14册第七章整式的运算第一课时——整式的加减法(一)

合集下载

《整式的加减 》课件

《整式的加减 》课件
根据乘法分配律,将代数式中 的每一项分别乘以另一个代数 式中的每一项,再将结果相加 。
整式的除法运算
转化为乘法运算,再按照乘法 运算法则进行计算。
整式的混合运算实例
整式加法实例
$2x^2y + 3xy^2 + 4xz$
整式乘法实例
$(x + y)^2 times (x - y)^3$
整式减法实例
$5x^3 - 3x^2y + 4y^2 - 2y^3$
整式的分类
单项式
只包含一个项的整式,如: 3x^2y、4a。
多项式
包含多个项的整式,如:x^2 3x + 2、a^3 - 2a^2 + a。
整式的加减运算规则
同类项合并
幂次不变
同类项是指具有相同变量和幂次的项 ,同类项可以合并,如:2x^2 + 3x^2 = 5x^2。
在进行加减运算时,变量的幂次保持 不变,如:x^2 + x = x^2 + x。
整式除法实例
$frac{x^4 - y^4}{x + y}$
04
CATALOGUE
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
01
02
03
代数方程求解
通过整式的加减运算,可 以求解代数方程,如一元 一次方程、二元一次方程 等。
函数图像变换
整式的加减可以用于函数 图像的平移、伸缩等变换 ,有助于理解函数的性质 和变化规律。
几何图形面积计算
在几何图形中,整式的加 减可以用于计算图形的面 积和周长,如矩形、三角 形等。
整式的加减在实际生活中的应用
购物计算
在购物时,整式的加减可以用于 计算折扣、找零等,方便快捷。

整式的加减(第一课时)课件

整式的加减(第一课时)课件

基础练习题
总结词:巩固基础
详细描述:基础练习题主要针对整式加减法的基本规则和概念,包括同类项的合并、系数和字母的加 减等。这些题目难度较低,适合初学者熟悉基本操作。
进阶练习题
总结词:提升技能
详细描述:进阶练习题在基础练习题的基础上增加难度,涉 及更复杂的整式加减运算,如多项式的加减、去括号等。这 些题目旨在提高学生的运算能力和对整式加减法的理解。
05
06
解:$3a^2 - 2a + a^2 = (3 + 1)a^2 2a = 4a^2 - 2a$
整式的加减运算技巧
技巧一
合并同类项时,系数直接相加减 ,字母和字母的指数不变
例如
$2x + 3x = 5x$,$3a^2 2a^2 = a^2$。
技巧二
去括号时,注意符号的变化
例如
$3(x + y) = 3x + 3y$,$- (x y) = -x + y$。
整式的加减(第一课时 )ppt课件
• 整式的概念 • 整式的加减运算 • 整式的混合运算 • 整式的加减运算练习
目录
01
整式的概念
什么是整式
整式是由常数、变数、常数乘变数、常数除变数以及括号等符号组成的数学表达式 。
整式中,变数的次数可以是零次、一次或多次。
整式中,变数的指数可以是正整数、负整数或零。
步骤三:合并同类项
整式的加减运算步骤
将带有相同字母的项的系数相加或相减。 步骤四:化简
将整式化简到最简形式。
整式的加减运算实例
例1:
01
02
计算:$2x - 3x + 4x$
解:$2x - 3x + 4x = (2 - 3 + 4)x = 3x$

整式的加减ppt课件

整式的加减ppt课件
改变整式加减的组合顺序 ,其和或差不变。
分配律
将一个数与一个整式相乘 ,等于将这个数分别与整 式的各项相乘后再求和或 差。
整式加减的步骤
01
02
03
04
辨认同类项
找出整式中的同类项,将其归 类。
确定系数
确定同类项的系数,准备进行 加减运算。
进行加减
根据整式加减的法则,对同类 项的系数进行加减运算。
答案与解析
$2xy$
答案
解析
$7xy - 5xy = (7-5)xy = 2xy$
答案
$x^3 - y^3 = x^3 - y^3$
解析
由于$x^3$和$y^3$不是同类项,因此不 能合并。所以,结果仍然是$x^3 - y^3$。
202X WORK SUMMARY
THANKS
感谢观看
REPORTING
化简结果
对完成加减运算后的整式进行 化简,得到最简结果。
Hale Waihona Puke PART 03整式的混合运算
整式混合运算的顺序
先乘除后加减
在进行整式的混合运算时,应先 进行乘法和除法运算,再进行加
法和减法运算。
同级运算从左到右
当整式中存在多个运算符时,应依 照运算符的优先级从左到右依次进 行计算。
括号优先
括号内的运算应优先进行,以避免 混淆和错误。
合并同类项
将整式中的同类项合并,简化 整式的情势。
提取公因式
将整式中的公因式提取出来, 简化整式的情势。
完全平方公式
利用完全平方公式将整式化简 。
平方差公式
利用平方差公式将整式化简。
整式化简的步骤
辨认同类项
在整式中找出同类项,为合并同类项做准备 。

整式的加减的ppt课件

整式的加减的ppt课件
多项式
由多个单项式组成的整式,如:x + 2y、3x^2 - 4x + 5等。
整式的加减运算规则
01
02
03
合并同类项
将相同变数的项合并,如 :3x + 5x = 8x。
系数相加减
将同类项的系数进行相加 或相减,如:3x + (-2x) = x。
变数和常数相加减
在整式的加减中,变数和 常数可以相加减,如:x + 5 = x + 5。
电磁学问题
在电磁学中,电流、电压、电阻等物 理量的计算也需要使用到整式的加减 。通过整式的加减,我们可以得到更 加准确的物理量值。
整式的加减在化学问题中的应用
化学反应方程式
在化学反应方程式中,整式的加减可 以帮助我们理解反应物和生成物之间 的关系。例如,通过比较反应前后的 质量变化,我们可以计算出反应的能 量变化。
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
代数方程的求解
整式的加减在代数方程求解中有 着广泛的应用,例如线性方程、 二次方程等。通过合并同类项、 移项等整式加减运算,可以简化
方程,找到解。
函数图像的处理
在函数的学习中,整式的加减可 以帮助我们处理函数图像,例如 通过平移、伸缩等变换,使图像
利用分配律简化计算
分配律是整式加减运算的基础,灵活运用分 配律可以简化计算。
灵活运用交换律和结合律
交换律和结合律可以用来调整项的顺序,便 于计算。
合并同类项时注意符号
在合并同类项时,要注意各项的符号,正负 号要正确处理。
化简时注意化到最简形式
在化简整式时,应尽可能化到最简形式,避 免复杂计算。
整式的加减运算实例

整式的加减ppt课件

整式的加减ppt课件




× -



×



- =-



.
感悟新知
知3-练
5-1.先化简,再求值:
(- x2+ 3xy - y2 ) - (- 3x2+5xy - 2y2 ) ,其中




x= , y= - .
感悟新知
知3-练
解:
原式=-x2+3xy-y2+3x2-5xy+2y2=2x2-2xy+y2.
12
(3) 利用合并同类项法则合并同类项;
(4) 写出合并后的结果 (可能是单项式,也可能是多项
式).
感悟新知
例2
知2-练
合并同类项:
(1) x2-3x-2+4x-1;
(2)3a2b-2ab+2+2ab-a2b-5.
解题秘方:合并同类项:将同类项的系数相加,
字母和字母的指数不变 .
感悟新知
知2-练
解:(1) x2-3x-2+4x-1
(2) - 3(2a - 3b) - 5a+b = - 6a+9b - 5a+b= - 11a+10b;
(3) (x+
��







)- 2 (3x - ) =x+ - 6x+ = - 5x+

.

感悟新知
知3-练
警示误区:去括号时要看清括号前面的符号,当
括号前面是“-”号时,去括号后,
原括号里各项的符号都要改变,不能
知4-练
(2) 若 3y - x=2, 求A - 2B 的值 .

初中数学课件《整式的加减

初中数学课件《整式的加减

综合练习题
总结词
将整式的加减与其他数学知识结合,考察学生的综合运用能力。
解方程组
$left{ begin{array}{l}3x - y = 5 2x + y = -1end{array} right.$,$left{ begin{array}{l}x + y = 1 x - y = -3end{array} right.$。
单项式
只包含一个项的整式,如3x^2。
多项式
包含多个项的整式,如x^2+2x+1。
零次多项式
所有项的次数都为0的整式,如3。
整式的性质
整式的加法、减法、乘法和除法 满足交换律、结合律和分配律。
整式的乘法满足幂的运算法则, 如(a^m)^n=a^(m*n)。
整式的除法可以转化为乘法运算 。
02
整式的加减运算
物理模型
在物理学中,整式可以用 来描述物理现象,如速度 、加速度和力等。
生态学模型
在生态学中,整式可以用 来描述种群数量变化、环 境影响等。
整式在解决实际问题中的应用
金融计算
科学实验数据处理
在金融领域,整式可以用来计算投资 回报、贷款利息等。
在进行科学实验时,整式可以用来处 理实验数据、分析结果等。
乘方运算规则
乘方的运算规则包括底数相同时,幂相乘等于幂的乘方;幂的乘方等于幂相乘 等。
混合运算的先进行乘法和除法运算,再进行加法 和减法运算。
同级运算从左到右
当混合运算中存在同级的运算时,应从左到右依次进行计算 。
04
整式在实际生活中的应用
生活中的整式加减实例
购物时计算折扣
例如,购买商品时,原价和折扣 后的价格可以通过整式的加减来

《整式的加减法》课件

除法运算的技巧
在整式除法中,需要注意符号和 系数的处理,以及利用公因式进 行化简。
整式的加减乘除混合运算
混合运算法则
整式的加减乘除混合运算遵循先 乘除后加减的顺序,即先进行乘 法和除法运算,再进行加法和减
法运算。
混合运算的顺序
在整式的加减乘除混合运算中,需 要注意运算的顺序,按照先乘除后 加减的顺序进行计算。
《整式的加减法》 ppt课件
REPORTING
• 整式的基本概念 • 整式的加减运算 • 整式的混合运算 • 整式加减法的应用 • 练习与巩固
目录
PART 01
整式的基本概念
REPORTING
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式不包含分式和根 式。
整式中,变数的次数 都是非负整数。
证明代数恒等式
整式加减法可以用于证明一些代数恒等式,例如平方差公式、完全 平方公式等。
在日常生活中的应用
购物计算
01
在购物时,整式加减法可以用于计算找零、打折、优惠等活动
中的金额计算。
日常预算
02
整式加减法可以用于日常生活中的预算计算,例如计算每月的
水电煤气费、电话费、交通费等。
数据分析
03
整式加减法可以用于数据分析中的数据处理和整理,例如统计
数据、计算平均数、中位数、众数等。
PART 05
练习与巩固
REPORTING
基础练习题
总结词
帮助学生掌握整式加减法的基本概念 和运算规则。
详细描述
设计一系列简单的整式加减法题目, 包括单项式与单项式相加减、多项式 与多项式相加减等基础题型,供学生 练习。
提高练习题

《整式的加减》PPT课件

解:
当x=1,y=-2时,
4x2 2xy 20 4 12 21 (2) 20 20.
随堂训练
4. 一种笔记本的单价是x元,圆珠笔的单价是y元.
小红买这种笔记本3本,买圆珠笔2支;小明买这种
笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,
小红和小明一共花费多少钱?
解:小红买笔记本和圆珠笔共花费(3x+2y)元,
解:(1)这个长方形的周长是 2a+2(2a-1)=6a-2.
(2)当a=2时,6a-2=6×2-2=10. 所以这个长方形的周长是10. (3)如果6a-2=16,那么6a=18,即 a=3. 所以,当a=3时,这个长方形的周长是16.
随堂训练
1.求多项式2x2-3x-1与-x2+3x-5的和.
4.4 整式的加减
学习目标
1 能熟练正确地运用合并同类项、去括号的法则进行 整式的加减运算.(重点、难点)
2 能利用整式的加减运算化简多项式并求值.(难点) 3 能用整式加减运算解决实际问题.
温故知新
(1)括号前为“+”,把( 括)号和(“+”)号去掉后, 原括号里的各项的符号都( 不改变)符号 (2)括号前为“-”,把(括号 )和(“-”号)去 掉后,原括号里的各项的符号都(改变符号 )
4x2 2xy 20 4 12 21 (2) 20 20.
知识讲解
小结: (1)整式的加减运算重点注意去括号时的符号、系数
的处理,不要把符号弄错,不要漏乘括号外的系数; (2)整式的化简求值题,能够化简的最好先化简,尽
量不要直接把字母的值代入计算.
知识讲解
例3. 一个长方形的宽为a,长比宽的2倍小1. 1、写出这个长方形的周长 2、当a=2时,这个长方形的周长是多少? 3、当a为何值时,这个长方形的周长是16?

《整式的加减》课件


整式的分类
01
02
03
单项式
只包含一个项的整式,例 如:$x^2$、$5a$。
多项式
包含多个项的整式,例如 :$x^2 - 3x + 2$。
整式的次数
一个整式中,所有字母的 指数之和称为该整式的次 数,例如:$x^2$的次数 为2。
整式的加减运算规则
同类项合并
同类项是指具有相同字母和相同 指数的项,同类项可以合并,例 如:$2x^2 + 3x^2 = 5x^2$。
去括号法则
总结词
去括号法则是整式加减运算中的一项重要法则,用于消除括号并简化整式的形式。
详细描述
去括号法则包括两个步骤,一是消除括号前的正号或负号,二是将括号内的各项分别与括号前的符号相乘或相除 。例如,在整式2(x + 3y) - (2x - y)中,根据去括号法则,首先消除括号前的正号,得到2x + 6y - 2x + y,然后 分别将括号内的各项与括号前的符号相乘或相除,得到最终结果-5y。
移项法则
总结词
移项法则是整式加减运算中的另一项重要法则,用于将整式中的项从一边移动到另一边 。
详细描述
移项法则包括两个步骤,一是将整式中的项从一边移动到另一边,二是根据移动的方向 改变该项的符号。例如,在整式6x - 5 = 2x + 1中,要将-5移到等号的另一边,根据 移项法则,首先将-5从等号的左边移动到右边,并改变其符号得到+5,得到新的等式
05
练习与巩固
基础练习题
总结词
帮助学生掌握整式加减的基本概 念和运算规则。
详细描述
设计一些简单的整式加减题目, 如合并同类项、去括号等,让学 生通过练习加深对整式加减基本 概念和运算规则的理解。

《整式的加减》


03
整式加减法的实际应用
代数表达式
整式加减法是代数表达式的重要基础,通过将同类项进行合并,可以简化表达式 并提高计算效率。
通过去括号、合并同类项等技巧,可以化简复杂的代数表达式,为后续的代数运 算打下基础。
方程式
在方程式中,整式加减法可以用于移项、合并同类项等操作 ,从而简化方程的形式和求解过程。

例题三:利用整式加减法解决实际问题
要点一
总结词
要点二
详细描述
掌握整式加减法在实际问题中的应用
整式加减法可以解决很多实际问题,例如计算路程、 分配物品等。在解题时,需要注意以下几点:首先, 要理解问题的背景和要求;其次,要分析问题中的数 量关系;最后,要正确使用整式加减法进行计算。
THANKS
感谢观看
VS
详细描述
整式加减法不仅可以用于解决数学问题, 还可以用于解决实际问题。我们可以将实 际问题转化为数学模型,利用整式加减法 求解。例如,在解决路程、时间、速度等 问题时,我们可以使用整式加减法来计算 时间和速度等变量之间的关系。
06
整式加减法习题及解析
例题一:合并同类项
总结词
理解合并同类项的方法和原则
对后续数学知识的影响
整式加减法是代数学习的基石,为后续学习多项式、方程、不等式等数 学知识提供了基础。
通过对整式的加减法的学习,有助于理解更复杂的数学概念和解题方法 。
在后续学习数学的过程中,整式加减法的掌握程度直接影响了对其他数 学知识的理解和应用。
对解决实际问题的影响
整式加减法在实际生活中有着广泛的应用,如购物、计算时间等。 通过掌握整式加减法,可以更准确地解决实际问题,提高生活技能。
《整式的加减》大纲
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档