离散数学第十章基本图类及算法习题答案

合集下载

离散数学课后习题+答案:总结 计划 汇报 设计 可编辑

离散数学课后习题+答案:总结 计划 汇报 设计 可编辑

离散数学习题答案习题一1. 判断下列句子是否为命题?若是命题说明是真命题还是假命题。

(1)3是正数吗?(2)x+1=0。

(3)请穿上外衣。

(4)2+1=0。

(5)任一个实数的平方都是正实数。

(6)不存在最大素数。

(7)明天我去看电影。

(8)9+5≤12。

(9)实践出真知。

(10)如果我掌握了英语、法语,那么学习其他欧洲语言就容易多了。

解:(1)、(2)、(3)不是命题。

(4)、(8)是假命题。

(5)、(6)、(9)、(10)是真命题。

(7)是命题,只是现在无法确定真值。

2. 设P表示命题“天下雪”,Q表示命题“我将去书店”,R表示命题“我有时间”,以符号形式写出下列命题。

(1)如果天不下雪并且我有时间,那么我将去书店。

(2)我将去书店,仅当我有时间。

(3)天不下雪。

(4)天下雪,我将不去书店。

解:(1)(┐P∧R)→Q。

(2)Q→R。

(3)┐P。

(4)P→┐Q。

3. 将下列命题符号化。

(1)王皓球打得好,歌也唱得好。

(2)我一边看书,一边听音乐。

(3)老张和老李都是球迷。

(4)只要努力学习,成绩会好的。

(5)只有休息好,才能工作好。

(6)如果a和b是偶数,那么a+b也是偶数。

(7)我们不能既游泳又跑步。

(8)我反悔,仅当太阳从西边出来。

(9)如果f(x)在点x0处可导,则f(x)在点x0处可微。

反之亦然。

(10)如果张老师和李老师都不讲这门课,那么王老师就讲这门课。

(11)四边形ABCD是平行四边形,当且仅当ABCD的对边平行。

(12)或者你没有给我写信,或者信在途中丢失了。

解:(1)P:王皓球打得好,Q:王皓歌唱得好。

原命题可符号化:P∧Q。

(2)P:我看书,Q:我听音乐。

原命题可符号化:P∧Q。

(3)P:老张是球迷,Q:老李是球迷。

原命题可符号化:P∧Q。

(4)P:努力学习,Q:成绩会好。

原命题可符号化:P→Q。

(5)P:休息好,Q:工作好。

原命题可符号化:Q→P。

(6)P:a是偶数,Q:b是偶数,R:a+b是偶数。

离散数学及其应用集合论部分课后习题答案

离散数学及其应用集合论部分课后习题答案

作业答案:集合论部分P90:习题六5、确定下列命题是否为真。

(2)ÆÎÆ(4){}ÆÎÆ(6){,}{,,,{,}}a b a b c a b Î解答:(2)假(4)真(6)真8、求下列集合的幂集。

(5){{1,2},{2,1,1},{2,1,1,2}}(6){{,2},{2}}Æ解答:(5)集合的元素彼此互不相同,所以{2,1,1,2}{1,2}=,所以该题的结论应该为{,{{1,2}},{{2,1,2}},{{2,1,1,1}},{{1,2},{2,1,2},{2,1,1,1}}}Æ(6){,{{,2}},2,{{,2},{2}}}ÆÆÆ9、设{1,2,3,4,5,6}E =,{1,4}A =,{1,2,5}B =,{2,4}C =,求下列集合。

(1)A B(2)()A B 解答:(1){1,4}{3,4,6}{4}A B ==(2)(){1}{2,3,4,5,6}A B ==31、设A,B,C 为任意集合,证明()()()()A B B A A B A B --=-证明:()(){|}{|()()}{|()()()()}{|()()}{|()()}{|()()}{|()()}{|()(A B B A x x A B x B A x x A x B x B x A x x A x B x B x B x A x A x B x A x x A x B x B x A x x A B x A x B x x A B x A x B x x A B x A B x x AB x A--=Î-ÚÎ-=ÎÙÏÚÎÙÏ=ÎÚÎÙÏÚÎÙÎÚÏÙÏÚÏ=ÎÚÎÙÏÚÏ=ÎÙÏÚÏ=ÎÙÎÚÎ=ÎÙÎ=ÎÙÎ)}B A B AB=-34、设A,B 为集合,证明:如果()()A B B A AB --=,则AB =Æ。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。

离散数学及应用课后习题答案

离散数学及应用课后习题答案

离散数学及应用课后习题答案【篇一:离散数学及其应用图论部分课后习题答案】p165:习题九1、给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。

(1)g1??v1,e1?,v1?{v1,v2,v3,v4,v5},e1?{(v1,v2),(v2,v3),(v3,v4),(v3,v3),(v4,v5)} (2)g2??v2,e2?,v2?v1,e1?{(v1,v2),(v2,v3),(v3,v4),(v4,v5),(v5,v1)} (3)d1??v3,e3?,v3?v1,e3?{?v1,v2?,?v2,v3?,?v3,v2?,?v4,v5?,?v5,v 1?} (4)d2??v4,e4?,v4?v1,e3?{?v1,v2?,?v2,v5?,?v5,v2?,?v3,v4?,?v4,v 3?} 解答:(1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。

(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。

14、设g是n(n?2)阶无向简单图,g是它的补图,已知?(g)?k1,?(g)?k2,求?(g),(g)。

解答:?(g)?n?1?k2;?(g)?n?1?k1。

15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。

解答:(c)不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d)同构,同构函数为12f(x)345解答:(1)三条边一共提供6度;所以点度序列可能是x?ax?bx?c x?dx?e16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。

①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;由于是简单图,①②两种情形不可能图形如下:(2)三条边一共提供6度,所以点度序列可能为①3,3,0;②3,2,1;③2,2,2 由于是简单图,①②两种情形不可能21、在图9.20中,下述顶点序列是否构成通路?哪些是简单通路?哪些是初级通路?哪些是回路?哪些是简单回路?哪些是初级回路?(1)a,b,c,d,b,e;(2)a,b,e,d,b,a;(3)a,d,c,e,b;(4)d,b,a,c,e;(5)a,b,c,d,e,b,d,c;(6)a,d,b,e,c,b,d;(7)c,d,a,b,c;(8)a,b,c,e,b 解答:(1)构成通路,且为初级通路,因为点不重复(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边(a,b) (3)构成了初级通路,因为点不重复;(4)不构成通路,因为边(a,c)不存在;(5)构成通路,但是不为简单通路和初级通路,因为有重复的边(d,c) (6)构成了回路,但是不为简单回路和初级回路,因为有重复的边(d,b) (7)构成了初级通路;(8)简单通路,但是不为初级通路,有重复边。

《离散数学》题库及标准答案

《离散数学》题库及标准答案

《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。

在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

离散数学课后习题答案第四章

离散数学课后习题答案第四章

离散数学课后习题答案第四章离散数学课后习题答案第四章第⼗章部分课后习题参考答案4.判断下列集合对所给的⼆元运算是否封闭:(1)整数集合Z 和普通的减法运算。

封闭,不满⾜交换律和结合律,⽆零元和单位元(2)⾮零整数集合普通的除法运算。

不封闭(3)全体n n ?实矩阵集合(R )和矩阵加法及乘法运算,其中n2。

封闭均满⾜交换律,结合律,乘法对加法满⾜分配律;加法单位元是零矩阵,⽆零元;乘法单位元是单位矩阵,零元是零矩阵;(4)全体n n ?实可逆矩阵集合关于矩阵加法及乘法运算,其中n 2。

不封闭(5)正实数集合和运算,其中运算定义为:不封闭因为 +?-=--?=R 1111111ο(6)n关于普通的加法和乘法运算。

封闭,均满⾜交换律,结合律,乘法对加法满⾜分配律加法单位元是0,⽆零元;乘法⽆单位元(1>n ),零元是0;1=n 单位元是1 (7)A = {},,,21n a a a Λ n运算定义如下:封闭不满⾜交换律,满⾜结合律,(8)S =关于普通的加法和乘法运算。

封闭均满⾜交换律,结合律,乘法对加法满⾜分配律(9)S = {0,1},S 是关于普通的加法和乘法运算。

加法不封闭,乘法封闭;乘法满⾜交换律,结合律(10)S = ,S 关于普通的加法和乘法运算。

加法不封闭,乘法封闭,乘法满⾜交换律,结合律10.令S={a ,b},S 上有四个运算:*,分别有表10.8确定。

(a) (b) (c) (d)(1)这4个运算中哪些运算满⾜交换律,结合律,幂等律?(a) 交换律,结合律,幂等律都满⾜,零元为a,没有单位元; (b)满⾜交换律和结合律,不满⾜幂等律,单位元为a,没有零元b b a a ==--11,(c)满⾜交换律,不满⾜幂等律,不满⾜结合律 a b a b b a b a a b b a ====οοοοοο)(,)(b b a b b a οοοο)()(≠ 没有单位元, 没有零元(d) 不满⾜交换律,满⾜结合律和幂等律没有单位元, 没有零元 (1) 求每个运算的单位元,零元以及每⼀个可逆元素的逆元。

《离散数学》(左孝凌 李为鉴 刘永才编著)课后习题答案 上海科学技术文献出版社

《离散数学》(左孝凌 李为鉴 刘永才编著)课后习题答案   上海科学技术文献出版社

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q↔ (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P↔Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

《离散数学》刘任任版第十章

《离散数学》刘任任版第十章

习题十1.证明:若G 是简单图,则()()q p p G 2/22-≥χ.分析:()G χ指G 的点色数,显然如果()G χ=k ,则G 的顶点集可以划分为k 个独立集。

设每个独立集的顶点数为p i ,则∑=ki i p 1=p ,由柯西-施瓦丝不等式有: 且由于每个独立集中的任意两个点不邻接,所以第i 个独立集中任何一点的度不会大于p-p i ,本题的关键是利用这两个结论。

2.()k G =χ的临界图G 称为k 临界图. 证明:唯一的1临界图是1K ,唯一的2临界图是2K ,仅有的3临界图是长度为奇数3≥k 的回路.分析:若G 的每个点都是临界点,则G 称为临界图。

由于1-色图是零图,因此1-临界图仅能是1K ,2-色图是2部图,因此2-临界图仅能是2K ,3-色图恒含奇圈,且奇圈至少是3-色才能正常着色,因此3-临界图仅能是长度为奇数3≥k 的回路.证明:(1)()11=K χ,且()01=-v K χ<1,故K1是1临界图;反之,G 是1-临界图,若|V(G)|>1,则G 是零图,()1=-v G χ,所以|V(G)|=1,从而G 是平凡图K1。

(2)()22=K χ,且()1),(22=-∈∀v K K V v χ,故K2是2临界图;反之,G 是2-临界图,即()2=G χ,于是G 的顶点可划分为两个极大独立集V1和V2,若|V1|>1,则())(2),(1G v G G V V v χχ==-⊆∈∀,与G 是临界图矛盾,因此|V1|=1,同理|V2|=1。

因此G=K2。

(3)因为不含奇回路的图是二分图)2)((=G χ。

故3-色图必含奇回路。

显然,奇回路必是3-临界图。

设G 是含奇回路的3-临界图。

若G 不是奇回路,则可分两种情况讨论:)2/()( 2 2 )()(2 ,,1,| | ,, ,)( 2222221222211112221121q p p G x q p p k k p q p k p p p p p p p p p p v d q p p V k p k p p k i p V V V k G k G x ki i p i k i k i k i i i i i i i i k i i k i i i i k -≥-≥≥--≤-=-=-≤=-=⎪⎭⎫ ⎝⎛≥===∑∑∑∑∑∑∑=======故,即从而而个顶点相邻,每个顶点最多与其它且),(柯西-施瓦丝不等式因为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题十三
2
设G=(V,E)是一个具有2k(k>0)个奇数度结点的连通图。证 明:G中必存在k条边不相重的简单道路P1,P2,…,Pk, 使得 E=E(P1) E(P2) … E(Pk). 证明:把2k个奇数度结点分成两两一组的k组,然后每组结点新 加一条边,所得图为欧拉图,故存在欧拉回路。 再去掉欧拉回路中的k条新加入的边,得到k条互无重复边的道 路P1,P2,…,Pk, 即为所求。
习题十三
5
2 4 v10 6 5 3 2 v5
v1
3 v6 1 v11 1 5 1 v4 v9 2 1 v7 1 3 v2
求图中,中国邮递员问题的解。
v8 4
v3
解:图中有4个奇数度结点v1,v6,v9,v3, 求两两之间最短长度: Pv1v6=3 (v1v6), Pv1v9=7 (v1v2v3v4v9),
可得n10,与已知矛盾。所以原题得证。
习题十二
5
n 12
证明:少于30条边的简单平面图至少有一个顶点的度不大于4。 证明:假设 5,可Байду номын сангаас 5n 2m 由平面性,2m 6n-12
再将n 12 代入5n 2m ,得m 30,与已知矛盾。所以 原题得证。
习题十二
9
若一平面图与其对偶图同构,则称这个平面图为自对偶图。推 导自对偶图必须满足的结点数n与边数m的关系,并找出一个 自对偶图。 解:如果G是自对偶图,在欧拉公式中必有n=f, 于是m=2(n-1).
Pv1v3=4 (v1v2v3), Pv6v9=7 (v6v7v8v9), Pv3v6=6 (v3v8v7v6), Pv3v9=3 (v3v4v9),
Pv1v6和Pv3v9满足最小性要求,
复制v1v6和v3v4v9的边,图中欧拉回路即为所求解。
证明:连通图G是平面欧拉图当且仅当其对偶图是平面二 部图。 证明: “”:当G是平面欧拉图时,G的点度是偶数,对应G* 的面度应是偶数,说明G*的回路都是偶长回路,从而G* 是二部图。 “”:当G*是平面二部图时,它的面度都是偶数,因而 G的各点度均为偶数,故G是平面欧拉图。
习题十一
1
设一个树中度为k的结点数是nk(2k),求它的叶的数目。 解:设n个结点的树有t个叶, 由已知 n=t+∑ni
i=2
2(n-1)=t+ ∑ini 消去式中的n: 2= t+ ∑(2-i)ni
i=2 i=3 i=2

即: t= ∑(i-2)ni + 2
习题十一
10
设e是连通图G的一条边,证明: e是割边当且仅当e含于G的每 个生成树中. 证明: ()如果割边e不在G的某个生成树中,则G- e仍有生成树, 即仍连通,与割边的定义相矛盾.
()如果e是每个生成树的公共边,则去掉e后G- e不再连通,即e 为G 的割边.
习题十一
2
树T中最长道路的起点和终点必都是T的叶. 证明: 设u到v的道路是树中最长道路,如果u或v不是叶,由道 路唯一性,必有u或v的邻接结点不在该道路上,因此这条 道路可延长至w,与最长条件矛盾。
习题十一
12
用Kruskal算法求图的一个最小生成树。 解:边按序排列:ab,gc,eg,ed,af,fd,fe,dc,fb,bd,ag,bc 按算法构造生成树边集为:{ab,gc,eg,ed,af,fd}, W(T)=8.
n个人定期围圆桌而坐,商讨事务,他们希望每人每次两旁的人都和以前 的不同,这样的安排最多有多少种?
解:将人看作图的结点,邻座关系作为图的边。每次安排方式对应一个 Hamilton回路。因为每人每次两旁的人都和以前不同,所以每2种 安排方式对应2个无公共边的Hamilton回路。 因每个人都可与其余人邻座,所以本问题转化为在Kn中找出所有无公共 边的Hamilton回路的个数。
f6(1)+f6(2)=1
无合理解。
a 2 f 3 e 1 d 3 4 1 2 4 g 1 6 c 5 1 b
用Kruskal定理证明Peterson图不是平面图。 证明:下面是Peterson图的一个子图, 它与k3,3的细分图同构,所以Peterson图不是平面图。
习题十二
3
设G是阶数不小于11的图,证明:G或G中至少有一个是非平 面图。 证明:假设G和G都是平面图,可得n(n-1)/2 6n-12, 所以 n2-13n+24 0
Kn共有n(n-1)/2条边,每条Hamilton回路的长度为n,因此Kn中最多有 (n-1)/2条无公共边的Hamilton回路。因此,最多有(n-1)/2种安排。
例如n=7时,共有3种就座方式,分别是: ① 1 2 3 4 5 6 7 1


1 3 5 7 2 4 6 1
1 4 7 3 6 2 5 1
习题十三
解:
15
用2种以上办法判别下图不是Hamilton图。
①用必要条件,选7个结点,去掉后剩9支。
②注意观察,发现是平面二部图,因为所有回路都是偶长,那就可对结 点进行二部划分:一部是7个,另一部是9个结点。但二部图要成为 Hamilton图必须2部结点数相同。 ③ 2(f4(1)-f4(2))+4(f6(1)-f6(2))=0 f4(1)+f4(2)=12
相关文档
最新文档