f x 为向量OM 的伴随函数.(1)设函数3())sin 2g x x x ππ⎛⎫=+--⎪⎝⎭,试求()g x 的伴随向量OM ;(2)记向量(1,ON =的伴随函数为()f x ,求当()85f x =且,36x ππ⎛⎫∈- ⎪⎝⎭时sin x 的值; (3)由(1)中函数()g x 的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移23π个单位长度得到()h x 的图象,已知()2,3A -,()2,6B ,问在()y h x =的图象上是否存在一点P ,使得AP BP ⊥.若存在,求出P 点坐标;若不存在,说明理由.【答案】(1)OM (=-(2(3)存在,()0,2P 【分析】(1)利用三角函数诱导公式化简函数得()cos g x x x =+,根据题意写出伴随向量; (2)根据题意求出函数()f x ,再由()85f x =及,36x ππ⎛⎫∈- ⎪⎝⎭求出sin()3x π+及cos()3x π+,由sin sin 33x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦展开代入相应值即可得解;(3) 根据三角函数图像变换规则求出()h x 的解析式,设1,2cos 2P x x ⎛⎫⎪⎝⎭,由AP BP ⊥得0AP BP ⋅=列出方程求出满足条件的点P 的坐标即可. 【详解】(1)∵3()sin )2g x x x ππ⎛⎫=--++⎪⎝⎭∴()cos cos g x x x x x =-=+∴()g x 的伴随向量OM (=-(2)向量(1,ON =的伴随函数为()sin f x x x =,()8sin 2sin()35f x x x x π=+=+=,4sin()35x π∴+=,(0,)3632x x ππππ⎛⎫∈-∴+∈ ⎪⎝⎭,,3cos()35x π∴+=14sin sin sin cos 33232310x x x x ππππ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(3)由(1)知:()cos 2sin 6g x x x x π⎛⎫=+=--⎪⎝⎭将函数()g x 的图像(纵坐标不变)横坐标伸长为原来的2倍,得到函数12sin 26y x π⎛⎫=-- ⎪⎝⎭再把整个图像向右平移23π个单位长得到()h x 的图像,得到 1211()2sin 2sin 2cos 236222h x x x x πππ⎛⎫⎛⎫⎛⎫=---=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设1,2cos2P x x ⎛⎫⎪⎝⎭,∵(2,3),(2,6)A B - ∴12,2cos32AP x x ⎛⎫=+- ⎪⎝⎭,12,2cos 62BP x x ⎛⎫=-- ⎪⎝⎭又∵AP BP ⊥,∴0AP BP ⋅=∴11(2)(2)2cos32cos 6022x x x x ⎛⎫⎛⎫+-+--= ⎪⎪⎝⎭⎝⎭221144cos 18cos 18022x x x -+-+= ∴2219252cos 224x x ⎛⎫-=- ⎪⎝⎭(*) ∵122cos22x -≤≤,∴131952cos 2222x -≤-≤- ∴225191692cos 4224x ⎛⎫≤-≤ ⎪⎝⎭ 又∵2252544x -≤∴当且仅当0x =时,2192cos 22x ⎛⎫- ⎪⎝⎭和2254x -同时等于254,这时(*)式成立∴在()y h x =的图像上存在点()0,2P ,使得AP BP ⊥. 【点睛】本题主要考查平面向量坐标形式与三角函数的综合应用,涉及三角函数诱导公式,三角恒等变换,求三角函数图像变换后的解析式,向量垂直的数量积关系,属于中档题.14.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围. 【答案】(1)证明见解析;(2)(1,2) 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+,即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+, sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去), 2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=, 022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.15.如图,半径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中AB BE <,设AOB θ∠=.(1)将十字形的面积S 表示为θ的函数; (2)求十字形的面积S 的最大值.【答案】(1)28sin cos4sin 222S θθθ=-(2)max 2S =.【分析】(1)由题意,根据三角函数和圆的半径表达2sin 2AB θ=,2cos2BE θ=,再计算十字形的面积;(2)由(1)中十字形的面积28sin cos4sin 222S θθθ=-,根据三角恒等变换,化简函数解析式,即可求解最大值. 【详解】解:(1)由题意,2sin2AB θ=,2cos2BE θ=,因为AB BE <,所以0,2πθ⎛⎫∈ ⎪⎝⎭.所以222sin 2cos 2sin 222S θθθ⎛⎫⎛⎫=⋅- ⎪ ⎪⎝⎭⎝⎭. 即28sincos4sin 222S θθθ=-,0,2πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)得:4sin 2cos 2S θθ=+-1)2tan 2θϕϕ⎛⎫=+-= ⎪⎝⎭所以max 2S =. 答:(1)28sincos4sin 222S θθθ=-;(2)max 2S =. 【点睛】本题考查(1)三角函数在几何图形中的应用;(2)三角恒等变换求最值问题;考察计算能力,实际操作能力,综合性较强,有一定难度.16.如图,某污水处理厂要在一个矩形ABCD 的池底水平铺设污水净化管道(直角EFG ∆,E 是直角顶点)来处理污水,管道越长,污水净化的效果越好.设计要求管道的接口E 是AB 的中点,F ,G 分别落在AD ,BC 上,且20AB m =,AD =,设GEB θ∠=.(1)当θ为何值时,EFG ∆的面积S 最小,并求出最小值;(2)试将污水管道的长度l 表示成θ的函数,并写出定义域; (3)当θ为何值时,污水净化的效果最好,并求此时管道l 的长度. 【答案】(1)4πθ=,100(2)10sin 10cos 10,,sin cos 63l θθππθθθ++⎡⎤=∈⎢⎥⎣⎦(3)当θ取6π或3π时效果最好,此时()20l m =. 【分析】(1)利用三角函数定义表示出EG 和FE 的长度,利用三角形的面积公式和二倍角的正弦公式可求得面积的最小值;(2)根据(1)中的表示出EG 和FE 的长度,利用勾股定理可得长度FG.三边之和可得污水管道的长度l. (3)根据(2)中的关系式利用三角函数公式化简,利用三角函数的有界限可得l 的最大值,即污水净化效果最好. 【详解】(1)由题意,,90GEB GEF θ︒∠=∠=.则90AEF θ︒∠=-, E 是AB 的中点,20AB mAD ==,()101010cos sin cos 90EG EF θθθ︒∴===-,, 所以11101010022cos sin sin 2EFG S EG EF θθθ∆=⨯⨯=⨯⨯=,当sin 21,4πθθ==时, EFG ∆的面积S 最小,最小值为100EFGS =,所以当4πθ=时,EFG ∆的面积S 最小,最小值为100;(2)由(1)得10cos sin FG θθ==,则101010sin cos sin cos l θθθθ=++, 其中当G 与点C 重合时,3πθ=,当F 与点D 重合时,6πθ=,所以63ππθ≤≤,所以污水管道的长度l 表示成θ的函数为10(sin cos )10sin cos l θθθθ++=,其定义域为,63ππθ⎡⎤∈⎢⎥⎣⎦;(3)由(2)可知则10(sin cos )10,sin cos 63l θθππθθθ⎛⎫++⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,令sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,,63ππθ⎡⎤∈⎢⎥⎣⎦,57,41212πππθ⎡⎤∴+∈⎢⎥⎣⎦, 可得sin 4πθ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,则:t ∈⎣ 又21sin cos 2t θθ-=,且1t ≠那么:22101020(1)201112t t l t t t ++===---当12t =时,长度l取得最大值为20,此时:4t πθ⎛⎫=+= ⎪⎝⎭,即5412ππθ+=或712π,6πθ∴=或3π, 故得6πθ=或3π时,污水净化效果最好,此时管道的长度为()20m ;【点睛】本题考查运用三角函数解决生活实际问题中的最值问题,关键在于设合理的角度,将所求的问题转化为此角的三角函数,属于中档题.17.定义在R 上的函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>>≤≤ ⎪⎝⎭,若已知其在()0,7x π∈内只取到一个最大值和一个最小值,且当x π=时函数取得最大值为3;当6x π=,函数取得最小值为3-. (1)求出此函数的解析式;(2)若将函数()f x 的图像保持横坐标不变纵坐标变为原来的13得到函数()g x ,再将函数()g x 的图像向左平移()000ϕϕ>个单位得到函数()h x ,已知函数()lg ()g x y eh x =+的最大值为e ,求满足条件的0ϕ的最小值;(3)是否存在实数m,满足不等式()()sinsin A A ϕϕ>若存在,求出m 的范围(或值),若不存在,请说明理由. 【答案】(1)()133sin 510f x x π⎛⎫=+ ⎪⎝⎭;(2)10π;(3)存在,1,22m ⎛⎤∈ ⎥⎝⎦【分析】(1)利用最大值和最小值确定A 和T ,进而得到ω;利用()3f π=可求得ϕ的取值,进而得到所求函数解析式;(2)由图象平移和伸缩变换原则得到()(),g x h x ,由xy e =与函数lg y x =的单调性可知只有当()1g x =,()1h x =同时取得时,函数取最大值,由此可得到010k ϕπ=,根据00ϕ>得到最终结果;(3)由偶次根式被开方数大于等于零可确定m 的范围,进而得到两角整体所处范围,根据函数单调性可. 【详解】 (1)()()max 3f x f π==,()()min 63f x f π==-3A ∴=,()22610T ππππω==⨯-= 15ω∴=()3sin 35f ππϕ⎛⎫=+= ⎪⎝⎭252k ππϕπ∴+=+,k Z ∈解得:3210k πϕπ=+,k Z ∈,又02πϕ≤≤ 310πϕ∴= ()133sin 510f x x π⎛⎫∴=+ ⎪⎝⎭(2)由题意知:()13sin 510g x x π⎛⎫=+⎪⎝⎭,()0131sin 5105h x x πϕ⎛⎫=++ ⎪⎝⎭ 函数xy e =与函数lg y x =均为单调增函数,且()11g x -≤≤,()01h x <≤∴当且仅当()13sin 1510g x x π⎛⎫=+= ⎪⎝⎭与()0131sin 15105h x x πϕ⎛⎫=++=⎪⎝⎭同时取得才有函数的最大值为e由()13sin 1510g x x π⎛⎫=+= ⎪⎝⎭得:1321025x k πππ+=+,k Z ∈ 又()0131sin 15105h x x πϕ⎛⎫=++=⎪⎝⎭ 01cos 15ϕ⎛⎫∴= ⎪⎝⎭010k ϕπ∴=,k Z ∈又00ϕ> 0ϕ∴的最小值为10π(3)m 满足2223040m m m ⎧-++≥⎨-+≥⎩,解得:12m -≤≤ ()2223144m m m -+=--++≤ 02∴≤≤同理02≤≤15ω=,310πϕ=323,10510ππϕ⎡⎤∈+⎢⎣∴⎥⎦,323,10510ππϕ⎡⎤∈+⎢⎥⎣⎦由(1)知函数在[]4,ππ-上递增若有()()sinsin A A ϕϕ>>,即12m >成立即可∴存在1,22m ⎛⎤∈ ⎥⎝⎦,使()()sin sin A A ϕϕ>成立【点睛】本题考查三角函数与函数部分知识的综合应用问题,涉及到根据函数性质求解函数解析式、三角函数的平移和伸缩变换、根据函数最值求解参数值、利用单调性求解函数不等式的问题;本题综合性较强,属于较难题.18.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为 90 米,最低点距离地面 10 米,摩天轮上均匀设置了 36 个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1) 经过t 分钟后游客甲距离地面的高度为H 米,已知H 关于t 的函数关系式满足H (t )=A sin(ωt +φ)+B 其中A >0,ω> 0),求摩天轮转动一周的解析式 H (t );(2) 问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为 30 米?(3) 若游客乙在游客甲之后进入座舱,且中间相隔 5 个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为 h 米,求 h 的最大值. 【答案】(1)()40cos 50(030)15H t t t π=-+≤≤;(2)答案见解析;(3)h 的最大值为40米【分析】(1)设()sin()H t A t B ωϕ=++,根据最高点和最低点可得A 与B ,由周期求ϕ值,即得函数解析式;(2)高度为30米,代入解析式求出t ;(3)分析出相邻两个座舱到达最低点的时间间隔为3036,甲,乙中间相隔5个座舱,则时间间隔5分钟,由此列出两人距离地面的高度差h 关于t 的函数关系式,利用三角函数的性质求出最大值. 【详解】(1)由题意可设()sin()(0,0,0)H t A t B A B ωϕω=++>>≥,摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,9010A B A B +=⎧⎨-+=⎩,得40,50A B ==. 又函数周期为30,23015ππω==, ()40sin()5015H t t πϕ=++(030t ≤≤),又0t =时,()10H t =,所以1040sin(0)5015πϕ=⨯++,即sin 1ϕ=-,ϕ可取2π-, 所以()40sin()5040cos 50(030)15215H t t t t πππ=-+=-+≤≤ (2) ()40cos 503015H t t π=-+=,1cos 152t π=解得5t =,所以游客甲坐上摩天轮5分钟后,距离地面的高度恰好为30米;(3)由题意知相邻两个座舱到达最低点的时间间隔为3036,游客甲,乙中间相隔5个座舱, 则游客乙在游客甲之后5分钟进入座舱,若甲在摩天轮上坐了t (530t ≤≤)分钟,则游客乙在摩天轮上坐了5t -分钟,所以高度差为: 40cos 50[40cos(5)50]1515140[coscos(5)]40[cos cos ]151521521540cos()153h t t t t t t t ππππππππ=-+---+=---=--=-+ 当153t πππ+=即10t =时,h 取得最大值40.【点睛】本题考查利用三角函数的性质求解析式,以及三角函数性质的实际应用,属于中档题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查数学知识,解决这类问题的关键是将实际问题转化为数学模型进行解答. 19.如图,一个角形海湾,2AOB AOB θ∠=(常数θ为锐角).拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择:方案一:如图1,围成扇形养殖区OPQ ,其中PQ l =;方案二:如图2,围成三角形养殖区OCD ,其中CD l =.(1)求方案一中养殖区的面积1S ;(2)求方案二中养殖区的最大面积(用l θ,表示);(3)为使养殖区的面积最大,应选择何种方案?并说明理由.【答案】(1)21,0,42l S πθθ⎛⎫=∈ ⎪⎝⎭;(2)224tan l S θ=;(3)应选择方案一. 【分析】(1)设此扇形所在的圆的半径为r ,则2l r θ=⋅,可得2lr θ=.利用扇形面积计算公式可得1S . (2)设OC x =,OD y =,利用余弦定理与基本不等式的性质可得:2222cos 222cos 2l x y xy xy xy θθ=+-≥-,可得:224l xy sin θ≤,即可得出. (3)由于12tan S S θθ=,令()tan f θθθ=-,求导,可得()f θ在(0,)2π上单调递增.即可得出结论. 【详解】(1)设OP r =,则2l r θ=⋅,即2lr θ=,所以 211,0,242l S lr πθθ⎛⎫==∈ ⎪⎝⎭.(2)设,OC a OD b ==.由余弦定理,得2222cos 2l a b ab θ=+-,所以22cos2l ab ab θ≥-.所以22(1cos 2)l ab θ≤-,当且仅当a b =时等号成立.所以221sin 2sin 224(1cos 2)4tan OCDl l S ab θθθθ∆=≤=-,即224tan l S θ=.(3)221114(tan ),0,2S S l πθθθ⎛⎫-=-∈ ⎪⎝⎭, 令()tan f θθθ=-,则22sin sin ()1cos cos f θθθθθ''⎛⎫=-= ⎪⎝⎭. 当0,2πθ⎛⎫∈ ⎪⎝⎭时,()0f θ'>,所以()f θ在区间0,2π⎛⎫ ⎪⎝⎭上单调递增. 所以,当0,2πθ⎛⎫∈ ⎪⎝⎭时,总有()(0)0f f θ>=,即21110S S ->,即12S S >. 答:为使养殖区面积最大,应选择方案一.【点睛】本题考查扇形的面积计算公式、余弦定理、基本不等式的性质,考查函数与方程思想、分类讨论思想的应用,考查逻辑推理能力和运算求解能力,注意利用基本不等式求最值时,记得验证等号成立的条件. 20.ABC ∆的内角,,A B C 的对边分别为,,a b c ,设(sin sin sin )(sin sin sin )A B C A B C ++⋅+-2sin sin A B =.(1)求C ;(2)若D 为BC 边上的点,M 为AD 上的点,1CD =,CAB MBD DMB ∠=∠=∠.求AM .【答案】(1) 90C =;(2)2【分析】(1)根据正弦定理进行边角互化,利用余弦定理即可求解;(2)设=CAB MBD DMB θ∠=∠=∠,将三角形中其余角用θ表示出来,结合1CD =,表示边长,即可解出.【详解】(1)由(sin sin sin )(sin sin sin )A B C A B C ++⋅+-2sin sin A B =,得()222a b c ab +-=,即222+=a b c∴90C =;(2)令CAB MBD DMB θ∠=∠=∠=,则在AMB ∆中,902,180MBA BMA θθ∠=-∠=-由正弦定理得:()()sin 902sin 180AM AB θθ=--, 即cos 2sin AB AM θθ⋅= 在ACD ∆中,90,2ACD CDA θ∠=∠=由正切定义:tan 2AC θ= 在ACB ∆中,90,ACB BAC θ∠=∠= 由正切定义:tan 2cos cos AC AB θθθ==, ∴tan 2cos 2cos 2sin AM θθθθ⋅== 【点睛】此题考查正余弦定理在解三角形中的应用,其中不乏对平面几何知识中角的关系的考查,综合应用能力要求较高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学思堂教育个性化教程教案
数学科教学设计
学生姓名教师姓名刘梦凯班主任日期时间段年级课时教学内容
教学目标
重点
难点
教学过程
命题点二解三角形
难度:高、中、低命题指数:☆☆☆☆☆
1.(2015·安徽高考)在△ABC中,AB=6,∠A=75°,∠B=45°,则
AC=________.
2.(2015·广东高考改编)设△ABC的内角A,B,C的对边分别为a,b,
c.若a=2,c=2 3,c os A=
3
2
且b<c,则b=________.
3.(2015·北京高考)在△ABC中,a=3,b=6,∠A=
2π
3
,则∠B=
________.
4.(2015·福建高考)若△ABC中,A C=3,A=45°,C=75°,则
BC=________.
5.(2015·全国卷Ⅰ)已知a,b,c分别为△ABC内角A,B,C的对边,
sin2B=2sin A sin C.
(1)若a=b,求cos B;
(2)设B=90°,且a=2,求△ABC的面积.
教
学
效
果
分
析
教学过程
6.(2015·山东高考)△ABC中,角A,B,C所对的边分别为a,b,c.
已知cos B=
3
3
,sin(A+B)=
6
9
,ac=23,求sin A和c的值.
7.(2015·全国卷Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=
2DC.
(1)求
sin B
sin C
;
(2)若∠BAC=60°,求∠B.
8.(2015·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b,
c,已知tan
⎝
⎛
⎭⎪
⎫
π
4
+A=2.
(1)求
sin 2A
sin 2A+cos2A
的值;
(2)若B=
π
4
,a=3,求△ABC的面积.
教
学
效
果
分
析
教学过程
9.(2015·江苏高考)在△ABC中,已知AB=2,AC=3,A=60°
(1)求BC的长;
(2)求sin 2C的值.
命题点三三角函数与解三角形的综合问题
1.(2015·山东高考)设f(x)=sin x cos x-cos2x+
π
4
.
(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f⎝
⎛
⎭⎪
⎫A
2
=0,a
=1,求△ABC面积的最大值.
教
学
效
果
分
析
答案在板块命题点专练(六) 简单的三角恒等变换及解三角形。