理想气体分子平均平动动能与温度的关系

合集下载

描述理想气体的统计规律

描述理想气体的统计规律
描述理想气体的统计规律
描述理想气体的统计规律
对单个分子来说,每个气体分子的运动都可视为质点运动, 遵从牛顿运动定律,只是由于受到其他分子极其频繁而又无法 预测的碰撞,其运动状态瞬息万变,显得杂乱无章,具有很大 的偶然性.但总体而言,在一定条件下,大量分子的热运动却遵从 确定的规律.这种大量偶然事件的总体所显示的规律性称为统计 规律性.显然,统计规律性不适用于少数或个别的分子,从而就 能对与其热运动相关联的宏观现象做出微观解释.
(3)利用压强的定义式
及大量分子热运动的统计
规律,推导出压强公式.
描述理想气体的统计规律
二、 温度的微观本质 1. 温度公式
根据理想气体的压强公式和状态方程,可以得到气 体的温度与分子的平均平动动能之间的关系,从而揭示 温度这一宏观量的微观本质.
将式(6- 2)与理想气体的压强公式
(6- 8)
描述理想气体的统计规律
可见,这个能量很大.
描述理想气体的统计规律
2. 气体分子的方均根速率
根据理想气体分子平均平动动能与温度的关系,可以求 出理想气体分子的方均根速率v2,它是气体分子速率的一种 统计平均值.
描述理想气体的统计规律
上式表明,气体分子的方均根速率与温度的平方根成正比, 与气体摩尔质量的平方根成反比.同一种气体,温度越高,方均根 速率越大;不同气体在同一温度下,分子质量或摩尔质量越大, 方均根速率越小.例如,在0 ℃时,虽然氢分子和氧分子的平均平 动动能相等,均为
描述理想气体的统计规律
利用式(6-8),可以计算出任何温度下理想气体分子的平均平动 动能εk.计算表明,εk一般是很小的.例如,当T=300 K时,εk约为 6.21×10-21J,即使理想气体的温度高达108 K,εk也只有2.07×10- 15J.但因为气体的分子数密度很大,因而气体分子的平均平动动能的 总和还是很大的.例如,当T=300 K,p=1.013×105 Pa时,由式( 12- 2)可得分子数密度为

气体方程与状态方程:气体状态方程与理想气体行为的关系

气体方程与状态方程:气体状态方程与理想气体行为的关系

气体方程与状态方程:气体状态方程与理想气体行为的关系气体方程是描述气体性质的数学方程,而状态方程是用来描述气体在不同压力、温度和体积下的物理状态的方程。

气体状态方程描述的是气体在一定条件下的状态,其中最常用的方程是理想气体状态方程。

理想气体状态方程是描述理想气体性质的方程,也叫做理想气体定律。

它是理想气体行为的一个近似模型,假设气体分子之间不存在吸引力和排斥力,分子之间的碰撞完全弹性,从而使得气体分子运动服从一些简单的物理规律。

理想气体状态方程可以用来描述气体在不同条件下的状态变化,以及计算气体的压强、体积和温度等物理量的关系。

理想气体状态方程的数学形式为 PV = nRT,其中 P 代表气体的压强,V 代表气体的体积,n 为气体的物质量(一般用摩尔表示),R 为气体常数,T 代表气体的绝对温度。

根据这个方程,我们可以推导出其他一些气体性质的关系。

理想气体状态方程的推导基于以下几个假设:气体是由大量非常小的分子组成的,分子之间不断自由运动,彼此之间会发生碰撞;气体分子之间不存在吸引力和排斥力,碰撞是完全弹性的;气体分子的体积可以忽略不计,分子间距较大,相对于有效体积可以忽略不计。

根据这些假设,我们可以推导出理想气体状态方程。

首先考虑一个气体分子,它的动量可以用动能定理表示为FΔt = Δp,其中 F 为分子受到的作用力,Δt 为时间间隔,Δp 为动量的变化量。

由于气体分子之间的碰撞完全弹性,它们在碰撞过程中动量守恒。

考虑一个气体容器,里面有 N 个气体分子,由这些分子所受到的所有碰撞力的总和可以表示为F_total = N Δp / Δt。

这样,我们可以得到理想气体的状态方程为 F_total/A = P =NΔp / ΔtA,其中 A 为气体容器的面积。

根据动能定理,我们有Δp = 2mv,其中 m 为气体分子的质量,v 为分子的速度。

代入这个表达式,我们有P = 2 mv N / ΔtA。

考虑到 N = nNA,其中 n 为气体的物质量(摩尔数),NA 为阿伏伽德罗常数,我们可以得到 P = 2 nmNANA / ΔtA。

第十二章气体动理论题库

第十二章气体动理论题库

第十二章气体动理论第十二章气体动理论 (1)12.1平衡态理想气体物态方程热力学第零定律 (3)判断题 (3)难题(1题)中题(1题)易题(1题)选择题 (4)难题(1题)中题(1题)易题(1题)填空题 (5)难题(1题)中题(1题)易题(2题)计算题 (7)难题(1题)中题(2题)易题(2题)12.2物质的微观模型统计规律性 (13)判断题 (13)难题(0题)中题(0题)易题(0题)选择题 (14)难题(1题)中题(1题)易题(1题)填空题 (16)难题(0题)中题(1题)易题(1题)计算题 (17)难题(0题)中题(0题)易题(0题)12.3理想气体的压强公式 (19)判断题 (19)难题(0题)中题(0题)易题(2题)选择题 (20)难题(3题)中题(4题)易题(1题)填空题 (22)难题(0题)中题(4题)易题(3题)计算题 (24)难题(1题)中题(3题)易题(2题)12.4理想气体分子的平均平动动能与温度的关系 (28)判断题 (28)难题(0题)中题(0题)易题(3题)选择题 (29)难题(1题)中题(6题)易题(1题)填空题 (31)难题(5题)中题(6题)易题(3题)计算题 (36)难题(2题)中题(5题)易题(3题)12.5能量均分定理理想气体内能 (42)判断题 (42)难题(0题)中题(0题)易题(3题)选择题 (43)难题(0题)中题(2题)易题(1题)填空题 (44)难题(0题)中题(0题)易题(3题)计算题 (46)难题(1题)中题(1题)易题(1题)12.6麦克斯韦气体分子速率分布率 (49)判断题 (49)难题(0题)中题(1题)易题(2题)选择题 (50)难题(1题)中题(9题)易题(5题)填空题 (56)难题(2题)中题(5题)易题(7题)计算题 (60)难题(2题)中题(8题)易题(4题)12.8分子平均碰撞次数和平均自由程 (68)判断题 (68)难题(0题)中题(1题)易题(1题)选择题 (69)难题(1题)中题(4题)易题(2题)填空题 (71)难题(0题)中题(3题)易题(0题)计算题 (73)难题(1题)中题(1题)易题(3题)第十二章气体动理论12.1平衡态理想气体物态方程热力学第零定律判断题判断(对错)题每个小题2分;难题1201AAA001、如果容器中的气体与外界之间没有能量和物质的传递,则这种状态叫做平衡态………………………………………………………………………………………………()解:○1考查的知识点:对平衡态概念的理解○2试题的难易度:难○3试题的综合性:12-1 平衡态○4分析:如果容器中的气体与外界之间没有能量和物质的传递,气体的能量也没有转化为其他形式的能量,气体的组成及其质量均不随时间变化,则气体的物态参量不随时间的变化这种状态叫做平衡态正确答案:(错误)中题1201AAB001、两系统达到热平衡时,两系统具有一个共同的宏观性质——温度………()解:○1考查的知识点:对平衡态概念的理解○2试题的难易度:中○3试题的综合性:12-1--平衡态○4分析:平衡态的概念正确答案:(正确)易题1201AAC001、平衡态是一种动态平衡态…………………………………………………()解:○1考查的知识点:对平衡态概念的理解○2试题的难易度:易○3试题的综合性:12-1--平衡态○4分析:平衡态的概念正确答案:(正确)选择题难题1201ABA001、处于平衡态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则他们()(A)温度、压强均不相同(B)温度、压强都相同(C)温度相同、但氦气压强小鱼氮气的压强(D)温度相同、但氮气压强小鱼氦气的压强解:○1考查的知识点:理想气体物态方程○2试题的难易度:难○3试题的综合性:综合运用了32kkTε=和p nkT=○4分析:理想分子气体的平均平动动能为32kkTε=仅与温度有关因此当分子的平均平动动能相同时,温度也相同,又由于理想气体物态方程p nkT=,分子数密度相同,所以气体的压强也相同正确答案:(C)中题1201ABB001、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:()(A)pV / m;(B)pV /(kT);(C)pV /(RT);(D)pV / (mT).解:○1考查的知识点:理想气体物态方程○2试题的难易度:中○3试题的综合性:12-1理想气体物态方程的公式pV NkT=○4分析:理想气体物态方程的公式pV NkT=;式中N是体积V中的气体分子数,k 为玻尔兹曼常量,此题容易和另一个公式p nkT=混用,导致出错。

大学物理 部分公式

大学物理 部分公式

1.理想气体物态方程:pV=NkT 变形1:Pv=νRT (R=N A k)变形2:P=nkT (n=N/V为分子数密度)2.理想气体压强公式:P=(1/3)nmv^2 变形:P=2/3nεk (εk分子平均平动动能)3理想气体平均平动动能与温度关系:1/2mv^2=εk=3/2kT4方均根速率: Vrms=(3kT/m)^(1/2)= (3Rt/M)^(1/2)5自由度:单i=3 双刚=5 双非=7 三以上刚=6 ε =i1/2kT6理想气体内能:E=N A i1/2kT =i/2RT7三种统计速率:1)最概然速率V p=(2kT/m)^(1/2)= (2RT/M)^(1/2) 2)平均速率v =(8kT/πm)^(1/2) 3)4 8分子平均碰撞次数:Z,分子连续两次碰撞间的路程均值叫做平均自由程λλ=v/ Z Z =1.41πd ^2 vn 9准静态过程中体积变化做功:ΔW=PΔV=(Sv1v2)pdV10.摩尔定体热容:C v,m=dQ/dT dE=:C v,m* dT11热机效率:η=W/Q1 =(Q1-Q2)/Q1 =1-Q1/Q2 (Q1为吸热量 Q2为热源吸收量)12等体过程中V为常量,即dW=0 dQ=dE 吸收热量全部转化为内能13转动定理:M=Jα常见转动惯量1)中心轴细棒:ml^2 /12 2)圆柱体:mR^2 / 2 3)薄圆环J=mR24)端点轴细棒:J=ml2/14平行轴定理:J=J C+md215电容器电能:W=1/2 QU=1/2 CU216 电场能量密度:w=1/2εΕ217.磁场能量:W=1/2 LI2 密度w=W/V=B2/2μ19.毕奥撒法尔定律:dB=(μ0/4π)*(Idlsinθ/r^2)= (μ0/4π)*(Idl e r/r^2)20.运动电荷磁场:B=(μ0/4π)*(qvr/r^3)21.无限长直导线B=μ0I/2πr022.库伦定律 F=(1/4πε0)(q1q2/r^2)e r23圆形载流导线轴线上一点 B=(μ0/2)(R2I/(R2+x2)3/2) x>>R B=μ0IR2/2x3A-B 等温膨胀内能不变对外做功W1=从T1高温处吸热Q1W1=Q1=vRTT1ln(V2/V1)B-C 绝热膨胀对外做功等于气体减少的内能W2=vCv,m(T1-T2)C-D 等温压缩:外界对气体做功等于气体给低温热源的热量W3=Q2= vRTT2ln(V4/V3)。

分子平均平动动能-精品

分子平均平动动能-精品
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
理想气体压强公式
p

2 3
n k
理想气体物态方程 p nkT
分子平均平动动能:
k
1mv2 2
3kT 2
微观量的统计平均 宏观可测量量
第十二章 气体动理论
1
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
温度 T 的物理意义
第十二章 气体动理论
4
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
2 理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常 量,R 为摩尔气体常量,则该理想气体的分 子数为:
(A) pV m (B) pV(kT)
(C) pV(RT) (D) pV(mT)
k
1mv2 2
3kT 2
(1)温度是分子平均平动动能的量度.
k T
(2)温度是大量分子的集体表现.
(3)在同一温度下各种气体分子平均平 动动能均相等.
第十二章 气体动理论
2
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
注意
热运动与宏观运动的区别:温度所 反映的是分子的无规则运动,它和物体 的整体运动无关,物体的整体运动是其 所有分子的一种有规则运动的表现.
解 p nkT
N nV pV kT
第十二章 气体动理论
5
第十二章 气体动理论
3
物理学
12-4 理想气体分子平均平动动能与温度的关系
第五版
讨论
1 一瓶氦气和一瓶氮气质量密度相同,分子 平均平动动能相同,且都处于平衡状态,则:

大学物理习题册答案

大学物理习题册答案

练习 十三知识点:理想气体状态方程、温度、压强公式、能量均分原理、理想气体内能一、选择题1. 容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为 (根据理想气体分子模型和统计假设讨论) ( )(A )x υ=(B )x υ= (C )m kT x 23=υ; (D )0=x υ。

解:(D)平衡状态下,气体分子在空间的密度分布均匀,沿各个方向运动的平均分子数相等,分子速度在各个方向的分量的各种平均值相等,分子数目愈多,这种假设的准确度愈高.2. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( )(A )pV /m ; (B )pV /(kT ); (C )pV /(RT ); (D )pV /(mT )。

解: (B)理想气体状态方程NkT T N R N RT m N Nm RT M M pV AA mol ====3.根据气体动理论,单原子理想气体的温度正比于 ( )(A )气体的体积; (B )气体的压强;(C )气体分子的平均动量;(D )气体分子的平均平动动能。

解: (D)kT v m k 23212==ε (分子的质量为m )4.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 ( )(A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。

解:(A) kT v m k 23212==ε,2222H O H O T T m m =(分子的质量为m ) 5.如果在一固定容器内,理想气体分子速率都提高为原来的2倍,那么 ( )(A )温度和压强都升高为原来的2倍;(B )温度升高为原来的2倍,压强升高为原来的4倍; (C )温度升高为原来的4倍,压强升高为原来的2倍; (D )温度与压强都升高为原来的4倍。

大学物理第5章题库(含答案)

大学物理第5章题库(含答案)

大学物理第5章题库(含答案)05章气体动理论一、填空题(一)易(基础题)1、一定质量的气体处于平衡态,则气体各部分的压强相等(填相等或不相等),各部分的温度相等(填相等或不相等)。

2、根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T1时,(1)一个分子的平均能量为(平均总动能)ikT2i2;(2)摩尔理想气体的内能为(3)一个双原子分子的平均转动动能为kTRT;3、对于单原子分子理想气体,①体的内能;②3RT代表的物理意义为:1mol单原子分子理想气23R代表的物理意义为:单原子分子理想气体的定体摩尔热容2iPV。

24、自由度数为i的一定量的刚性分子理想气体,其体积为V,压强为p时,其内能E=5.两瓶不同种类的理想气体,它们温度相同,压强也相同,但体积不同,则它们分子的平均平动动能相同,单位体积内分子的总平动动能相同。

(均填相同或不相同)6.一定量的某种理想气体,装在一个密闭的不变形的容器中,当气体的温度升高时,气体分子的平均动能增大,气体分子的密度不变,气体的压强增大,气体的内能增大(均填增大、不变或减少)7、理想气体的压强公式为PnkT,理想气体分子的平均平动动能与温度的关系为k3kT28、有两瓶气体,一瓶是氧气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氧气的内能是氢气的▁▁1▁▁倍。

9、一容器内贮有气体,其压强为1atm,温度为27oC,密度为1.3kgm,则气体的摩尔质量为__3210____kgmol,由此确定它是__氧____气.31310、Nf(u)du表示的物理意义是表示速率分布在~d内的分子数------------------------------------。

11、òu2u1f(u)du表示的物理意义是表示速率分布在1~2范围内的分子数3___倍.5占总分子数的比率.12、在相同条件下,氧原子的平均动能是氧分子的平均动能的___(二)中(一般综合题)1、如图1所示,两条曲线分别表示相同温度下,氢气和氧气分子的速率分布曲线,则a表示▁氧▁▁气分子的速率分布曲线;b表示▁▁氢▁气分子的速率分布曲线。

【清华】清华大学《大学物理》习题库试题及答案_07_热学习题

【清华】清华大学《大学物理》习题库试题及答案_07_热学习题

氢气分子的平均碰撞频率 Z 和平均自由程 λ 的变化情况是:
(A) Z 和 λ 都增大一倍
(B) Z 和 λ 都减为原来的一半
(C) Z 增 大一 倍而 λ 减 为原 来的 一半
(D) Z 减 为原 来的 一半 而 λ 增 大一 倍


32.4465:在一封闭容器中盛有 1 mol 氦气(视作理想气体),这时分子无规则运动的平均

B
24.4126:如图表示的两个卡诺循环,第一个沿 ABCDA
进行,第二个沿 ABC′D′A 进行,这两个循环的效率η1 和η2
C C′
的关系及这两个循环所作的净功 W1 和 W2 的关系是
A
(A) η1 = η2 ,W1 = W2
D
D′
V
4126 图
(B) η1 > η2 ,W1 = W2
(C) η1 = η2 ,W1 > W2


E
B
30.4056:若理想气体的体积为 V,压强为 p,温度为 T,一
个分子的质量为 m,k 为玻尔兹曼常量,R 为普适气体常量,则该
理想气体的分子数为:
(A) pV / m
(B) pV / (kT)
A
O
V
(C) pV / (RT) (D) pV / (mT)


4101 图
31.4407:气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,
( ) ( ) (A) 图中a表示氧气分子的速率分布曲线; v p O2 / v p H2 =4
( ) ( ) (B) 图中a表示氧气分子的速率分布曲线; v p O2 / v p H2 =1/4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、理想气体分子平均平动动能与温度的关系
(可以用一个公式加以概括)
k ε=kT v m 23212=
1.简单推导:理想气体的物态方程:RT m N m N RT M m PV A '
'== 而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=2221322132v m V N v m n P n=N/V 为单位体积内的分子数,即分子数密度, k =R /N A =1.38×10-23J ·K -1称为玻尔斯曼常量。

所以:kT v m 2
3212= 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公式。

它表明分子的平均平动动能与气体的温度成正比。

气体的温度越高,分子的平均平动动能越
大;分子的平均平动动能越大,分子热运动的程度越剧烈。

因此,温度是表征大量分子热运
动剧烈程度的宏观物理量,是大量分子热运动的集体表现。

对个别分子,说它有多少温度,
是没有意义的。

从这个式子中我们可以看出
2.温度的统计意义
该公式把宏观量温度和微观量的统计平均值(分子的平均平动动能)联系起来,从而揭示
了温度的微观本质。

关于温度的几点说明
1.由kT v m 23212=得02
1 02=v m T =,=ε,气体分子的热运动将停止。

然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。

2.气体分子的平均平动动能是非常小的。

J K T 2110
,300-==ε J K T 15
810 ,10-==ε
例1. 一容器内贮有氧气,压强为P=1.013×105Pa ,温度t=27℃,求(1)单位体积内的分
子数;(2)氧分子的质量;(3)分子的平均平动动能。

解:(1)有P=nkT
得 ()
325235
1045.2273271038.110013.1--⨯=+⨯⨯⨯==m kT P n (2)kg N M m A 26233
1031.510
02.61032--⨯=⨯⨯==
(3)J kT k 21231021.6)27327(1038.12
323--⨯=+⨯⨯⨯==ε
例2. 利用理想气体的温度公式说明Dalton 分压定律。

解:容器内不同气体的温度相同,分子的平均平动动能也相同,即
k kn k k εεεε==== 21
而分子数密度满足
∑=
i n n 故压强为
()∑∑∑∑=⎪⎭
⎫ ⎝⎛=⎪⎭⎫ ⎝⎛===i ki i k i k i k P n n n n P εεεε32323232 即容器中混合气体的压强等于在同样温度、体积条件下组成混合气体的各成分单独存在时的
分压强之和。

这就是Dalton 分压定律。

例3. 证明Avogadro 定律。

由 n=P/kT
两边同乘以体积V ,则
N=PV/RT
结论:在同温同压下,相同体积的任何理想气体所含的分子数相同,这就是Avogadro 定律。

课堂练习题:
1. 若在某个过程中,一定量的理想气体的内能E随压
强p的变化关系为一直线(其延长线过E-p图的原点),
则该过程为
(A)等温过程. (B)等压过程.
(C)等容过程. (D)绝热过程.
4. 一瓶氦气和一瓶氮气密度相同,分子平均平动
动能相同,而且它们都处于平衡状态,则它们 (A)温度相同、压强相同.
(B)温度、压强都不相同.
(C)温度相同,但氦气的压强大于氮气的压强.
(D)温度相同,但氦气的压强小于氮气的压强.
5. 若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数
减少了
(A) 0.5%. (B)4%.
(C)9%. (D)21%.
Welcome 欢迎您的下载,资料仅供参考!。

相关文档
最新文档