齐齐哈尔市2019年中考数学试卷及答案(WORD解析版)
2019年黑龙江省齐齐哈尔市中考数学试题(原卷+解析)含答案

黑龙江省齐齐哈尔市2019年中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(3分)3的相反数是()A.﹣3 B.C.3 D.±32.(3分)下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算不正确的是()A.±=±3 B.2ab+3ba=5abC.(﹣1)0=1 D.(3ab2)2=6a2b44.(3分)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.(3分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A 和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.(3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5 B.6 C.7 D.87.(3分)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.8.(3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.(3分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27 B.23 C.22 D.1810.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.(3分)预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.(3分)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.(3分)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.(3分)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.(3分)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.(3分)等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.(3分)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)19.(5分)解方程:x2+6x=﹣720.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD =AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).24.(14分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2019年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:3的相反数是﹣3,故选:A.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A、±=±3,正确,故此选项错误;B、2ab+3ba=5ab,正确,故此选项错误;C、(﹣1)0=1,正确,故此选项错误;D、(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:能用来比较两人成绩稳定程度的是方差,故选:C.5.【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.【分析】根据题意,可以写出各段过程中,S与t的关系,从而可以解答本题.【解答】解:由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;二、填空题(共7小题,每小题3分,满分21分)11.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.【分析】添加AB=DE,由BF=CE推出BC=EF,由SAS可证△ABC≌△DEF.【解答】解:添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.【解答】解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.【分析】分点A是顶点、点A是底角顶点、AD在△ABC外部和AD在△ABC内部三种情况,根据等腰三角形的性质、直角三角形的性质计算.【解答】解:①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【分析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.三、解答题(共7小题,满分69分)18.【分析】(1)根据实数运算的法则计算即可;(2)根据因式分解﹣分组分解法分解因式即可.【解答】解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.【分析】方程两边都加上9,配成完全平方式,再两边开方即可得.【解答】解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.【分析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积﹣扇形AOC的面积求得阴影部分的面积.【解答】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.【分析】(1)本次被抽取的学生共30÷30%=100(名);(2)100﹣20﹣30﹣10=40(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名).【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.【分析】(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【解答】解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG =∠A′HG=70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.【分析】(1)由OA=2,OC=6得到A(﹣2,0),C(0,﹣6),用待定系数法即求得抛物线解析式.(2)由点D在抛物线对称轴上运动且A、B关于对称轴对称可得,AD=BD,所以当点C、D、B在同一直线上时,△ACD周长最小.求直线BC解析式,把对称轴的横坐标代入即求得点D纵坐标.(3)过点E作EG⊥x轴于点G,交直线BC与点F,设点E横坐标为t,则能用t表示EF的长.△BCE面积拆分为△BEF与△CEF的和,以EF为公共底计算可得S△BCE=EF•OB,把含t的式子代入计算即得到S△BCE关于t的二次函数,配方即求得最大值和t的值,进而求得点E坐标.(4)以AC为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N 在坐标.【解答】解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。
2019年齐齐哈尔市中考数学试卷及答案(Word版)

2019年齐齐哈尔市初中学业考试数学试题考生注意:1. 考试时间120分钟2. 全卷共三道大题,总分120分3. 使用答题卡的考生,请将答案填写在答题卡上的指定位置. 一、单项选择题(每小题3分,满分30分)1.下列数字是既是轴对称图形又是中习对称图形的有几个( )A.1个B.2个C.3个D.4个2.下列各式计算正确的是( ) A.4222a aa=+ B.39±= C.()111=-- D.()772=-3.如图是一种古代计时器——“漏壶”的示意图,在壶内盛有一定量的水,水从壶下的小孔漏出,壶壁上画有刻度, 人们可以根据壶中的水面的位置计算时间.现用x 表示时间,y 表示壶到水面的高度,下列图象适合表示一小时内y 与x 的函数关系的是(暂不考虑水量变化对压力的影响)( )4.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB=10,CD=8,则BE 的长是( ) A.8 B.2 C.2或8 D.3或75.甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差甲2S=1.4,乙2S =18.8,丙2S =2.5,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )A.甲队B.乙队C.丙队D.哪一个都可以6.假期到了,17名女教师去外地培训,住宿时人2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案.( )A.5种B.4种C.3种D.2种7.已知二次函数()02≠++=a c bx ax y 和图象经过点(1x ,0)、(2,0),且-2<1x <-1,与y 轴正半轴的交点在(0,2)的下方,则下列结论:①a b c <0 ②2b >4a c ③2a +b +1<0 ④2a +c>0.则其中正确结论的序号是( )A. ①②B. ②③C. ①②④D. ①②③④O x y O x yO xyO x y A B C D 第3题图8.下列说法正确的是( )A.相等和圆心角所对的弧相等B.无限小数是无理数C.阴天会下雨是必然事件D.在平南直角坐标系中,如果位似是以原点为位似中心,相似比为k , 那么位似图形对应点的坐标的比等于K 或-k 。
齐齐哈尔市2019年中考数学猜题卷及答案

齐齐哈尔市2019年中考数学猜题卷及答案(全卷共120分,考试时间120分钟)第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1.若实数a 、b 互为相反数,则下列等式中成立的是( )A .a ﹣b =0B .a+b =0C .ab =1D .ab =﹣12.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣13.下列运算正确的是( )A.235x x x +=B. 2221x x -=C.236x x x ⋅=D.633x x x ÷=4.已知右图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )DCB A5.如图,□ABCD 中,AC =3cm ,BD =5cm ,则边AD 的长可以是( )A .3 cmB .4 cmC .5 cmD .6 cm6.为吸引新用户支付宝推出“领红包抵现金活动”.甜甜在这个月中扫码共领4.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40B .42、38C .40、42D .42、40AB CD7. 如图,二次函数y=ax2+bx+c的图象与x轴交于4、B两点,与y轴交于点C,且OB=OC,下列结论:①b>l且6≠2;②b2-4ac<4a2;③a>争;其中正确的个数为()A.0B.1C.2D.38. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55其中合理的是()A.①B. ②C. ①②D. ①③9.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x +b>kx+4的解集是()A.x>-2 B.x>0 C.x>1 D.x<110.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. 计算:)=————————.12. 分解因式:=+-2422a a ___________________. 13. 若反比例函数xky =的图象在第二、四象限内,则k 的值可能是 .(写一个即可) 14.在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是13,则黄球有 _____ 个.15.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为 .17.(本小题满分8分)计算:(3.14-π)0-12-|-3|+4sin 60° . 18.(本小题满分8分)先化简,再求值:(x ﹣2+)÷,其中x =﹣.19. (本小题满分10分)已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.20.(本小题满分10分)已知:如图,在平行四边形ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.21. (本小题满分10分)停车难已成为合肥城市病之一,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是张老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为 1.2 米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)四、解答题(2小题,共26分)22.(本小题满分12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:②该产品90天内每天的销售价格与时间(第x天)的关系如下表:(1)求m 关于x 的一次函数表达式;(2)设销售该产品每天利润为y 元,请写出y 关于x 的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果. 23.(本小题满分14分)如图,在△ABC 中,∠C = 90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F .(1)试判断直线BC 与⊙O 的位置关系,并说明理由;(2)若BD = 2 ,BF = 2 ,求阴影部分的面积(结果保留π) .3参 考 答 案第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1.B2.B3.D4.B5.A6.D7.D8.B9.C 10.B第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.) 11. 2 12. 2(a -1)213. 如 —1(答案不唯一 ) 14. 6 15. .三、解答题(共4小题,每小题8分,32分) 17.(本小题满分8分)解:原式=1-2 3-3+2 3=-2. 18.(本小题满分8分) 解:原式=(+)•=•=2(x +2) =2x +4, 当x =﹣时, 原式=2×(﹣)+4 =﹣1+4 =3.19. (本小题满分10分)解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>, 解得k k ≠<9且0.(2) ∵k 是小于9的最大整数,∴=8k . 此时的方程为28610x x -+=. 解得11=2x ,21=4x . 20.(本小题满分10分)(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠BAE=∠DCF , 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (SAS );………(4分)(2)解:四边形BEDF 是菱形;理由如下:如图所示: ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∵AE=CF , ∴DE=BF ,∴四边形BEDF 是平行四边形, ∴OB=OD , ∵DG=BG , ∴EF ⊥BD ,∴四边形BEDF 是菱形.………(12分) 21. (本小题满分10分)过点A 作OB 的垂线AE ,垂足是 E , Rt△AEO ,AO =1.2,∠AOE =40° ∵sin40°=OAAE, ∴AE = OA sin40°≈0.64×1.2=0.768<0.8 ∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米, ∴车门不会碰到墙. 四、解答题(2小题,共26分) 22. (本小题满分12分) 解:(1)∵m 与x 成一次函数,∴设m =kx +b ,将x =1,m =198,x =3,m =194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元.23. (本小题满分14分)解:(1)BC与⊙O相切.证明:连接OD.∵ AD是∠BAC的平分线,∴∠BAD = ∠CAD.又∵ OD = OA,∴∠OAD = ∠ODA.∴∠CAD = ∠ODA.∴ OD∥AC.∴∠ODB = ∠C = 90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF = OD = x,则OB = OF+BF = x+2,根据勾股定理得:OB2 = OD2 + BD2,即(x+2)2 = x2 + 12,解得:x = 2,即OD = OF = 2,∴OB = 2+2 = 4,∵Rt△ODB中,OD =OB,∴∠B = 30°,∴∠DOB =60°,∴S扇形AOB==,则阴影部分的面积为S△ODB﹣S扇形DOF =×2×2﹣ = 2﹣.故阴影部分的面积为2﹣.。
黑龙江齐齐哈尔2019初中学业考试试卷-数学

黑龙江齐齐哈尔2019初中学业考试试卷-数学数学试卷【一】单项选择题(每题3分,总分值30分)1、以下各式:①x 2+x 3=x 5、②a 2·a 3=a 62=-④(11()33-=⑤0(1)1π-=,其中 正确的选项是()A 、④⑤B 、③④C 、②③D 、①④2、以下图形既是轴对称图形,又是中心对称图形的是()3、小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个 字,连起来确实是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”, 那么它的平面展开图可能是()7,为庆祝“六·一”国际儿童节,龙沙区某小学组织师生共360人参加公园游园活动, 有A 、B 两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必 须满载,那么师生一次性全部到达公园的租车方案有()A 、3种B 、4种C 、5种D 、6种8、二次函数y=ax 2+bx+c(a ≠O)的图象如下图,现有以下结论:①abc>0②b 2-4ac<0⑤c<4b ④a+b>0,那么其中正确结论的个数是()A 、1个B 、2个C 、3个D 、4个9、假设关于x 的分式方程2213m x x x+-=-无解,那么m 的值为() A 、一l 、5B 、1C 、一l 、5或2D 、一0、5或一l 、510、Rt △ABC 中,AB=AC ,点D 为BC 中点、∠MDN=900,∠MDN 绕点D 旋转,DM 、DN 分别与边AB 、AC 交于E 、F 两点、以下结论①(BE+CF)=2BC ②S △AEF ≤14S △ABC③S 四边形AEDF =AD ·EF ④AD ≥EF ⑤AD 与EF 可能互相平分,其中正确结论的个数是()A 、1个B 、2个C 、3个D 、4个【二】填空题(每题3分,总分值30分)11、2018年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有691万人以不同方式向她表示问候和祝福, 将691万人用科学记数法表示为人、(结果保留两个有效数字)12、函数y 1x+中,自变量x 的取值范围是13、如图,己知AC=BD ,要使△ABC ≌△DCB ,那么只需添加一个适当的条件是(填一个即可)14、一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,假设往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个自球的概率是14,那么y 与x 之间的函数关系式为15、如下图,沿DE 折叠长方形ABCD 的一边,使点C 落在AB 边上的点F 处,假设AD=8,且△AFD 的面积为60,那么△DEC 的面积为16、由一些完全相同的小正方体搭成的几何体的主视图和左视图如下图,那么组成那个几何体的小正方体的个数可能是17、用半径为9,圆心角为1200的扇形围成一个圆锥,那么圆锥的高为、18、Rt △ABC 中,∠A=900,BC=4,有一个内角为600,点P 是直线AB 上不同于A 、B 的一点,且∠ACP=300,那么PB 的长为、19、如图,点A 在双曲线y=1x 上,点B 在双曲线y=3x上,且AB ∥x 轴,点C 、D 在x 轴上,假设四边形ABDC 为矩形,那么它的面积为20、如图,在平面直角坐标系中有一边长为l 的正方形OABC ,边0A 、0C 分别在x 轴、y 轴上,假如以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB l 为边作第三个正方形 OB l B 2C 2,照此规律作下去,那么点B 2018的坐标为【三】懈答题(总分值60分)21、(本小题总分值5分豢22、(本小题总分值6分)顶点在网格交点的多边形叫做格点多边形,如图,在一个9X9的正方形网格中有一个格点△ABC 、设网格中小正方形的边长为l 个单位长度、(1)在网格中画出△ABC 向上平移4个单位后得到的△A l B l C l 、(2)在网格中画出△ABC 绕点A 逆时针旋转900后得到的△AB 2C 2(3)在(1)中△ABC 向上平移过程中,求边AC 所扫过区域的面积、23、(本小题总分值6分)如图,抛物线y=212x -+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3、 (1)求抛物线的解析式、(2)假设点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP 的周长最小,假设存在,请求出点P的坐标,假设不存在,请说明理由、24、(本小题总分值7分)6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学进行了“环保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(总分值为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频数分布直方图如下:(1)直截了当写当a的值,并补全频数分布直方图、、(2)假设成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?(3)假设这组被抽查的学生成绩的中位数是80分,请直截了当写出被抽查的学生中得分为8Q分的至少有多少人?25、(本小题总分值8分)黄岩岛是我国南沙群岛的一个小岛,渔产丰富、一天某渔船离开港口前往该海域捕鱼、捕捞一段时间后,发明一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并。
2019年黑龙江省齐齐哈尔市中考数学试卷(精品推荐)

黑龙江省齐齐哈尔市2019年中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(3分)3的相反数是()A.﹣3 B.C.3 D.±32.(3分)下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算不正确的是()A.±=±3 B.2ab+3ba=5abC.(﹣1)0=1 D.(3ab2)2=6a2b44.(3分)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.(3分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.(3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5 B.6 C.7 D.87.(3分)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.8.(3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.(3分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27 B.23 C.22 D.1810.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.(3分)预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.(3分)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.(3分)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.(3分)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.(3分)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.(3分)等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.(3分)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)19.(5分)解方程:x2+6x=﹣720.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).24.(14分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2019年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:3的相反数是﹣3,故选:A.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A、±=±3,正确,故此选项错误;B、2ab+3ba=5ab,正确,故此选项错误;C、(﹣1)0=1,正确,故此选项错误;D、(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:能用来比较两人成绩稳定程度的是方差,故选:C.5.【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.【分析】根据题意,可以写出各段过程中,S与t的关系,从而可以解答本题.【解答】解:由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.二、填空题(共7小题,每小题3分,满分21分)11.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.【分析】添加AB=DE,由BF=CE推出BC=EF,由SAS可证△ABC≌△DEF.【解答】解:添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.【解答】解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.【分析】分点A是顶点、点A是底角顶点、AD在△ABC外部和AD在△ABC内部三种情况,根据等腰三角形的性质、直角三角形的性质计算.【解答】解:①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【分析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.三、解答题(共7小题,满分69分)18.【分析】(1)根据实数运算的法则计算即可;(2)根据因式分解﹣分组分解法分解因式即可.【解答】解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.【分析】方程两边都加上9,配成完全平方式,再两边开方即可得.【解答】解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.【分析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积﹣扇形AOC的面积求得阴影部分的面积.【解答】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.【分析】(1)本次被抽取的学生共30÷30%=100(名);(2)100﹣20﹣30﹣10=40(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名).【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.【分析】(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【解答】解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG=∠A′HG=70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.【分析】(1)由OA=2,OC=6得到A(﹣2,0),C(0,﹣6),用待定系数法即求得抛物线解析式.(2)由点D在抛物线对称轴上运动且A、B关于对称轴对称可得,AD=BD,所以当点C、D、B在同一直线上时,△ACD周长最小.求直线BC解析式,把对称轴的横坐标代入即求得点D纵坐标.(3)过点E作EG⊥x轴于点G,交直线BC与点F,设点E横坐标为t,则能用t表示EF的长.△BCE面积拆分为△BEF与△CEF的和,以EF为公共底计算可得S△BCE=EF•OB,把含t的式子代入计算即得到S关于t的二次函数,配方即求得最大值和t的值,进而求得点E坐标.△BCE(4)以AC为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N在坐标.【解答】解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。
2019年黑龙江省齐齐哈尔市中考数学试卷-(6年中考)

2019年黑龙江省齐齐哈尔市中考数学试卷-(6年中考)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.3的相反数是()A.﹣3B.C.3D.±32.下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算不正确的是()A.±=±3B.2ab+3ba=5ab C.(﹣1)0=1D.(3ab2)2=6a2b4 4.小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C 两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.87.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()8.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27B.23C.22D.1810.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)19.(5分)解方程:x2+6x=﹣720.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD =AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD 对折,使边AB 与CD 重合,展开后得到折痕EF .如图①:点M 为CF 上一点,将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处,展开后连接DN ,MN ,AN ,如图②(一)填一填,做一做:(1)图②中,∠CMD = . 线段NF =(2)图②中,试判断△AND 的形状,并给出证明.剪一剪、折一折:将图②中的△AND 剪下来,将其沿直线GH 折叠,使点A 落在点A ′处,分别得到图③、图④. (二)填一填(3)图③中阴影部分的周长为 .(4)图③中,若∠A ′GN =80°,则∠A ′HD = °. (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点A ′落在边ND 上,若=,则=(用含m ,n 的代数式表示).24.(14分)综合与探究如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,点D 的坐标为 .(3)点E 是第四象限内抛物线上的动点,连接CE 和BE .求△BCE 面积的最大值及此时点E 的坐标;(4)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.2019年黑龙江省齐齐哈尔市中考数学试卷答案1.A.2.D.3.D.4.C.5.C.6.B.7.B.8.B.9.C.10.C.11.3.8×104.12.AB=DE.答案不唯一.13.4.14.a≤4且a≠3.15.﹣.16.15°或45°或75°.17.解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.18.解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.(1)证明:连接OA,则∠COA=2∠B,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,解得:x =y , ∴===;故答案为:.24.解:(1)∵OA =2,OC =6 ∴A (﹣2,0),C (0,﹣6) ∵抛物线y =x 2+bx +c 过点A 、C ∴解得:∴抛物线解析式为y =x 2﹣x ﹣6(2)∵当y =0时,x 2﹣x ﹣6=0,解得:x 1=﹣2,x 2=3 ∴B (3,0),抛物线对称轴为直线x =∵点D 在直线x =上,点A 、B 关于直线x =对称∴x D =,AD =BD∴当点B 、D 、C 在同一直线上时,C △ACD =AC +AD +CD =AC +BD +CD =AC +BC 最小 设直线BC 解析式为y =kx ﹣6 ∴3k ﹣6=0,解得:k =2 ∴直线BC :y =2x ﹣6 ∴y D =2×﹣6=﹣5∴D (,﹣5)故答案为:(,﹣5)(3)过点E 作EG ⊥x 轴于点G ,交直线BC 与点F ∴EF =2t ﹣6﹣(t 2﹣t ﹣6)=﹣t 2+3t ∴S △BCE =S △BEF +S △CEF =EF •BG +EF •OG =EF (BG +OG )=EF •OB =×3(﹣t 2+3t )=﹣(t ﹣)2+∴当t =时,△BCE 面积最大 ∴y E =()2﹣﹣6=﹣∴点E 坐标为(,﹣)时,△BCE 面积最大,最大值为.(4)存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形. ∵A (﹣2,0),C (0,﹣6)∴AC =①若AC 为菱形的边长,如图3, 则MN ∥AC 且,MN =AC =2∴N 1(﹣2,2),N 2(﹣2,﹣2),N 3(2,0)②若AC 为菱形的对角线,如图4,则AN 4∥CM 4,AN 4=CN 4 设N 4(﹣2,n ) ∴﹣n =解得:n =﹣∴N 4(﹣2,﹣)综上所述,点N 坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).2018年黑龙江省齐齐哈尔市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个2.下列计算正确的是()A.a2•a3=a6B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab33.“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×1094.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°5.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃6.我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数8.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种9.下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地10.抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个B.3个C.4个D.5个二、填空题(共7小题,每小题3分,满分21分)11.已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)12.已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为.13.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.14.若关于x的方程+=无解,则m的值为.15.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.16.四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD=.17.在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)19.(5分)解方程:2(x﹣3)=3x(x﹣3).20.(8分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.21.(10分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?22.(10分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a=;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.23.(12分)综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为.24.(14分)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)2018年黑龙江省齐齐哈尔市中考数学试卷答案1.C.2.B.3.A.4.B.5.D.6.A.7.D.8.B.9.A.10.B.11.1.12.20.13.4.14.﹣1或5或﹣.15.6.16.17.17.32019 18.解:(1)原式=4+1﹣2×﹣(π﹣3)=5﹣1﹣π+3=7﹣π;(2)6(a﹣b)2+3(a﹣b)=3(a﹣b)[2(a﹣b)+1]=3(a﹣b)(2a﹣2b+1).19.解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.20.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=..21.解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.22.解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.23.解:(1)①BD′∥AC.②将△AEC剪下后展开,得到的图形是菱形;故答案为BD′∥AC,菱形;(2)①选择②证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB,∴∠DAC=∠ACB′,∴AE=CE,∴△AEC是等腰三角形;∴将△AEC剪下后展开,得到的图形四边相等,∴将△AEC剪下后展开,得到的图形四边是菱形.②选择①证明如下,∵四边形ABCD是平行四边形,∴AD=BC,∵将△ABC沿AC翻折至△AB′C,∵B′C=BC,∴B′C=AD,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD∴∠ADB′=∠DAC,∴B′D∥AC.(3)①当矩形的长宽相等时,满足条件,此时矩形纸片的长宽之比为1:1;∵∠AB′D+∠ADB′=90°,∴y﹣30°+y=90°,②当矩形的长宽之比为:1时,满足条件,此时可以证明四边形ACDB′是等腰梯形,是轴对称图形;综上所述,满足条件的矩形纸片的长宽之比为1:1或:1;(4)∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB′C=∠CDA=30°,∵△AB′D是直角三角形,当∠B′AD=90°,AB>BC时,如图3中,设∠ADB′=∠CB′D=y,∴∠AB′D=y﹣30°,解得y=60°,∴∠AB′D=y﹣30°=30°,∵AB′=AB=4,∴AD=×4=4,∴BC=4,当∠ADB′=90°,AB>BC时,如图4,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠ADB′=90°,∴四边形ACB′D是矩形,∴∠ACB′=90°,∴∠ACB=90°,∵∠B=30°,AB=4,∴BC=AB=×4=6;当∠B′AD=90°,AB<BC时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∵∠B=30°,AB′=4,∴∠AB′C=30°,∴AE=4,BE′=2AE=8,∴AE=EC=4,∴CB′=12,当∠AB′D=90°时,如图6,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=4,∴BC=AB÷=8;∴已知当BC的长为4或6或8或12时,△AB′D是直角三角形.故答案为:平行,菱形,1:1或:1,4或6或8或12;24.解:(1)将A(﹣4,0)代入y=x+c∴c=4将A(﹣4,0)和c=4代入y=﹣x2+bx+c∴b=﹣3∴抛物线解析式为y=﹣x2﹣3x+4(2)做点C关于抛物线的对称轴直线l的对称点C′,连OC′,交直线l于点E.连CE,此时CE+OE的值最小.∵抛物线对称轴位置线x=﹣∴CC′=3由勾股定理OC′=5∴CE+OE的最小值为5(3)①当△CNP∽△AMP时,∠CNP=90°,则NC关于抛物线对称轴对称∴NC=NP=3∴△CPN的面积为当△CNP∽△MAP时由已知△NCP为等腰直角三角形,∠NCP=90°过点C作CE⊥MN于点E,设点M坐标为(a,0)∴EP=EC=﹣a,则N为(a,﹣a2﹣3a+4),MP=﹣a2﹣3a+4﹣(﹣2a)=﹣a2﹣a+4∴P(a,﹣a2﹣a+4)代入y=x+4解得a=﹣2∴△CPN的面积为4故答案为:或4②存在设M坐标为(a,0)则N为(a,﹣a2﹣3a+4)则P点坐标为(a,)把点P坐标代入y=﹣x+4解得a1=﹣4(舍去),a2=﹣1当PF=FM时,点D在MN垂直平分线上,则D()当PM=PF时,由菱形性质点D坐标为(﹣1+,)(﹣1﹣,﹣)当MP=MF时,M、D关于直线y=﹣x+4对称,点D坐标为(﹣4,3)2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.下列算式运算结果正确的是()A.(2x5)2=2x10B.(﹣3)﹣2=C.(a+1)2=a2+1D.a﹣(a﹣b)=﹣b5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B.C.D.8.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240°D.300°10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt (t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.在函数y=+x﹣2中,自变量x的取值范围是.13.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.因式分解:4m2﹣36=.15.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB 的度数为.18.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.。
2019年中考数学试卷(word版,含答案) (54)
2019年中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A. −4B. 4C. −2D. √22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10−3B. 0.2×10−4C. 2×10−3D. 2×10−43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. 方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +ba<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =( )A. 2√23B. 5√26C. 3√22D. 13√26二、填空题(本大题共6小题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b−1y 是同类项,则a b =______.16. 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h . 17. 在△ABC 中,若∠B =45°,AB =10√2,AC =5√5,则△ABC 的面积是______. 18. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0; (2)先化简,再求值:(a a 2−b 2-1a+b )÷bb−a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=m2−3m(m≠0且m≠3)的图象在第一象限交于点A、xB,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.如图,AB是⊙O的直径,点C为BD⏜的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;PA的最小值.(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3525.如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK= x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1 =2√63+2-2√63-1=1;(2)原式=a(a+b)(a−b)×b−ab -1a+b ×b−ab =-ab(a+b)-b−ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2−√2=-12. 【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5, 补全图形如下:扇形统计图中扇形D 对应的圆心角度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12, 所以抽取的学生恰好是一名男生和一名女生的概率为1220=35. 【解析】(1)由B 组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.21.【答案】解:设甲、乙两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500, 解得{y =200x=300,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20-x−20020×2)-80×20=−110(x−200)2+2400,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.【答案】解:(1)将点A(4,1)代入y=m2−3mx,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y=4x;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴CD CE =BDAE,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B=4x=4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,{k+b=44k+b=1,解得,k=-1,b=5,∴y AB=-x+5,设直线AB 与x 轴交点为F , 当x =0时,y =5;当y =0时x =5, ∴C (0,5),F (5,0), 则OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即OM =12CF =5√22.【解析】(1)将点A (4,1)代入y=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证△CDB ∽△CEA ,由CE=4CD 可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.23.【答案】证明:(1)∵C 是BC ⏜的中点, ∴CD⏜=BC ⏜, ∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC⏜=BF ⏜, ∴CD ⏜=BF ⏜, ∴CD =BF ,在△BFG 和△CDG 中, ∵{∠F =∠CDG∠FGB =∠DGC BF =CD, ∴△BFG ≌△CDG (AAS );(2)如图,过C 作CH ⊥AD 于H ,连接AC 、BC ,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BC AB =BEBC,∴BC2=AB•BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC (HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE 和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【答案】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2,∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0,∴a =12, ∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=-1,x 2=3, ∴B (3,0),∴AB =OA +OB =4,∵△ABD 的面积为5,∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=-2,x 2=4,∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2,∴S △ACE =S △AME -S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516, ∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵E (32,−158),OA =1, ∴AG =1+32=52,EG =158,∴AG EG =52158=43, ∵∠AGE =∠AHP =90°∴sin ∠EAG =PH AP =EG AE =35, ∴PH =35AP ,∵E 、F 关于x 轴对称,∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小,∵EF =158×2=154,∠AEG =∠HEF ,∴sin∠AEG =sin∠HEF =AG AE =FH EF =45,∴FH =45×154=3. ∴PE +35PA 的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点A (-1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式;(2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME -S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OE AF =ODAD=√22,∴AF=√2t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AE AD =AFAG,∴AG⋅AE=AD⋅AF=4√2t,又∵AE=OA+OE=2√2+t,∴AG=√2t22+t,∴EG=AE-AG=22√2+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FH FD =FBAD=4−√2t4,∵AF∥CD,∴FG DG =AFCD=√2t4,∴FG DF =√2t4+√2t,∴4−√2t4=√2t4+√2t,解得:t1=√10−√2,t2=√10+√2(舍去),∴EG=EH=22√2+t =√10−√2)22√2+√10−√2=3√10−5√2;(3)过点F作FK⊥AC于点K,由(2)得EG=t 2+82√2+t,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG⋅FK=32√2+t.【解析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG 可得AG=,可表示EG的长,由AF∥CD得比例线段,求出t 的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
数学中考试题-2019年黑龙江省齐齐哈尔市中考试题含答案详解
黑龙江省齐齐哈尔市2019年中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.3的相反数是()A.﹣3B.C.3D.±32.下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算不正确的是()A.±=±3B.2ab+3ba=5abC.(﹣1)0=1D.(3ab2)2=6a2b44.小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.87.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.8.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27B.23C.22D.1810.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|;(2)因式分解:a2+1﹣2a+4(a﹣1).19.(5分)解方程:x2+6x=﹣7.20.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N 处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).24.(14分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【参考答案】一、选择题1.A【解析】3的相反数是﹣3,故选:A.2.D【解析】A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,不是中心对称图形,故此选项错误;C.是轴对称图形,不是中心对称图形,故此选项错误;D.是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.D【解析】A.±=±3,正确,故此选项错误;B.2ab+3ba=5ab,正确,故此选项错误;C.(﹣1)0=1,正确,故此选项错误;D.(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.C【解析】能用来比较两人成绩稳定程度的是方差,故选:C.5.C【解析】∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.B【解析】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.B【解析】由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.B【解析】设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.C【解析】设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.C【解析】∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.二、填空题(共7小题,每小题3分,满分21分)11.3.8×104【解析】38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.AB=DE【解析】添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.4【解析】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.a≤4且a≠3【解析】﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.﹣【解析】过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.15°或45°或75°【解析】①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【解析】直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1),∴∠OAA1=30°,又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……,因此:S n=,故答案为:.三、解答题(共7小题,满分69分)18.解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t =240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH,∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),∵抛物线y=x2+bx+c过点A、C,∴解得:,∴抛物线解析式为y=x2﹣x﹣6.(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3,∴B(3,0),抛物线对称轴为直线x=,∵点D在直线x=上,点A、B关于直线x=对称,∴x D=,AD=BD,∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小,设直线BC解析式为y=kx﹣6,∴3k﹣6=0,解得:k=2,∴直线BC:y=2x﹣6,∴y D=2×﹣6=﹣5,∴D(,﹣5),故答案为:(,﹣5).(3)过点E作EG⊥x轴于点G,交直线BC与点F,设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6),∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t,∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+,∴当t=时,△BCE面积最大,∴y E=()2﹣﹣6=﹣,∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6),∴AC=,①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2,∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0),②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4,设N4(﹣2,n),∴﹣n=,解得:n=﹣,∴N4(﹣2,﹣),综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。
2014--2019齐齐哈尔市中考数学试题分类解析-反比例函数
1.(2014年)在平面直角坐标系xOy中,点P到x轴的距离为3个单位长度,到原点O的距离为5个单位长度,则经过点P的反比例函数的解析式为.【分析】根据题意确定出P的坐标,设反比例解析式为y=,将P坐标代入求出k的值,即可确定出反比例解析式.解:根据题意,P的坐标可能是:(4,3),(4,﹣3),(﹣4,3),(﹣4,﹣3),设反比例解析式为y=,将P坐标分别代入得:k=12或k=﹣12,则反比例解析式为y=或y=﹣.故答案为:y=或y=﹣.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.2.(2015年)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.【分析】过A点向x轴作垂线,与坐标轴围成的四边形的面积是定值|k|,由此可得出答案.解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为:y=﹣.【点评】此题考查了反比例函数的几何意义,解答本题关键是掌握在反比例函数中k所代表的几何意义,属于基础题,难度一般.3.(2016年)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.解法二:△OAM的面积=△OBN的面积=k,∴k=四边形OMPN的面积﹣四边形OAPB的面积=6×3﹣12=6故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.4.(2017年)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.【分析】易证S菱形ABCO=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即可求得点C的坐标,代入反比例函数即可解题.解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S△ADO=S△DEO,同理S△BCD=S△CDE,∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,∵S菱形ABCO=AO•CF=20x2,解得:x=,∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.5.(2018年)已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k的取值范围,写出一个符合题意的k即可.解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.【点评】本题主要考查反比例函数的性质,当k>0时,双曲线的两个分支在一,三象限,y随x的增大而减小;当k<0时,双曲线的两个分支在二,四象限,y随x的增大而增大.6.(2019年)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.【点评】本题主要考查反比例函数图象上的点,解题的关键是表示出点D的坐标.。
2019年黑龙江省齐齐哈尔市中考数学试卷附分析答案
8.(3 分)学校计划购买 A 和 B 两种品牌的足球,已知一个 A 品牌足球 60 元,一个 B 品牌
足球 75 元.学校准备将 1500 元钱全部用于购买这两种足球(两种足球都买),该学校的
购买方案共有( )
A.3 种
B.4 种
C.5 种
D.6 种
9.(3 分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小
法表示为
.
12.(3 分)如图,已知在△ABC 和△DEF 中,∠B=∠E,BF=CE,点 B、F、C、E 在同
一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是
(只填一个即可).
13.(3 分)将圆心角为 216°,半径为 5cm 的扇形围成一个圆锥的侧面,那么围成的这个
圆锥的高为
cm.
t 14.(3 分)关于 x 的分式方程 t
t 3 的解为非负数,则 a 的取值范围为
.
15.(3 分)如图,矩形 ABOC 的顶点 B、C 分别在 x 轴,y 轴上,顶点 A 在第二象限,点 B
的坐标为(﹣2,0).将线段 OC 绕点 O 逆时针旋转 60°至线段 OD,若反比例函数 y t
(k≠0)的图象经过 A、D 两点,则 k 值为
.
(1)本次被抽取的学生共有
名;
(2)请补全条形图;
(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为
第 4页(共 26页)
°;
(4)若该校共有 2000 名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十
分了解”和“了解较多”的学生共有多少名?
22.(10 分)甲、乙两地间的直线公路长为 400 千米.一辆轿车和一辆货车分别沿该公路从
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省齐齐哈尔市2019年中考数学试卷一、单项选择题(每小题3分,满分30分)1.(3分)(2019•齐齐哈尔)下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.解答:解:A、底数不变指数相加,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、底数不变指数相减,故D错误;故选:C.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题关键.2.(3分)(2019•齐齐哈尔)下列英文字母既是中心对称图形又是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:本题考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.(3分)(2019•齐齐哈尔)现测得齐齐哈尔市扎龙自然保护区六月某五天的最高气温分别为27、30、27、32、34(单位:℃),这组数据的众数和中位数分别是()A.34、27 B.27、30 C.27、34 D.30、27考点:众数;中位数.分析:根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.解答:解:27出现了2次,出现的次数最多,则众数是27;把这组数据从小到大排列27,27,30,32,34,最中间的数是30,则中位数是30;故选B.点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.4.(3分)(2019•齐齐哈尔)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种考点:二元一次方程的应用.分析:设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10×x张+20×y张=100元,根据等量关系列出方程求整数解即可.解答:解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程组的整数解为:,,,,,,因此兑换方案有6种,故选:A.点评:此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.5.(3分)(2019•齐齐哈尔)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1考点:分式方程的解.分析:化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选B.点评:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.6.(3分)(2019•齐齐哈尔)如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()A.15°B.20°C.25°D.30°考点:圆周角定理;垂径定理.分析:由在⊙O中,OD⊥BC,根据垂径定理的即可求得:=,然后利用圆周角定理求解即可求得答案.解答:解:∵在⊙O中,OD⊥BC,∴=,∴∠CAD=∠BOD=×60°=30°.故选D.点评:此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.7.(3分)(2019•齐齐哈尔)若等腰三角形的周长是80cm,则能反映这个等腰三角形的腰长ycm与底边长xcm的函数关系式的图象是()A.B.C.D.考点:一次函数的应用;一次函数的图象;等腰三角形的性质.分析:根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.解答:解:根据题意,x+2y=80,所以,y=﹣x+40,根据三角形的三边关系,x>y﹣y=0,x<y+y=2y,所以,x+x<80,解得x<40,所以,y与x的函数关系式为y=﹣x+40(0<x<40),只有D选项符合.故选:D.点评:本题考查了一次函数的应用,主要利用了三角形的周长公式,难点在于利用三角形的三边关系求出底边x的取值范围.8.(3分)(2019•齐齐哈尔)如图,由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是()A.5个或6个B.6个或7个C.7个或8个D.8个或9个考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有4个个小正方体,由主视图可得上面一层是2个或3小正方体,则组成这个几何体的小正方体的个数是6个或7个;故选B.点评:本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.9.(3分)(2019•齐齐哈尔)如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判定符号;④求出点(﹣2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵b=﹣a∴a+b=0.故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),又∵当x>时,y随x的增大而减小,<3,∴y1<y2.故④错误;综上所述,正确的结论是①②④.故选:A.点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.10.(3分)(2019•齐齐哈尔)如图,四边形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直线BD折叠,点C落在点E处,BE与AD相交于点F,连接AE,下列结论:①△FED是等腰三角形;②四边形ABDE是等腰梯形;③图中共有6对全等三角形;④四边形BCDF的周长为cm;⑤AE的长为cm.其中结论正确的个数为()A.2个B.3个C.4个D.5个考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质;等腰梯形的判定.分析:①由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF,所以AF=EF,②∠AEF=(180°﹣∠AFE)÷2=(180°﹣∠BFD)÷2=∠FBD,则AE∥BD,据此即可证得;③根据折叠的性质,得到相等的边角,即可判断;④根据勾股定理即可求得BF的长,则CF即可求得,丛而求得四边形的周长;⑤利用△BDF∽△EAF,根据相似三角形的对应边的比相等即可求解.解答:解:①由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠BAD=90°,∴AB=DE,BE=AD,BD=BD,∴△ABD≌△EDB,∴∠EBD=∠ADB,∴BF=DF,即△FED是等腰三角形,结论正确;②∵AD=BE,AB=DE,AE=AE,∴△AED≌△EAB(SSS),∴∠AEB=∠EAD,∵∠AFE=∠BFD,∴∠AEB=∠EBD,∴AE∥BD,又∵AB=DE,∴四边形ABDE是等腰梯形.结论正确;③图中的全等三角形有:△ABD≌△CDB,△ABD≌△EDB,△CDB≌△EDB,△ABF≌△EDF,△ABE≌△EDA共有5对,则结论错误;④BC=BE=8cm,CD=ED=AB=6cm,则设BF=DF=xcm,则AF=8﹣xcm,在直角△ABF中,AB2+AF2=BF2,则36+(8﹣x)2=x2,解得:x=cm,则四边形BCDF的周长为:8+6+2×=14+=cm,则结论正确;⑤在直角△BCD中,BD==10,∵AE∥BD,∴△BDF∽△EAF,∴==,∴AE=BD=×10=cm.则结论正确.综上所述,正确的结论有①②④⑤,共4个.故选C.点评:本题考查了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,等角对等边,三角形的内角和,平行线的判定求解.二、填空题(每小题3分,满分30分)11.(3分)(2019•齐齐哈尔)财政部近日公开的情况显示,2019年中央本级“三公”经费财政款预算比去年年初预算减少8.18亿元,用科学记数法表示8.18亿元为8.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8.18亿元=8.18×108.故答案为:8.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2019•齐齐哈尔)在函数y=中,自变量x的取值范围是x≥且x≠3.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2x﹣1≥0且x﹣3≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2019•齐齐哈尔)如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)考点:全等三角形的判定.专题:开放型.分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.14.(3分)(2019•齐齐哈尔)已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9.考点:代数式求值.分析:把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.解答:解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.点评:本题考查了代数式求值,整体思想的利用是解题的关键.15.(3分)(2019•齐齐哈尔)从2、3、4这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能被3整除的两位数的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,其中能被3整除的两位数的有:24,42,∴其中能被3整除的两位数的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2019•齐齐哈尔)用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为4.考点:圆锥的计算.分析:易得扇形的弧长,除以2π即为圆锥的底面半径.解答:解:∵扇形的弧长==8π,∴圆锥的底面半径为8π÷2π=4.故答案为:4.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.17.(3分)(2019•齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线.分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=4,∴AB=2CD=8,则sinB===.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.18.(3分)(2019•齐齐哈尔)在平面直角坐标系xOy中,点P到x轴的距离为3个单位长度,到原点O的距离为5个单位长度,则经过点P的反比例函数的解析式为y=或y=﹣.考点:待定系数法求反比例函数解析式.专题:计算题.分析:根据题意确定出P的坐标,设反比例解析式为y=,将P坐标代入求出k的值,即可确定出反比例解析式.解答:解:根据题意得:P(4,3),(4,﹣3),(﹣4,3),(﹣4,﹣3),设反比例解析式为y=,将P坐标分别代入得:k=12,﹣12,则反比例解析式为y=或y=﹣.故答案为:y=或y=﹣.点评:此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.19.(3分)(2019•齐齐哈尔)已知正方形ABCD的边长为2cm,以CD为边作等边三角形CDE,则△ABE的面积为(2+)或(2﹣)cm2.考点:正方形的性质;等边三角形的性质.专题:分类讨论.分析:作出图形,根据等边三角形的性质求出点E到CD的距离,从而得到点E到AB的距离,再利用三角形的面积公式列式计算即可得解.解答:解:如图,∵△CDE是等边三角形,∴点E到CD的距离为2×=cm,∴点E到AB的距离=2+cm或2+cm,∴△ABE的面积=×2×(2+)=2+cm2,或△ABE的面积=×2×(2﹣)=2﹣cm2.故答案为:(2+)或(2﹣).点评:本题考查了正方形的性质,等边三角形的性质,熟记各性质并求出点E到AB边的距离是解题的关键,易错点在于点E的位置不确定要分情况讨论,作出图形更形象直观.20.(3分)(2019•齐齐哈尔)如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2019OB2019,则点A2019的坐标为(﹣22019,0).考点:规律型:点的坐标.分析:根据题意得出A点坐标变化规律,进而得出点A2019的坐标位置,进而得出答案.解答:解:∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,A1(0,﹣2),A2(﹣4,0),A3(0,8),A4(16,0),∵2019÷4=503…2,∴点A2019的坐标与A2所在同一象限,∵﹣4=﹣22,8=23,16=24,∴点A2019(﹣22019,0).故答案为:(﹣22019,0).点评:此题主要考查了点的坐标变化规律,得出A点坐标变化规律是解题关键.三、解答题(满分60分)21.(5分)(2019•齐齐哈尔)先化简,再求值:(﹣)÷,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,再利用除法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=﹣1时,原式=1.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(6分)(2019•齐齐哈尔)如图,在四边形ABCD中,(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称,若对称请在图中画出对称轴或对称中心.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C、D关于直线MN的对称点A1、B1、C1、D1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C、D关于点O的对称点A2、B2、C2、D2的位置,然后顺次连接即可;(3)观察图形,根据轴对称的性质解答.解答:解:(1)四边形A1B1C1D1如图所示;(2)四边形A2B2C2D2如图所示;(3)如图所示,四边形A1B1C1D1与四边形A2B2C2D2关于直线PQ成轴对称.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(6分)(2019•齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.考点:轴对称-最短路线问题;待定系数法求二次函数解析式.分析:(1)设抛物线顶点式解析式y=a(x﹣1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)先求出点B关于x轴的对称点B′的坐标,连接AB′与x轴相交,根据轴对称确定最短路线问题,交点即为所求的点P,然后利用待定系数法求一次函数解析式求出直线AB′的解析式,再求出与x轴的交点即可.解答:解:(1)∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)点B关于x轴的对称点B′的坐标为(0,﹣3),由轴对称确定最短路线问题,连接AB′与x轴的交点即为点P,设直线AB′的解析式为y=kx+b(k≠0),则,解得,∴直线AB′的解析式为y=7x﹣3,令y=0,则7x﹣3=0,解得x=,所以,当PA+PB的值最小时的点P的坐标为(,0).点评:本题考查了轴对称确定最短路线问题,待定系数法求二次函数解析式,待定系数法求一次函数解析式,(1)利用顶点式解析式求解更简便,(2)熟练掌握点P的确定方法是解题的关键.24.(7分)(2019•齐齐哈尔)在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取50名学生;(2)补全条形统计图;(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是115.2度;(4)若全校共2130名学生,请你估算“其他”部分的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据跳绳的人数是15,占30%,即可求得总人数;(2)根据百分比的意义求得踢毽子的人数,则其他项目的人数可求得,从而补全直方图;(3)利用360°乘以对应的比例即可求得;(4)利用总人数2130乘以对应的比例即可求解.解答:解:(1)抽取的总人数是:15÷30%=50(人);(2)踢毽子的人数是:50×18%=9(人),则其他项目的人数是:50﹣15﹣16﹣9=10(人),(3)“立定跳远”部分对应的圆心角的度数是:360°×=115.2°;(4)“其他”部分的学生人数是:2130×=426(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)(2019•齐齐哈尔)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60千米/时,乙车的速度是96千米/时,点C的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?考点:一次函数的应用.分析:(1)由甲车行驶2小时在M地可知M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/小时,进一步求得甲车提速后的速度是40×1.5=60千米/时;乙车从出发到返回共用4﹣2=2小时,行车时间为2﹣=小时,速度为80×2÷=96千米/时;点C的横坐标为2++=,纵坐标为80;(2)设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;(3)求出甲车提速后到达B市时间减去乙车已返回A市的时间即可.解答:解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.点评:此题考查一次函数的实际运用,结合图象,理解题意,正确列出函数解析式解决问题.26.(8分)(2019•齐齐哈尔)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN 过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.解答:题干引论:证明:如答图1,过点D作DF⊥MN,交AB于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(1)答:BD=DP成立.证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(2)答:BD=DP.证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.点评:本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.27.(10分)(2019•齐齐哈尔)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元,可列出方程组,解方程组即可得到甲材料每千克25元,乙材料每千克35元;(2)设生产A产品m件,生产B产品(60﹣m)件,先表示出生产这60件产品的材料费为25×4m+35×1m+25×3(60﹣m)+35×3(60﹣m)=﹣45m+10800,根据购买甲、乙两种材料的资金不超过9900元得到﹣45m+10800≤9900,根据生产B产品不少于38件得到60﹣m≥38,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W元,加工费为:40m+50(60﹣m),根据成本=材料费+加工费得到W=﹣45m+10800+40m+50(60﹣m)=﹣55m+13800,根据一次函数的性质得到W随m的增大而减小,然后把m=22代入,即可得到最低成本的生产方案.解答:解:(1)设甲材料每千克x元,乙材料每千克y元,则,解得,所以甲材料每千克25元,乙材料每千克35元;(2)设生产A产品m件,生产B产品(60﹣m)件,则生产这60件产品的材料费为25×4m+35×1m+25×3(60﹣m)+35×3(60﹣m)=﹣45m+10800,由题意:﹣45m+10800≤9900,解得m≥20,又∵60﹣m≥38,解得m≤22,∴20≤m≤22,∴m的值为20,21,22,共有三种方案:①生产A产品20件,生产B产品40件;②生产A产品21件,生产B产品39件;③生产A产品22件,生产B产品38件;(3)设总生产成本为W元,加工费为:40m+50(60﹣m),则W=﹣45m+10800+40m+50(60﹣m)=﹣55m+13800,∵﹣55<0,∴W随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低.答:选择生产A产品22件,生产B产品38件,总成本最低.点评:本题考查了一次函数的应用:通过实际问题列出一次函数关系式,然后根据一次函数的性质解决问题.也考查了二元一次方程组以及一元一次不等式组的应用.28.(10分)(2019•齐齐哈尔)如图,在平面直角坐标系中,已知R△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.。