【免费下载】人教版平行四边形的判定测试题及答案解析

合集下载

人教版八年级数学下册 平行四边形 测试卷 含答案

人教版八年级数学下册 平行四边形 测试卷 含答案

人教版八年级数学下册平行四边形测试卷一、选择题1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直 D.对角线互相垂直平分4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°二、填空题8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB =cm.三、解答题15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.参考答案1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补【考点】矩形的性质;菱形的性质.【专题】选择题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A 不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选B.【点评】考查菱形和矩形的基本性质.2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个【考点】平行四边形的判定.【专题】选择题.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.按照平行四边形的判定方法进行判断即可.【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定方法是解答此类题目的关键.3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分【考点】菱形的判定.【专题】选择题.【分析】根据菱形的判定方法:对角线互相垂直平分来判断即可.【解答】解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有D能判定为是菱形,故选D.【点评】本题考查菱形对角线互相垂直平分的判定.4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角【考点】正方形的性质;菱形的性质;矩形的性质.【专题】选择题.【分析】根据正方形、菱形、矩形对角线的性质,分析求解即可求得答案.【解答】解:∵正方形的对角线互相平分,互相垂直,相等且平分一组对角,菱形的对角线互相平分,互相垂直且平分一组对角,矩形的对角线互相平分且相等,∴正方形、菱形、矩形都具有的性质是:对角线互相平分.故选B.【点评】此题考查了正方形、菱形、矩形的性质.此题比较简单,注意熟记正方形、菱形、矩形对角线的性质是解此题的关键.5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形 D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【专题】选择题.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形【考点】矩形的判定;菱形的判定;正方形的判定.【专题】选择题.【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【解答】解:A、正确,有三个角是直角的四边形是矩形是矩形的判定定理;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、正确,对角线互相垂直的矩形是正方形;D、正确,对角线互相垂直的平行四边形是菱形.故选B.【点评】考查了对四边形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°【考点】矩形的性质;三角形内角和定理.【专题】选择题.【分析】本题首先根据∠ADE:∠EDC=3:2可推出∠ADE以及∠EDC的度数,然后求出△ODC各角的度数便可求出∠BDE.【解答】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°﹣36°=54°,根据矩形的性质可得∠DOC=180°﹣2×54°=72°所以∠BDE=180°﹣∠DOC﹣∠DEO=18°故选B.【点评】本题考查的是三角形内角和定理以及矩形的性质,难度一般.8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质:平行四边形的对边相等且平行,即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.解题时注意数形结合思想的应用.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC 的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:如图∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.【考点】菱形的性质.【专题】填空题.【分析】根据菱形的性质利用勾股定理可求得菱形的边长,根据面积公式可求得菱形的面积.【解答】解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.【点评】本题考查的是菱形的性质以及其面积的计算方法的运用.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.【考点】三角形中位线定理;梯形中位线定理.【专题】填空题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出EF的长,再利用梯形的中位线等于两底和的一半求出MN的长度.【解答】解:∵EF是△ABC的中位线,BC=8cm,∴EF=BC=×8=4cm,∵M、N分别是EB、CF的中点,∴MN=(EF+BC)=(4+8)=6cm.故答案为4,6.【点评】本题主要利用三角形的中位线定理和梯形的中位线定理求解,熟练掌握定理是解题的关键.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.【考点】矩形的性质.【专题】填空题.【分析】根据矩形的性质得出∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,求出AO=BO=4cm,得出△AOB是等边三角形,推出AB=AO=4cm,在Rt△ABC中,由勾股定理求出BC即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,∵AC=BD=8cm,∴AO=BO=4cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4cm,在Rt△ABC中,由勾股定理得:BC===4,即矩形的边长是4cm,4cm,4cm,4cm,故答案为:4;4.【点评】本题考查了矩形性质,等边三角形的性质和判定,勾股定理的应用,注意:矩形的对角线互相平分且相等.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.【考点】矩形的判定;平行四边形的性质;菱形的判定.【专题】填空题.【分析】根据矩形是对角线相等的平行四边形,菱形是邻边相等的平行四边形可得.【解答】解:在▱ABCD中,若添加一个条件AC=BD,则四边形ABCD是矩形;若添加一个条件AB=BC,则四边形ABCD是菱形.故答案为:AC=BD;AB=BC.【点评】本题主要考查的是矩形和菱形的判定定理.但需要注意的是本题的知识点是关于平行四边形、矩形、菱形之间的关系.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB= cm.【考点】平行四边形的判定.【专题】填空题.【分析】过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.【解答】解:等腰梯形ABCD中,AD∥BC,作AE∥DC,则四边形AECD是平行四边形,因而AB=AE,CE=AD,再由∠B=60°得到△ABE是等边三角形,AE=2cm,AB=2cm.【点评】此题考查平行四边形的判定及梯形中常见的辅助线的作法.15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】解答题.【分析】由平行四边形的性质得AD=CB,∠DAE=∠BCF,再由已知条件,可得△ADE≌△CBF,进而得出结论.【解答】证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题主要考查平行四边形的性质及全等三角形的判定问题,应熟练掌握.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【专题】解答题.【分析】(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S菱形ABCD=AC•BD=×2×2=2(cm2).【点评】此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.【考点】矩形的性质.【专题】解答题.【分析】(1)AE⊥BD,∠1+∠ABD=∠ADB+∠ABD,得出∠ACB=∠ADB=∠2=∠1=30°,可知△AOB为等边三角形,继而求出∠BOC的度数;(2)由(1)知,△DOC≌△AOB,OD=OC=CD=OB,继而求出△DOC的周长.【解答】解:(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=18.【点评】本题考查矩形的性质,难度适中,解题关键是根据矩形的性质求出∠1=∠2=∠ACB=30°.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】解答题.【分析】由题意可得四边形AEDF是平行四边形,得DE=AF再由等腰三角形的性质及平行线可得DF=CF,进而可求出其结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF,又AB=AC,∴∠B=∠C,∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴AC=AF+FC=DE+DF.【点评】本题主要考查平行四边形的判定及性质以及等腰三角形的性质问题,能够熟练求解.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.【考点】菱形的性质;平行四边形的判定与性质.【专题】解答题.【分析】由菱形的性质可证AC⊥BD,又已知EF⊥AC,所以AG=BG,GE=BD,AD∥BC,可证四边形EDBF为平行四边形,可证GE=GF,即证结论.【解答】证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,∴四边形AEBF为平行四边形,即AB与EF互相平分.【点评】本题是简单的推理证明题,主要考查菱形的性质,同时综合利用平行四边形的判定方法及中位线的性质.。

平行四边形的判定含答案

平行四边形的判定含答案

平行四边形的判定一.选择题(共15小题)1.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.62.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD 3.如图,平行四边形OABC的顶点A,B坐标分别为(﹣6,0),(﹣8,2),则点C的坐标是()A.(1,2)B.(﹣1,2)C.(2,2)D.(﹣2,2)4.如图,在平行四边形ABCD中,AC、BD相交于点O,AB⊥AC,若AB=4,AC=6,则△COD的周长是()A.8B.10C.12D.165.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC6.如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD 是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD7.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 8.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等9.下列四个选项中,能判断四边形ABCD是平行四边形的是()A.AB=CD,AC=BD B.∠A=∠B,∠B=∠CC.AB=CD,AD∥BC D.AB∥CD,∠A=∠C10.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④11.在下列条件中,能判定四边形为平行四边形的是()A.两组邻边相等B.一组对边平行且另一组对边相等C.两组对边分别平行D.对角线互相垂直12.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是()A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C 14.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠B=∠C;∠A=∠DC.AB=CD,CB=AD D.AB=AD,CD=BC15.下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个二.解答题(共15小题)16.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.17.如图,在四边形ABCD中,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF.求证:四边形ABCD是平行四边形.18.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.19.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.20.如图:已知∠B=∠E=90°,点B、C、F、E在一条直线上AC=DF,BF=EC.求证四边形ACDF是平行四边形.21.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C 同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?22.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.23.如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.24.如图,已知,AE⊥BD于E点,CF⊥BD于F点,∠1=∠2,BE=DF,连接AB,CD.求证:四边形ABCD是平行四边形.25.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD,求证:四边形ABDF是平行四边形.26.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.27.如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若F A=FC.求证:四边形ADCE是平行四边形;28.如图,在四边形ABCD中,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E,F,且DE =BF.求证:(1)AE=CF;(2)四边形ABCD是平行四边形.29.如图,已知△ABC是等边三角形,点D在BC边上,△ADF是以AD为边的等边三角形,过点F作BC的平行线交线段AC于点E,连接BF.求证:(1)△AFB≌△ADC;(2)四边形BCEF是平行四边形.30.如图,点B、E、C、F在一条直线上,AB∥DF,AC∥DE,BE=FC,连接BD、AF.求证:四边形ABDF是平行四边形.平行四边形的判定参考答案与试题解析一.选择题(共15小题)1.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.2.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD 解:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴OA=OC,故此选项不符合题意;B、∵四边形ABCD是平行四边形,∴AB=CD,故此选项不符合题意;C、∵四边形ABCD是平行四边形,∴AD=BC,故此选项不符合题意;D、当四边形ABCD是菱形时,∠ABD=∠CBD,故此选项符合题意;故选:D.3.如图,平行四边形OABC的顶点A,B坐标分别为(﹣6,0),(﹣8,2),则点C的坐标是()A.(1,2)B.(﹣1,2)C.(2,2)D.(﹣2,2)解:∵A(﹣6,0),∴OA=6,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=6,∵B(﹣8,2),∴C(﹣2,2),故选:D.4.如图,在平行四边形ABCD中,AC、BD相交于点O,AB⊥AC,若AB=4,AC=6,则△COD的周长是()A.8B.10C.12D.16解:∵在平行四边形ABCD中,AC、BD相交于点O,AB⊥AC,若AB=4,AC=6,∴BO=,∴BD=10,∴△COD的周长=OD+OC+CD=5+3+4=12,故选:C.5.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故此选项不符合题意;B、∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故此选项不符合题意;C、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故此选项不符合题意;D、AB=DC,AD∥BC无法得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.6.如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD 是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD解:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形;故选:C.7.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 解:A、∵∠ABD=∠BDC,OA=OC,又∠AOB=∠COD,∴△AOB≌△COD,∴DO=BO,∴四边形ABCD是平行四边形,故此选项不合题意;B、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;C、∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BAD=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵∠ABD=∠BDC,∠BAD=∠DCB,∴∠ADB=∠CBD,∴AD∥CB,∵∠ABD=∠BDC,∴AD∥CB,∴四边形ABCD是平行四边形,故此选项不合题意;故选:B.8.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等解:A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.9.下列四个选项中,能判断四边形ABCD是平行四边形的是()A.AB=CD,AC=BD B.∠A=∠B,∠B=∠CC.AB=CD,AD∥BC D.AB∥CD,∠A=∠C解:A、AB=CD,AC=BD不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠B,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、AB=CD,AD∥BC不能判定四边形ABCD是平行四边形,故此选项错误;D、∵AB∥CD,∴∠A+∠D=∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,故此选项正确;故选:D.10.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、②④.故选:D.11.在下列条件中,能判定四边形为平行四边形的是()A.两组邻边相等B.一组对边平行且另一组对边相等C.两组对边分别平行D.对角线互相垂直解:A、两组邻边相等的四边形是筝形,故本选项不符合题意;B、一组对边平行且另一组对边相等的四边形可能是等腰梯形或平行四边形,故本选项不符合题意;C、两组对边分别平行的四边形是平行四边形,故本选项符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:C.12.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是()A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C解:D、当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,所以不能证明四边形ABCD为平行四边形;B、AB∥CD,AB=DC,一组对边分别平行且相等,可证明四边形ABCD为平行四边形;C、AB∥CD,AD∥BC,两组对边分别平行,可证明四边形ABCD为平行四边形;D、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形;故选:A.14.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠B=∠C;∠A=∠DC.AB=CD,CB=AD D.AB=AD,CD=BC解:A、根据AD∥CD,AD=BC不能判断四边形ABCD是平行四边形,故本选项错误;B、根据∠B=∠C,∠A=∠D不能判断四边形ABCD是平行四边形,故本选项错误;C、根据AB=CD,AD=BC,得出四边形ABCD是平行四边形,故本选项正确;D、根据AB=AD,BC=CD,不能判断四边形ABCD是平行四边形,故本选项错误;故选:C.15.下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个解:①AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形;②AB=CD,AD=BC;能判定四边形ABCD为平行四边形;③∠A=∠B,∠C=∠D;不能判定四边形ABCD为平行四边形;④AB=AD,CB=CD;不能判定四边形ABCD为平行四边形;能判定四边形ABCD为平行四边形的个数有1个,故选:A.二.解答题(共15小题)16.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,∴四边形ABED是平行四边形.17.如图,在四边形ABCD中,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF.求证:四边形ABCD是平行四边形.证明:∵DE⊥AC于点E,BF⊥AC于点F,∴∠DEC=∠BF A=90°,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴∠DCE=∠BAF,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形.18.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,∴S平行四边形ABCE=AB•AC=2×4=8.19.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.证明:∵BE∥DF,∴∠BEO=∠DFO,在△BEO与△DFO中,,∴△BEO≌△DFO(ASA),∴EO=FO,∵AE=CF,∴AE+EO=CF+FO,即AO=CO,∵BO=DO,∴四边形ABCD为平行四边形.20.如图:已知∠B=∠E=90°,点B、C、F、E在一条直线上AC=DF,BF=EC.求证四边形ACDF是平行四边形.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,即BC=EF,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠ACB=∠DFE,∴∠ACF=∠DFC,∴AC∥DF,又∵AC=DF,∴四边形ACDF是平行四边形.21.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C 同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?解:设点P,Q运动的时间为ts.依题意得:CQ=2t,BQ=6﹣2t,AP=t,PD=9﹣t.①当BQ=AP时,四边形APQB是平行四边形.即6﹣2t=t,解得t=2.②当CQ=PD时,四边形CQPD是平行四边形,即2t=9﹣t,解得:t=3.所以经过2或3秒后,直线PQ将四边形ABCD截出一个平行四边形.22.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.证明:连接AF,ED,EF,EF交AD于O.∵AE=DF,AE∥DF.∴四边形AEDF为平行四边形,∴EO=FO,AO=DO,又∵AB=CD,∴AO﹣AB=DO﹣CD,∴BO=CO,又∵EO=FO,∴四边形EBFC是平行四边形.23.如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.证明:∵△ABC是等边三角形,∴AC=BC=AB,∠ACB=60°;∵将AC绕点E旋转∴ED=CE,EF=AE∴△EDC是等边三角形,∴DE=CD=CE,∠DCE=∠EDC=60°,∴FD=AC=BC,∴△ABC、△AEF、△DCE均为等边三角形,∴∠CDE=∠ABC=∠EF A=60°,∴AB∥FD,BD∥AF,∴四边形ABDF是平行四边形.24.如图,已知,AE⊥BD于E点,CF⊥BD于F点,∠1=∠2,BE=DF,连接AB,CD.求证:四边形ABCD是平行四边形.证明:∵AE⊥BD于E点,CF⊥BD于F点,∴∠AED=∠BFC=90°,∵BE=DF,∴BE+EF=DF+EF,即:BF=DE又∵∠1=∠2,∴△ADE≌△CBF(ASA),∴AD=BC,又∵∠1=∠2,∴AD∥BC,∴四边形ABCD是平行四边形.25.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD,求证:四边形ABDF是平行四边形.解:∵BE=FC,∴BE+EC=FC+EC,∴BC=FE,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS),∴∠ABC=∠DFE,∴AB∥DF,又∵AB=DF,∴四边形ABDF是平行四边形.26.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.证明:∵AD是△ABC边BC上的中线,F是BE的中点,∴BF=EF,BD=CD,∴DF∥CE,∴AD∥CE,∵AE∥BC,∴四边形ADCE是平行四边形.27.如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若F A=FC.求证:四边形ADCE是平行四边形;证明:∵CE∥AB,∴∠BAC=∠ECA,在△DAF和△ECF中,∴△DAF≌△ECF(ASA),∴CE=AD,∴四边形ADCE是平行四边形;28.如图,在四边形ABCD中,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E,F,且DE =BF.求证:(1)AE=CF;(2)四边形ABCD是平行四边形.证明:(1)∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFC=90°,在Rt△DEC和Rt△BFC中,,∴Rt△DEC≌Rt△BFC(HL),∴EC=AF,∴EC﹣EF=AF﹣EF即AE=FC;(2)∵Rt△DEC≌Rt△BFC,∴∠DCE=∠BAF,∴AB∥DC,又∵AB=DC,∴四边形ABCD是平行四边形.29.如图,已知△ABC是等边三角形,点D在BC边上,△ADF是以AD为边的等边三角形,过点F作BC的平行线交线段AC于点E,连接BF.求证:(1)△AFB≌△ADC;(2)四边形BCEF是平行四边形.证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠F AD=∠BAC=60°,又∵∠F AB=∠F AD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠F AB=∠DAC,且AF=AD,AB=AC∴△AFB≌△ADC(SAS);(2)∵△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;30.如图,点B、E、C、F在一条直线上,AB∥DF,AC∥DE,BE=FC,连接BD、AF.求证:四边形ABDF是平行四边形.证明:∵BE=FC,∴BE+CE=FC+CE,即BC=FE,∵AB∥DF,AC∥DE,∴∠ABC=∠DFE,∠ACB=∠DEF,在△ABC和△DFE中,,∴△ABC≌△DFE(ASA),∴AB=DF,∵AB∥DF,∴四边形ABDF是平行四边形.。

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.,1)B.(1,1)C.(1D.,1)2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.103、如图,已知P 是AOB ∠平分线上的一点,60AOB ︒∠=,PD OA ⊥,M 是OP 的中点,4cm DM =,如果C 是OB 上一个动点,则PC 的最小值为( )A .8cmB .5cmC .4cmD .2cm4、顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形5、如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为( )A .2.5kmB .4.5kmC .5kmD .3km6、如图,已知四边形ABCD 和四边形BCEF 均为平行四边形,∠D =60°,连接AF ,并延长交BE 于点P ,若AP ⊥BE ,AB =3,BC =2,AF =1,则BE 的长为( )A .5B .C .D .7、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.4858、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,BC AC⊥于点C.已知16AC=,6BC=.点B到原点的最大距离为()A.22 B.18 C.14 D.109、如图,已知在正方形ABCD中,10AB BC CD AD====厘米,90A B C D∠=∠=∠=∠=︒,点E在边AB 上,且4AE=厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使BPE与CQP全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或210、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A .46.5cmB .22.5cmC .23.25cmD .以上都不对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直角三角形ABC 中,∠B =90°,点D 是AC 边上的一点,连接BD ,把△CBD 沿着BD 翻折,点C 落在AB 边上的点E 处,得到△EBD ,连接CE 交BD 于点F ,BG 为△EBD 的中线.若BC =4,△EBG 的面积为3,则CD 的长为____________2、如图,在▱ABCD 中,BC =3,CD =4,点E 是CD 边上的中点,将△BCE 沿BE 翻折得△BGE ,连接AE ,A 、G 、E 在同一直线上,则AG =______,点G 到AB 的距离为______.3、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN AM AN +的最小值是________.4、一个三角形三边长之比为4∶5∶6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为_________cm .5、如图,在长方形ABCD 中,9DC =.在DC 上找一点E ,沿直线AE 把AED 折叠,使D 点恰好落在BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.2、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、如图:在Rt ABC中,90∠=,点O为AB的中点,点P为直线BC上的动点(不与点A︒ACB︒∠=,30∆,连接BQ.B,C重合),连接OC,OP,以OP为边在OC的上方作等边OPQ(1)OBC是________三角形;=;(2)如图1,当点P在边BC上时,运用(1)中的结论证明CP BQ(3)如图2,当点P在CB的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.4、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.5、已知:如图,30∠=︒,45B∠=︒,AD是BC上的高线,CE是AB边上的中线,DG CE于G.ACDAB=,求线段AC的长;(1)若6(2)求证:CG EG.---------参考答案-----------一、单选题1、B【解析】【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.2、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:5AB=,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.3、C【解析】【分析】根据题意由角平分线先得到OPD △是含有30角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP ,DP 的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC 的最小值.【详解】解:∵点P 是∠AOB 平分线上的一点,60AOB ∠=︒, ∴1302AOP AOB ∠=∠=︒,∵PD ⊥OA ,M 是OP 的中点,4cm DM =∴28cm OP DM ==, ∴14cm 2PD OP ==∵点C 是OB 上一个动点∴当PC OB ⊥时,PC 的值最小,∵OP 平分∠AOB ,PD ⊥OA ,PC OB ⊥∴PC 最小值4cm PD ==,故选C .【点睛】本题主要考查了角平分线的性质、含有30角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、C【解析】【分析】如图,矩形ABCD 中,利用三角形的中位线的性质证明111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥,再证明四边形ABCD 是平行四边形,再证明,EF FG 从而可得结论.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥, ,,EF GH EF GH ∥∴ 四边形ABCD 是平行四边形,11,,,22AC BD EF BD FG AC === ,EF FG ∴= ∴ 四边形EFGH 是菱形.故选C .【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.5、D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.6、D【解析】【分析】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,先证∠DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果.【详解】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,∵四边形ABCD是平行四边形,AB=3,∠ADC=60º,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60º,∵DH⊥BC,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=, ∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.7、B【解析】【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.8、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CE12=AC=8,∵BC⊥AC,BC=6,∴BE=10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.解:当2a =,即点Q 的运动速度与点P 的运动速度都是2厘米/秒,若△BPE ≌△CQP ,则BP =CQ ,BE =CP ,∵AB =BC =10厘米,AE =4厘米,∴BE =CP =6厘米,∴BP =10-6=4厘米,∴运动时间t =4÷2=2(秒);当2a ≠,即点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵∠B =∠C =90°,∴要使△BPE 与△OQP 全等,只要BP =PC =5厘米,CQ =BE =6厘米,即可.∴点P ,Q 运动的时间t =252 2.5BP ÷=÷=(秒).综上t 的值为2.5或2.故选:D .【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.10、C【解析】【分析】如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线,则14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==,即可得到△DEF 的周长==12cm DE DF EF ++,由此即可求出其他四个新三角形的周长,最后求和即可.解:如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线, ∴14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==, ∴△DEF 的周长==12cm DE DF EF ++,同理可得:△GHI 的周长==6cm HI HG GI ++,∴第三次作中位线得到的三角形周长为3cm ,∴第四次作中位线得到的三角形周长为1.5cm∴第三次作中位线得到的三角形周长为0.75cm∴这五个新三角形的周长之和为1263 1.50.75=23.25cm ++++,故选C .【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1【解析】【分析】由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,由勾股定理可得,CE =得,26BCD BDE BEG S S S ===△△△,求得CF 的长度,即可求解.【详解】解:由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,BCD BDE △≌△ ∴BCE 为等腰直角三角形,F 为CE 的中点,BCD BDE SS = ∴12BF CF EF CE ===由勾股定理可得,CE∴12BF CF EF CE ====∵BG 为△EBD 的中线,△EBG 的面积为3∴26BCD BDE BEG S S S ===△△△162BCD S BD CF =⨯=△,解得BD =∴DF BD BF =-=由勾股定理得:CD =【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解.2、【解析】【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,AGB DBAG AED BG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=118,∴GF2=AG2-AF2=4-12164=13564,∴GF,故答案为2.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.3【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M , 则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长, ∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO=CO =AO ,∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.4、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可.【详解】∵ 如图,H、I、J分别为BC,AC,AB的中点∴12HI AB=,12IJ BC=,12HJ AC=又∵30HI IJ HJ++=∴60AB BC AC++=∵AB:AC:BC=4:5:6,即BC边最长∴660=244+5+6BC=⨯故填24.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.5、6【解析】【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD∵12•AB•BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF=.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面积=1122CF CE⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB =4,BC =3,5AC =,利用勾股定理逆定理即可得到△ABC 是直角三角形;(2)如图,AB =AC =BC ==△ABC 是直角三角形;(3)如图,AB BC CD AD =====AC =222AC AB BC =+,∠ABC =90°,即可得到四边形ABCD 是正方形,10ABCD SAB BC =⋅=.【详解】解:(1)如图所示,AB =4,BC =3,5AC =,∴222AC AB BC =+,∴△ABC 是直角三角形;(2)如图所示,AB ==AC =BC =∴222AC AB BC =+,∴△ABC 是直角三角形;(3)如图所示,AB BC CD AD ==== AC =∴222AC AB BC =+,∴∠ABC =90°,∴四边形ABCD 是正方形,∴10ABCDS AB BC =⋅=.【点睛】 本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB 的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==, DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠,EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明12BC OC OB AB ===,即可证明△OBC 是等边三角形; (2)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =;(3)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =.【详解】(1)∵∠ACB =90°,∠A =30°,O 是AB 的中点, ∴12BC OC OB AB ===, ∴△OBC 是等边三角形,故答案为:等边;(2)由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒-∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=;(3)成立,CP BQ =证明:由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒+∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.4、(1)见解析;(2)正方形ABCD的面积为2a【分析】(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC(三线合一),即BD⊥AC,∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.5、(1)(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD =3,根据等腰直角三角形,得到CD =AD =3,根据勾股定理,得到AC 的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE =DC ,根据等腰三角形三线合一性质,证明即可.【详解】(1)AD BC ⊥90ADB ADC ∴∠=∠=︒30B ∠=︒,6AB =132AD AB ∴== 45ACD ∠=︒45CAD ∴∠=︒3AD CD ∴==AC ∴=(2)连接DE90ADB ∠=︒,AE BE =12ED AB ∴=, 12AD AB =,AD CD =, ED CD ∴=,GD EC ⊥,EG CG ∴=.【点睛】 本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.。

八年级数学下册《平行四边形的判定》练习题及答案解析

八年级数学下册《平行四边形的判定》练习题及答案解析

八年级数学下册《平行四边形的判定》练习题及答案解析一、选择题(共12小题)1. 下面几组条件中,能判定一个四边形是平行四边形的是( )A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2. 在同一平面内,设a,b,c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )A. 1cmB. 3cmC. 5cm或3cmD. 1cm或3cm3. 下面条件中,能判定四边形是平行四边形的条件是( )A. 一组对角相等B. 对角线互相平分C. 一组对边相等D. 对角线互相垂直4. 如图,四边形ABCD中,AD∥BC,点M是AD的中点,若动点N从点B出发沿边BC方向向终点C运动,连接BM,CM,AN,DN,则在整个运动过程中,阴影部分面积和的大小变化情况是( )A. 不变B. 一直变大C. 先减小后增大D. 先增大后减小5. 在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为( )A. 2√5B. 2√10C. 6√2D. 3√56. 如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A. a户最长B. b户最长C. c户最长D. 三户一样长7. 在同一平面内,已知a∥b∥c,若直线a,b间的距离为3cm,直线a,c间的距离为5cm,则直线b,c间的距离是( ).A. 2cmB. 8cmC. 2cm或8cmD. 不确定8. 下列命题中,说法正确的是( )A. 所有菱形都相似B. 两边对应成比例且有一组角对应相等的两个三角形相似C. 三角形的重心到一个顶点的距离,等于它到这个顶点对边距离的两倍D. 斜边和直角边对应成比例,两个直角三角形相似9. 如图,已知直线a∥b,小王在直线a上任取5个点:P1,P2,P3,P4,P5,经测量发现它们到直线b的距离都是3cm;小丁在直线b上任取5个点:Q1,Q2,Q3,Q4,Q5,经测量发现它们到直线a的距离b也都是3cm.该操作反映了平行线的某种性质,下列对该性质的描述中,不正确的是( )A. 如果直线a∥b,那么直线a上任意一点到直线b的距离都相等B. 如果直线a∥b,那么直线b上任意一点到直线a的距离都相等C. 两条平行线中,任意一条直线上的所有点到另一条直线的距离是一个定值D. 两条平行线中,一条直线上的任意一点与另一条直线上的任意一点之间的距离都是一个定值10. 平行四边形ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )A. BE=DFB. AE=CFC. AF∥CED. ∠BAE=∠DCF11. 如图所示,l1∥l2,B,C是l2上的两点,A,D,E是l1上的三点,S△ABC记作S1,S△DBC记作S2,S△EBC记作S3,则( )A. S1>S2>S3B. S3>S2>S1C. S1=S2=S3D. 无法比较12. 有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图①),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图②),如果按此规律继续“生长”下去,那么它将变得“枝繁叶茂”.在“生长”了2021次后形成的图形中所有正方形的面积和是( )A. 2019B. 2020C. 2021D. 2022二、填空题(共8小题)13. 下列四边形中,是平行四边形的是(请填写序号).14. 如图,在四边形ABCD中,AB∥CD,请你添加—个条件,使得四边形ABCD成为平行四边形,你添加的条件是 .15. 一个四边形四条边顺次是a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是.16. 如图,a∥b,AB⊥b,CD⊥b,AB=4cm,则CD=.17. 已知直线a、b、c互相平行,直线a与b的距离是2厘米,直线b与c的距离是6厘米,那么直线a与c的距离是.18. 如图,已知AD∥BC,AB∥CD,过点A分别画直线BC,CD的垂线,垂足为点E,F.通过度量,可以得到平行线AD与BC间的距离为,平行线AB 与CD间的距离为.19. 在平面直角坐标系中,点A,B,C的坐标分别为A(−2,1),B(−3,−1),C(1,−1).若四边形ABCD为平行四边形,那么点D的坐标是.20. 如图,AD∥BC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是1,则△BOC的面积是.三、解答题(共6小题)21. 已知:如图所示,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.22. 如图,已知点E,F分别在长方形ABCD的边AB,CD上,且AF∥CE.请分别度量AE与CF之间的距离,AF与CE之间的距离(精确到0.1cm).23. 若两个角的两边分别垂直,其中一个角比另一个角的2倍少30∘,求这两个角的度数.24. 如图,已知E为平行四边形ABCD的边BC上的任一点,DE延长线交AB延长线于点F.试说明S△ABE=S△CEF的理由.25. 如图,在平行四边形ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.求证:AE=BF.26. 如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=√a−21+√21−a+16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P,Q分别从点A,O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒).(1)求B,C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P,Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P,Q两点的坐标.参考答案与解析1. B2. C3. B4. A【解析】连接MN,过F作WQ⊥AD于Q,交BC于W,过E作EH⊥AD于Q,交BC于P,∴QW=PH,∵AD∥BC,∴WQ⊥BC,∴S△MFD+S△FNC=12×MD×FQ+12×NC×FW=12×(MD+NC)×QW,S△AEM+S△BNE=12×AM×EH+12×BN×EP=12×(AM+BN)×PH,∴阴影部分面积=12×(AD+BC)×QW,∴阴影部分面积不变.5. B【解析】作A(0,2)关于x轴的对称点A′(0,−2),过A′作A′E∥x轴且A′E=CD=2,故E(2,−2),连接BE交x轴与D点,过A′作A′C∥DE交x轴于点C,所以四边形CDEA′为平行四边形,此时AC+BD最短等于BE的长,即AC+BD=A′C+BD=DE+BD=BE=√(2−0)2+(−2−4)2=2√10.6. D7. C8. D9. D10. B【解析】A.如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B.如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C.如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF∥CE且AF=CE,∴四边形AECF是平行四边形,故不符合题意;D.如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE∥CF且AE=CF,∴四边形AECF是平行四边形,故不符合题意.11. C【解析】同底等高的三角形的面积相等.12. D 【解析】设正方形A,B,C围成的直角三角形的三条边长分别是a,b,c.如图,根据勾股定理,得a2+b2=c2,一次“生长”后,S A+S B=S C=1.第二次“生长”后,S D+S E+S F+S G=S A+S B=S C=1,推而广之,“生长”了2021次后形成的图形中所有的正方形的面积和是2022×1=2022.13. ①②③14. 答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B= 180∘或∠C+∠D=180∘等.15. 平行四边形16. 4cm17. 4厘米或8厘米18. 4cm,5cm【解析】如图所示:通过度量,得到AE=4cm,AF=5cm,故平行线AD与BC的距离为4cm,AB与CD 的距离为5cm.19. (−6,1),(2,1),(0,−3)20. 421. ∵AB∥DC,∴∠B=∠ECD,在△ABC和△ECD中,{AB=EC,∠B=∠ECD, BC=CD,∴△ABC≌△ECD(SAS),∴∠A=∠E(全等三角形的对应角相等).22. 过点E作EH⊥AF于点H.经测量可得:AD=3.2cm,EH=1.3cm,则AE与CF之间的距离是 3.2cm,AF与CE之间的距离是 1.3cm.23. 设另一个角的度数为α,则这个角的度数是2α−30∘.因为两个角的两边分别垂直,所以α+2α−30∘=180∘或α=2α−30∘,解得α=70∘或α=30∘,所以2α−30∘=110∘或2α−30∘=30∘.故这两个角的度数分别是110∘,70∘或30∘,30∘.24. 提示:连接BD,因为AD∥BC,所以S△ABE=S△DBE,因为CD∥AF,所以S△EFD=S△BFC,所以S△BED=S△CEF,所以S△ABE=S△CEF.25. ∵CF∥BD且CF=DE,∴四边形CDEF是平行四边形,∴CD∥EF,CD=EF.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴AB∥EF,AB=EF,∴四边形ABFE是平行四边形,∴AE=BF.26. (1)因为b=√a−21+√21−a+16,所以a=21,b=16,故B(21,12),C(16,0).(2)根据题意得:QP=2t,QO=t,则:PB=21−2t,QC=16−t,因为当PB=QC时,四边形PQCB是平行四边形,所以21−2t=16−t,计算得出:t=5,所以P(10,12),Q(5,0).(3) 当 PQ =CQ 时,过 Q 作 QN ⊥AB ,如图所示,根据题意得:122+t 2=(16−t )2,计算得出:t =72,故 P (7,12),Q (72,0),当 PQ =PC 时,过 P 作 PM ⊥x 轴,如图所示,根据题意得:QM =t ,CM =16−2t ,则 t =16−2t ,计算得出:t =163,2t =323, 故 P (323,12),Q (163,0).。

(完整版)平行四边形的判定练习题(含答案)

(完整版)平行四边形的判定练习题(含答案)

平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=12 AD.13.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F分别为AB,CD的中点,EF=1cm,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△AB C中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•试说明:(1)DE∥BC.(2)DE=12(BC-AC).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CF E(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12 AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12 AC.同理,GH//12 AC.∴EF//GH,∴四边形EFGH为平行四边形. 16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF=12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12 AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.222221AB AD-=-3cm). 19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12 BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1 223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(有答案解析)

人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(有答案解析)
(1)试判断线段 与 的长度之间有怎样的数量关系?并证明你的结论;
(2)现有三个论断:
① ;
② 90°;
③ .
请从上述三个论断中选择一个论断作为条件,证明四边形 是菱形.
22.如图,已知点 在 的 边上, 交 于 , 交 于 .
(1)求证: ;
(2)若 平分 ,试判断四边形 的形状,并说明理由.
23.如图,已知在 中, 是斜边 上的中线,点 是边 延长线上一点,连结 过点 作 于点 ,且 .
3.如图, 是直线 上的一点,且 .已知 的面积为 ,则 的面积为()
A.52B.26C.13D.39
4.如图,已知正方形ABCD的边长为4,点Р是对角线BD上一动点(不与D,B重合), 于点F, 于点E,连接AP,EF.则下列结论错误的是()
A. B. ,且
C.四边形 的周长是8D.
5.如图,在平行四边形 中,对角线 交于点O, ,E,F,G分别是 的中点, 交 于点H.下列结论:① ;② ;③ ;成立的个数有( )
15.在四边形 中, ∥ ,要使四边形 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况)
16.生活中,有人喜欢把传送的便条折成形状 ,折叠过程如图所示(阴影部分表示纸条的反面):
已知由信纸折成的长方形纸条(图①)长为 ,宽为 .如果能折成图④的形状,且为了美观,纸条两端超出点 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点 与点 的距离(用 表示)为______ .
(1)求证:
(2)若四边形 是菱形,且 ,求 的值.
26.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.

人教版八年级数学下册18.1.2《平行四边形的判定》习题含答案

人教版八年级数学下册18.1.2《平行四边形的判定》习题含答案

A 第7题 DBC OD C A EB F 第3题 B第6题 C A D 第十八章平行四边形18.1.2《平行四边形的判定》习题含答案一、选择题1. 下列不能判定一个四边形是平行四边形的是( )A. 两组对边分别平行的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且另一组对边相等的四边形是平行四边形D. 对角线互相平分的四边形是平行四边形2. 下列不能判定一个四边形是平行四边形的是( )A.AD ∥BC ,AB ∥CDB.AB ∥CD ,AB =CDC.AD ∥BC ,AB =DCD.AB =CD ,AD =BC3.如图,在 ABCD 中,点E ,F 分别在AB ,CD 上,下列条件不能判定四边形DEBF 一定是平行四边形的是( ) A.AE =CF B.DE =BFC.∠ADE =∠CBFD.∠AED =∠CFB4.顺次连接平面上A ,B ,C ,D 四点得到一个四边形,下列条件:①AB ∥CD ;②BC =AD ;③∠A =∠C ;④∠B =∠D .从这四个条件中任取两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有( )A.5种B.4种C.3种D.2种二、填空题5.在 中,∠A =80°,要使四边形ABCD 是平行四边形,则∠B =___, ∠C =___.6. 如图,在四边形ABCD 中, AB =5cm, CD =5cm,∠B =120°,∠C =60°,则四边形ABCD 是________________. 120° 60°5cm 5cm7.如图,AO =OC ,BD =16cm ,当OB =______cm 时,四边形ABCD 是平行四边形.8.如图,在 ABCD 中,AB ∥CD ,AD ∥BC ,现在请你添加一个适当的条件_________,使得四边形AECF 为平行四边形.三.解答题 A 第8题D B CE F9.如图,在四边形ABCD 中,AD =BC ,BE =DF ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F . 求证:四边形AFCE 是平行四边形.10.如图,在 ABCD 中,四个内角的平分线AE ,BF ,CH ,DG 分别交对边于点E ,F ,H ,G , 角平分线的交点分别为M ,N ,P ,Q .求证:四边形MNPQ 是平行四边形.A F DB GC 第10题 H E M N P QD 第9题C A B E F第十八章平行四边形18.1.2平行四边形的判定习题答案一、选择题:1. C2. C3. B4. C二、填空题:5. 100°,80°6. 平行四边形7. 88. BE =DF (答案不唯一)三、解答题:9. 证明:连接AF ,CE .∵AE ⊥BD ,CF ⊥BD∴∠AEB =∠CFD =90°∴AE ∥CF∵BE =DF ∴BD -BE =BD -DF即DE =BF 在Rt △ADE 和Rt △CBF 中 AD =BC DE =BF∴Rt △ADE ≌Rt △CBF (HL ) ∴AE =CF∴四边形AECF 是平行四边形.(一组对边平行且相等的四边形是平行四边形)10. 证明 ∵四边形ABCD 是平行四边形∴AD ∥BC∴∠BAD +∠ABC =180°∵AE ,BF 分别为∠BAD 和∠ABC 的角平分线 ∴∠BAE =21∠BAD ,∠ABF =21∠ABC ∴∠BAE +∠ABF =90° ∴∠AMB =90°∴∠NMQ =90°同理可证∠NPQ =∠MNP =∠MQP =90°∴四边形MNPQ 是平行四边形.(两组对角分别相等的四边形是平行四边形) D 第9题 C A B E F A F D B G C 第10题 H E M N P Q。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点 O,
(1)若 AD=8cm,AB=4cm,当 BC=___cm,CD=__ _cm 时,四边形 ABCD 为平行四边形;
(2)若 AC=10cm,BD=8cm,当 AO=_ _cm,DO=__ cm 时,四边形 ABCD 为平行四边形.
考点:平行四边形的判定 专题:几何 分析:①一组对边平行且相等的四边形是平行四边形;
所以四边形 EBFD 是平行四边形。 ∴ BD,EF互相平分
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
解答:根据两组对角分别相等的四边形是平行四边形,
∠A=∠C,∠B=∠D 故选 C 点评:两组对边角分别相等的四边形是平行四边形。
2. (人教版.八下.平行四边形.18.2,3 分)能判定四边形 ABCD 为平行四边形的题设是 ( ).
(A)AB∥CD,AD=BC;
(C)AB=CD,AD=BC;
考点:平行四边形的判定
考点:平行四边形的判定
专题:几何
分析:①一组对边平行且相等的四边形
是平行四边形;
②平行四边形的对角线互相平分;
解答:因为平行四边形ABCD 所以 AB ∥ ������������且������������ = ������������
因为AE=CF 所以 DF ∥ ������������且������������ = ������������
考点:平行四边形的判定 专题:几何 分析:对角线互相平分的四边形是平行四边形。 解答:根据平行四边形的判定定理得
对角线互相平分的四边形是平行四边形,故选D 点评:一定掌握平行四边形的判定定理。 5. (人教版.八下.平行四边形.18.2,3 分)如图,在四边形 ABCD 中,AC、BD 相交于
考点:平行四边形的判定
专题:几何
分析:①一组对边平行且相等的四边形是平行四边形;故 A 错误; ②两组对角分别相等的四边形是平行四边形。故 B,D 不是对角相等; ③两组对边分别平行的四边形是平行四边形故 C 正确;
解答:由平行四边形的判定得
C:可以得到两组对边分别平行,故 C 可以判定是平行四边形。
所以 AB ∥ ������������且������������ = ������������ 又因为AE=CF 所以 DF ∥ ������������且������������ = ������������ ∴ 四边形 EBFD 是平行四边形。 则 DE ∥ ������������ 又因为AE=CF 所以四边形 AECF 是平行四边形。 则 EC ∥ ������������ 所以 EC ∥ ������������,DE ∥ ������������ ∴ 四边形EMFN是平行四边形 点评:等量减等量结果相等。 8. (人教版.八下.平行四边形.18.2,4 分)已知:如图,在平行四边形ABCD 中,点M,N在对角线AC上,且 BM=DN. 求证:四边形 AMCN是平行四边形.
解答:由平行四边形的判定得
C:AB=CD,AD=BC;是正确的,故选 C
点评:一定掌握平行四边形的判定定理。
3. (人教版.八下.平行四边形.18.2,3 分)下面给出的条件中,能判定一个四边形
是平行四边形的是( )
A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角互补
C.一组对角相等,一组邻角互补 D.一组对角相等,另一组对角互补
A O
M B
考点:平行四边形的判定 专题:几何 分析:①对角线互相平分的四边形是平行四边形; 解答:因为平行四边形ABCD
所以 OA=OC,OB=OD 又因为 BM=DN 所以 OM=ON
D N
C
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
②对角线互相平分的四边形是平行四边形; 解答:(1)AD=8cm,AB=4cm,所以当 BC=_8__cm,CD=__4 _cm 时,四边形 ABCD 为平行四
边形;
(2)若 AC=10cm,BD=8cm,当 AO=_5 _cm,DO=_4_ cm 时,四边形 ABCD 为平行四
边形. 点评:一定掌握平行四边形的判定定理。 6. (人教版.八下.平行四边形.18.2,4 分)已知:如图,在平行四边形ABCD 中,E,F分别是AB,DC上的两点,且AE=CF.求证:BD,EF互相平分
1(人教版.八下.平行四边形.18.2,3 分)下面给出了四边形ABCD中
∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是(

A.1:2:3:4 B.2:2:3:3
C.2:3:2:3 D.2:3:3:2
考点:平行四边形的判定
专题:几何
分析:两组对角分别相等的四边形是平行四边形。
专题:几何
(B)∠A=∠B,∠C=∠D;
(D)AB=AD,CB=CD
分析:①一组对边平行且相等的四边形是平行四边形;故 A 错误; ②两组对角分别相等的四边形是平行四边形。故 B 不是对角相等; ③两组对边分别相等的四边形是平行四边形故 C 正确; ④两组对边分别相等的四边形是平行四边形故 D 错误;
故选 C
点评:一定掌握平行四边形的判定定理。
4. (人教版.八下.平行四边形.18.2,3分)下列条件中能判断四边形是平行四边形的是
( ).
(A)对角线互相垂直
(C)对角线互相垂直且相等 (D)对角线互相平分
(B)对角线相等
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
相关文档
最新文档