焊接手册
焊接手册(ASME规范)

压力容器焊接手册(ASME 规范)
目录
版次:0
2 第 2 页,共 104 页
压力容器焊接手册(ASME 规范)
1.1 目的 作为焊接 ASME 规范容器的参考基准。
第一章 总则
1.2 适用范围 本手册适用于按照 ASME 规范建造的压力容器焊接的设计、采购、检验等。
1.3 参考文献 1)ASME 规范第 VIII-1 卷。 2)ASME 规范第 VIII-2 卷。 3)ASME 规范第 IX 卷。 4)ASME 规范第 II-C 卷。
Joint Design 接头
(10)
Backing (Yes) 衬垫(有) (11)
(No)(无)
Backing Material (Type) 衬垫材料(型号)
(12)
(Refer to both backing and retainers)
□Metal
□Nonfusing Metal
□Nonmetallic
压力容器焊接手册(ASME 规范)
版次:0
DHME
压力容器焊接手册(ASME 规范)
第 1 页,共 104 页
焊接科-焊接技术系 2007 年
1
第一章 总则 1.1 目的 1.2 适用范围 1.3 参考文献 第二章 设计规范 2.1 编制 WPS 2.2 评定 PQR 2.3 设备焊接坡口设计 第三章 采购要求 3.1 焊接材料采购技术要求 3.2 焊接材料选择指南
压力容器焊接手册(ASME 规范)
版次:0
POSITION QW-405 焊接位置 Position(s) of Groove 坡口的位置 Welding Progression: Up 向上 Position(s) of Fillet 角焊缝位置
ASME焊接材料选择指南

焊接材料选择指南(UCS篇)碳素钢P-No. 标准GTAW&GMAW FCAW SMAW SAW1-1SA-36SA-53-EASA-53-EBSA-53-SASA-53-SBSA-106-ASA-106-BSA-135-ASA-135-BSA-178-ASA-178-CSA-179SA-181-60SA-192SA-210-A-1SA-214SA-216-WCASA-234-WPBSA-266-1SA-283-ASA-283-BSA-283-CSA-283-DSA-286-ASA-285-BSA-285-CSA-333-1SA-333-6SA-334-1SA-334-6SA-350-LF1SA-352-LCBSA-372-ASA-420-WPL6SA-515-60SA-515-65SA-516-55SA-516-60SA-516-65SA-524-ISA-524-IISA-556-A2SA-556-B2SA-557-A2SA-557-B2SA-662-ASA-662-BSA-727SA-765-ISA-836ER70S-2ER70S-3ER70S-4ER70S-6ER70S-7ER70S-GE70C-3XE70C-6XE70C-GXE70C-GSX(X=C,M)E6XT-GE7XT-1,-1ME7XT-2,-2ME7XT-3E7XT-4E7XT-5,-5ME7XT-6E7XT-7E7XT-8E7XT-9,-9ME7XT-10E7XT-11E7XT-12,-12ME7XT-G(X=0,1)E6010E6011E6012E6013E6018E6019E6020E6022E6027E7014E7015E7016E7018E7018ME7016-1(-46℃)E7018-1(-46℃)E7024E7027E7028E7048F6(A)P0-EXXXF6(A)P2-EXXXF6(A)P4-EXXXF6(A)P6-EXXXF6(A)P8-EXXXF7(A)P0-EXXXF7(A)P2-EXXXF7(A)P4-EXXXF7(A)P6-EXXXF7(A)P8-EXXXF7(A)PZ-EXXXPWHT将会使焊缝金属的抗拉强度下降10%~15%。
焊接手册

《焊接手册》第3版序
《焊接手册》第3卷第3版前言
第1篇焊接结构基础
第1章焊接结构常用金属材料
第2章焊接接头及其几何设计
第3章焊接接头的力学性能
第4章焊接应力与变形
第5章焊接结构疲劳
第6章焊接结构的断裂及安全评定
第7章焊接结构的环境失效
第8章标准与法规
第2篇典型焊接结构设计
第9章焊接结构设计原则与方法
第10章焊接接头强度与计算
第11章焊接基本构件的设计与计算
第12章机械零部件焊接结构
第13章锅炉、压力容器与管道
第14章建筑焊接结构
第15章铁路车辆焊接结构
第16章船舶与海洋工程焊接结构
第17章起重机焊接结构
第18章动力机械焊接结构
第19章焊接钢桥
第20章矿山与工程机械焊接结构
第21章汽车焊接结构
第22章典型航空航天结构
第3篇焊接结构生产
第23章焊接结构制造工艺
第24章焊接结构生产用设备
第25章典型焊接结构的制造
第26章焊接结构生产的机械化和自动化
第27章焊接结构的无损检测技术
第28章焊接培训与资格认证
第29章焊接结构生产的质量管理、组织与经济第30章焊接车间设计
第31章焊接安全与清洁生产
第32章焊接结构的再制造与延寿技术
第33章计算机辅助焊接结构制造与生产质量控制。
激光焊接手册

Some boundary conditions as to materials and product design have to be fulfilled. The most important condition to the materials is that one product part should be transparent for laser radiation, whereas the other part has to be absorbent. As regards product design, the most important aspect is the geometry of the weld region. A large number of shapes can be used to obtain an optimum welding result. This publication describes the potential of polymer laser welding and presents information on product design, materials, process parameters and equipment. Attention is also given to the latest developments in the area of diode-lasers. This new type of laser is particularly attractive because of its interesting price/performance ratio. Their optical beam quality is somewhat less compared to conventional laser systems, but this is usually no disadvantage at all in case of polymer welding. Finally, the usage of the process is illustrated by means of a number of (potential) applications. These involve varying industrial areas. Product sizes range from the very small to the very large: - Miniature components for optical information storage - Miniature products for biomedical applications - Encapsulation of electronic components - Housings of personal electronic products - Automotive components - Double-walled window systems.
英文焊接手册Welding handbook

Document provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call 1the Document Policy Group at 303-397-2295.2NOTE:Although care was taken in choosing and presenting the data in this guide, AWS cannot guarantee that it iserror free. Further, this guide is not intended to be an exhaustive treatment of the topic and therefore may not include all available information, including with respect to safety and health issues. By publishing this guide, AWS does not insure anyone using the information it contains against any liability or injury to property or persons arising from that use.© 2004 by American Welding Society. All rights reserved.Printed in the United States of AmericaCopyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---The inspection requirements for the fabrication and welding of steel structures are very extensive. This PocketHandbook has been developed to provide a useful tool for inspectors to carry in their pockets or tool kits so that selected pertinent portions of the AWS Structural Welding Code—Steel, D1.1/D1.1M:2004, can be easilyreferenced at the job site. Underlining is as shown in the code.This publication is not to be considered as a substitute for the D1.1 code book. Rather, the Handbook is providedas a supplemental aid for the “deckplate” inspector. Only the complete code should be considered as the officialdocument to ensure that all of the quality attributes required for structural fabrication are performed correctly and completely.To assist the inspector, or other user, in verifying conformance to D1.1, the paragraph references, the table num-bers, and the figure numbers contained in this book are directly from the D1.1/D1.1M:2004 code. In addition, page numbering in this handbook is cross-referenced to reflect both the current page and the corresponding page from the D1.1/D1.1M:2004 code, separated by a “/.” This will provide an easy cross reference for the user to ensure that the complete requirements are understood when questions develop during the course of any inspection.IntroductionCopyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---3Requirements for Transitions Between Materials of Unequal Thickness (5)Thermal Cutting and Access Hole Requirements (9)Tolerance of Joint Dimensions (13)Dimensional Tolerances of Welded Structural Members (19)Base Material Surface Requirements (25)Weld Profile Requirements (26)Acceptance Criteria for Visual Inspection of Welds (32)Index (37)Table of ContentsCopyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---45Figure 2.21—Transition of Thickness of Butt Joints in Parts ofUnequal Thickness (Tubular) (see 2.25 [pg. 22])Requirements for Transitions Between Materials of Unequal Thickness5/pg. 55Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please callthe Document Policy Group at 303-397-2295.-6Figure 2.21 (Cont’d)—Transition of Thickness of Butt Joints in Parts ofUnequal Thickness (Tubular) (see 2.25 [pg. 22])Requirements for Transitions Between Materials of Unequal Thickness6/pg. 55Copyright American Welding Society Provided by IHS under license with AWS Document provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--7(see 2.7.1 [pg. 10] and 2.16.1.1 [pg. 14])Requirements for Transitions Between Materials of Unequal Thickness7/pg. 42Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please callthe Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---8Figure 2.12—Transition of Width (Cyclically Loaded Nontubular) (see 2.16.1.2 [pg. 14])Requirements for Transitions Between Materials of Unequal Thickness8/pg. 48Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,95.15.4.3Roughness Requirements. In thermal cutting, the equipment shall be so adjusted and manipulated as to avoid cutting beyond (inside) the prescribed lines. The roughness of all thermal cut surfaces shall be no greater than that defined by the American National Standards Institute surface rough-ness value of 1000 µin. [25µm] for material up to 4in. [100 mm] thick and 2000µin. [50 µm] for mate-rial 4 in. to 8 in. [200 mm] thick, with the following exception: the ends of members not subject to calcu-lated stress at the ends shall not exceed a surface roughness value of 2000 µin. ANSI/ASME B46.1,Surface Texture (Surface Roughness, Waviness, and Lay) is the reference standard. AWS Surface Rough-ness Guide for Oxygen Cutting (AWS C4.1-77) may be used as a guide for evaluating surface roughness of these edges. For materials up to and including 4 in.[100 mm] thick, Sample No. 3 shall be used, and for materials over 4 in. up to 8 in. [200 mm] thick,Sample No. 2 shall be used. 5.15.4.4Gouge or Notch Limitations. Rough-ness exceeding these values and notches or gougesnot more than 3/16 in. [5 mm] deep on other wise satisfactory surfaces shall be removed by machining or grinding. Notches or gouges exceeding 3/16 in.[5mm] deep may be repaired by grinding if the nominal cross-sectional area is not reduced by more than 2%. Ground or machined surfaces shall be fared to the original surface with a slope not exceeding one in ten. Cut surfaces and adjacent edges shall be left free of slag. In thermal-cut surfaces, occasional notches or gouges may, with approval of the Engi-neer, be repaired by welding.5.16Reentrant CornersReentrant corners of cut material shall be formed to provide a gradual transition with a radius of not less than 1 in. [25 mm]. Adjacent surfaces shall meet without offset or cutting past the point of tangency.Thermal Cutting and Access Hole Requirements9/pg. 185Copyright American Welding SocietyProvided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please callthe Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---10The reentrant corners may be formed by thermal cut-ting, followed by grinding, if necessary, to meet the surface requirements of 5.15.4.3.5.17Beam Copes and Weld AccessHolesRadii of beam copes and weld access holes shall provide a smooth transition free of notches or cutting past the points of tangency between adjacent surfaces and shall meet the surface requirements of 5.15.4.3.5.17.1Weld Access Hole Dimensions. All weld ac-cess holes required to facilitate welding operations shall have a length (A ) from the toe of the weld preparation not less than 1-1/2 times the thickness of the material in which the hole is made. The height (h)of the access hole shall be adequate for depo-sition of sound weld metal in the adjacent plates and provide clearance for weld tabs for the weld in thematerial in which the hole is made, but not less than the thickness of the material. In hot rolled shapes and built-up shapes, all beam copes and weld access holes shall be shaped free of notches or sharp re-entrant corners except that when fillet web-to-flange welds are used in built-up shapes, access holes may terminate perpendicular to the flange. Fillet welds shall not be returned through weld access holes (see Figure 5.2).5.17.2Group 4 and 5 Shapes. For ASTM A6Group 4 and 5 shapes and built-up shapes with web material thickness greater than 1-1/2 in. [40 mm], the thermally cut surfaces of beam copes and weld access holes shall be ground to bright metal and inspected by either MT or PT. If the curved transition portion of weld access holes and beam copes are formed by pre-drilled or sawed holes, that portion of the access hole or cope need not be ground. Weld access holes and beam copes in other shapes need not be ground nor inspected by MT or PT.10/pg. 185Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---11Figure 5.2—Weld Access Hole Geometry (see 5.17.1 [pg. 185])11/pg. 196Copyright American Welding Society Provided by IHS under license with AWS Document provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please callthe Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---12General Notes:For ASTM A 6 Group 4 and 5 shapes and welded built-up shapes with web thickness more than 1-1/2 in. [40 mm], preheat to 150°F [65°C] prior to thermal cutting, grind and inspect thermally cut edges of access hole using MT or PT methods prior to making web and flange splice groove welds.These are typical details for joints welded from one side against steel backing. Alternative joint designs should be considered.Notes:1.Radius shall provide smooth notch-free transition; R ≥ 3/8 in. [10 mm] (Typical 1/2 in. [12 mm]).2.Access hole made after welding web to flange.3.Access hole made before welding web to flange. Weld not returned through hole.4.h min = 3/4 in. [20 mm] or t w (web thickness), whichever is greater.Figure 5.2 (Cont’d)—Weld Access Hole Geometry (see 5.17.1 [pg. 185])12/pg. 196Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---135.22.1Fillet Weld Assembly. The parts to be joined by fillet welds shall be brought into as close contact as practicable. The root opening shall not exceed 3/16in.[5mm] except in cases involving either shapes or plates 3 in. [75 mm] or greater in thickness if, after straightening and in assembly, the root opening cannot be closed sufficiently to meet this tolerance. In such cases, a maximum root opening of 5/16 in. [8 mm]may be used, provided suitable backing is used. Back-materials, or welds using a low-hydrogen process compatible with the filler metal deposited. If the sepa-ration is greater than 1/16 in. [2 mm], the leg of the fillet weld shall be increased by the amount of the root opening, or the contractor shall demonstrate that the required effective throat has been obtained.5.22.1.1Faying Surface. The separation be-tween faying surfaces of plug and slot welds, andof butt joints landing on a backing, shall not exceed 1/16 in. [2 mm]. Where irregularities in rolled shapes occur after straightening do not allow contact within the above limits, the procedure necessary to bring the material within these limits shall be subject to the approval of the Engineer. The use of filler plates shall be prohibited except as specified on the drawings or as specially approved by the Engineer and made in accordance with 2.13.5.22.2PJP Groove Weld Assembly. The parts to be joined by PJP groove welds parallel to the length of the member shall be brought into as close contact as practicable. The root opening between parts shall not exceed 3/16 in. [5 mm] except in cases involving rolled shapes or plates 3 in. [75 mm] or greater in thickness if, after straightening and in assembly, the root opening cannot be closed sufficiently to meet this tolerance. In such cases, a maximum root opening of 5/16 in. [8 mm] may be used, provided suitable back-ing is used and the final weld meets the requirements Tolerance of Joint Dimensions13/pg. 187Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---14for weld size. Tolerances for bearing joints shall be in conformance with the applicable contract specifications.5.22.3Butt Joint Alignment. Parts to be joined at butt joints shall be carefully aligned. Where the parts are effectively restrained against bending due to eccentricity in alignment, the offset from the theoreti-cal alignment shall not exceed 10% of the thickness of the thinner part joined, or 1/8 in. [3 mm], which-ever is smaller. In correcting misalignment in such cases, the parts shall not be drawn in to a greater slope than 1/2 in. [12 mm] in 12 in. [300 mm]. Mea-surement of offset shall be based upon the centerline of parts unless otherwise shown on the drawings.5.22.3.1Girth Weld Alignment (Tubular).Abutting parts to be joined by girth welds shall be carefully aligned. No two girth welds shall be located closer than one pipe diameter or 3 ft [1 m], whichever is less. There shall be no more than two girth welds in any 10 ft [3 m] interval of pipe, except as may be agreed upon by the Owner and Contractor. Radial offset of abutting edges of girth seams shall not exceed 0.2t (where t is the thickness of the thinner member) and the maximum allowable shall be 1/4 in.[6 mm], provided that any offset exceeding 1/8 in.[3mm] is welded from both sides. However, with the approval of the Engineer, one localized area per girth seam may be offset up to 0.3t with a maximum of 3/8 in. [10 mm], provided the localized area is under 8t in length. Filler metal shall be added to this region to provide a 4 to 1 transition and may be added in conjunction with making the weld. Offsets in excess of this shall be corrected as provided in 5.22.3.Longitudinal weld seams of adjoining sections shall be staggered a minimum of 90°, unless closer spacing is agreed upon by the Owner and Fabricator.5.22.4Groove Dimensions5.22.4.1Nontubular Cross-Sectional Variations.With the exclusion of ESW and EGW, and with the exception of 5.22.4.3 for root openings in excess of those permitted in Figure 5.3, the dimensions of the cross section of the groove welded joints which vary from those shown on the detail drawings by more than these tolerances shall be referred to the Engineer for approval or correction.14/pg. 187Copyright American Welding SocietyProvided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---155.22.4.2Tubular Cross-Sectional Variations.Variation in cross section dimension of groove welded joints, from those shown on the detailed drawings,shall be in accordance with 5.22.4.1 except:(1)Tolerances for T-, Y-, and K-connections are included in the ranges given in 3.13.4.(2)The tolerances shown in Table 5.5 apply to CJP tubular groove welds in butt joints, made from one side only, without backing.5.22.4.3Correction. Root openings greater than those permitted in 5.22.4.1, but not greater than twice the thickness of the thinner part or 3/4 in. [20 mm],whichever is less, may be corrected by welding to acceptable dimensions prior to joining the parts by welding.5.22.4.4Engineer’s Approval. Root openings greater than allowed by 5.22.4.3 may be corrected by welding only with the approval of the Engineer.5.22.5Gouged Grooves. Grooves produced by gouging shall be in substantial conformance with groove profile dimensions as specified in Figure 3.3and 3.4 and provisions of 3.12.3 and 3.13.1. Suitable access to the root shall be maintained.15/pgs. 187–188Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---16Figure 5.3—Workmanship Tolerances in Assembly of Groove Welded Joints (see 5.22.4.1 [pg. 187])16/pg. 197Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---17Root Not BackgougedRoot Backgouged in.mm in.mm(1)Root face of joint ±1/162Not limited (2)Root opening ofjoints without backing±1/162+1/16–1/8023Root opening of joints with backing +1/40–1/1662Not applicable (3)Groove angle ofjoint+10°–5°0+10°–5°0General Note: See 5.22.4.2 for tolerances for CJP tubular groove welds made from one side without backing.Figure 5.3 (Cont’d)—Workmanship Tolerances in Assembly of Groove Welded Joints (see 5.22.4.1 [pg. 187])17/pg. 197Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.18Table 5.5Tubular Root Opening Tolerances (see 5.22.4.2 [pg. 187])Root Face of Joint Root Opening of Joints without Steel Backing Groove Angle of Jointin.mm in.mm deg SMAW GMAW FCAW±1/16±1/32±1/16±2±1±2±1/16±1/16±1/16±2±2±2±5±5±5General Note: Root openings wider than allowed by the above tolerances, but not greater than the thickness of the thinner part,may be built up by welding to acceptable dimensions prior to the joining of the parts by welding.18/pg. 194Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---5.23Dimensional Tolerances of WeldedStructural MembersThe dimensions of welded structural members shall conform to the tolerances of (1) the general specifications governing the work, and (2) the special dimensional tolerances in 5.23.1 to 5.23.11.3. (Note that a tubular column is interpreted as a compression tubular member.)5.23.1Straightness of Columns and Trusses. For welded columns and primary truss members, regard-less of cross section, the maximum variation in straightness shall beLengths of less than 30 ft [9 m]:1 mm × No. of meters of total lengthLengths of 30 ft [10 m] to 45 ft [14 m] = 3/8 in. [10 mm]Lengths over 45 ft [15 m]:5.23.2Beam and Girder Straightness (No Cam-ber Specified). For welded beams or girders, regard-less of cross section, where there is no specifiedcamber, the maximum variation in straightness shallbe1 mm × No. of meters of total length5.23.3Beam and Girder Camber (TypicalGirder). For welded beams or girders, other than those whose top flange is embedded in concrete with-out a designed concrete haunch, regardless of cross1/8 in.No. of ft of total length10-------------------------------------------------------×3/8 in. + 1/8 in.No. of ft of total length – 4510--------------------------------------------------------------------×10 mm + 3 mmNo. of meters of total length – 153-------------------------------------------------------------------------------×1/8 in.No. of ft of total length10-------------------------------------------------------×Dimensional Tolerances of Welded Structural Members19/pg. 188Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please callthe Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---1920section, the maximum variation from required cam-ber at shop assembly (for drilling holes for field splices or preparing field welded splices) shall be at midspan,–0, +1-1/2 in. [40mm] for spans ≥100ft[30 m]–0, +3/4 in. [20 mm] for spans < 100 ft [30 m]at supports,0 for end supports± 1/8 [3 mm] for interior supports at intermediate points, –0, + wherea =distance in feet [meters] from inspectionpoint to nearest support S =span length in feet [meters]b =1-1/2 in. [40 mm] for spans ≥ 100 ft [30 m]b =3/4 in. [20 mm] for spans < 100 ft [30 m]See Table 5.6 for tabulated values.5.23.4Beam and Girder Camber (without Designed Concrete Haunch). For members whose top flange is embedded in concrete without adesigned concrete haunch, the maximum variation from required camber at shop assembly (for drilling holes for field splices or preparing field welded splices) shall beat midspan,± 3/4 in. [20 mm] for spans ≥ 100 ft[30 m]± 3/8 in. [10 mm] for spans < 100 ft [30 m]at supports,0 for end supports± 1/8 in. [3 mm] for interior supports at intermediate points, ± where a and S are as defined aboveb =3/4 in. [20 mm] for spans ≥ 100 ft [30 m]b =3/8 in. [10 mm] for spans < 100 ft [30 m]See Table 5.7 for tabulated values.Regardless of how the camber is shown on the detail drawings, the sign convention for the allowable vari-ation is plus (+) above, and minus (–) below, the 4(a)b(1 – a/S)S --------------------------------4(a)b(1 – a/S)S--------------------------------20/pgs. 188–189Copyright American Welding SocietyProvided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---21Table 5.6Camber Tolerance for Typical Girder (see 5.23.3 [pg. 188–189])Camber Tolerance (in inches)a/SSpan 0.10.20.30.40.5≥ 100 ft 9/1611-1/41-7/161-1/2< 100 ft1/41/25/83/43/4Camber Tolerance (in millimeters)a/SSpan 0.10.20.30.40.5≥ 30m 1425343840< 30 m713171920Table 5.7Camber Tolerance for Girderswithout a Designed Concrete Haunch(see 5.23.4 [pg. 188–189])Camber Tolerance (in inches)a/SSpan 0.10.20.30.40.5≥ 100 ft 1/41/25/83/43/4< 100 ft1/81/45/163/83/8Camber Tolerance (in millimeters)a/SSpan 0.10.20.30.40.5≥ 30 m713171920< 30 m468101021/pg. 194Copyright American Welding Society Provided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112, 08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---22detailed camber shape. These provisions also apply to an individual member when no field splices or shop assembly is required. Camber measurements shall be made in the no-load condition.5.23.5Beam and Girder Sweep. The maximum variation in specified sweep at the midpoint shall be1 mm × No. of meters of total lengthprovided the member has sufficient lateral flexibility to permit the attachment of diaphragms, cross-frames, lateral bracing, etc., without damaging the structural member or its attachments.5.23.6Variation in Web Flatness5.23.6.1Measurements. Variations from flatness of girder webs shall be determined by measuring the offset from the actual web centerline to a straight edge whose length is greater than the least panel dimension and placed on a plane parallel to the nomi-nal web plane. Measurements shall be taken prior to erection (see Commentary).5.23.6.2Statically Loaded Nontubular Struc-tures. Variations from flatness of webs having a depth, D, and a thickness, t, in panels bounded by stiffeners or flanges, or both, whose least panel dimension is d shall not exceed the following:Intermediate stiffeners on both sides of webwhere D/t < 150, maximum variation = d/100where D/t ≥ 150, maximum variation = d/80Intermediate stiffeners on one side only of web where D/t < 100, maximum variation = d/100where D/t ≥ 100, maximum variation = d/67No intermediate stiffenerswhere D/t ≥ 100, maximum variation = D/150(See Annex VI for tabulation.)5.23.6.3 Cyclically Loaded Nontubular Struc-tures. Variation from flatness of webs having a depth, D, and a thickness, t, in panels bounded by stiffeners or flanges, or both, whose least panel dimension is d shall not exceed the following: 1/8 in.No. of feet of total length10------------------------------------------------------------×±22/pg. 189Copyright American Welding SocietyProvided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---23Intermediate stiffeners on both sides of web Interior girders—where D/t < 150—maximum variation = d/115where D/t ≥ 150—maximum variation = d/92Fascia girders—where D/t < 150—maximum variation = d/130where D/t ≥ 150—maximum variation = d/105Intermediate stiffeners on one side only of web Interior girders—where D/t < 100—maximum variation = d/100where D/t ≥ 100—maximum variation = d/67Fascia girders—where D/t < 100—maximum variation = d/120where D/t ≥ 100—maximum variation = d/80No intermediate stiffeners—maximum variation = D/150(See Annex VII for tabulation.)5.23.6.4 Excessive Distortion. Web distortions of twice the allowable tolerances of 5.23.6.2 or 5.23.6.3shall be satisfactory when occurring at the end of a girder which has been drilled, or subpunched and reamed; either during assembly or to a template for afield bolted splice; provided, when the splice plates are bolted, the web assumes the proper dimensional tolerances.5.23.6.5Architectural Consideration. If archi-tectural considerations require tolerances more restrictive than described in 5.23.6.2 or 5.23.6.3, spe-cific reference must be included in the bid documents.5.23.7 Variation Between Web and Flange Center-lines. For built-up H or I members, the maximum variation between the centerline of the web and the centerline of the flange at contact surface is 1/4 in.[6mm].5.23.8Flange Warpage and Tilt. For welded beams or girders, the combined warpage and tilt of flange shall be determined by measuring the offset at the toe of the flange from a line normal to the plane of the web through the intersection of the centerline of the web with the outside surface of the flange plate. This offset shall not exceed 1% of the total flange width or 1/4 in. [6 mm], whichever is greater, except that 23/pg. 189Copyright American Welding SocietyProvided by IHS under license with AWSDocument provided by IHS Licensee=Shell Services International B.V./5924979112,08/26/2004 23:33:59 MDT Questions or comments about this message: please callthe Document Policy Group at 303-397-2295.--`````,`,,``,`,,```,,,`,``-`-`,,`,,`,`,,`---。
焊接手册

焊接工艺手册第一节焊接的原理一、焊接原理:1.焊锡目的(1)电的接续(使金属与金属相接合,从而形成良好的电的导通)(2)机器的接续(使金属与金属相接合,从而固定两者之间的位置,实现持久的机械连接。
)(3)密闭的效果(通过焊锡可防止没有焊锡的部位进入空气、油、水等杂质)(4)其它(根据金属表面的镀金,可防止氧化处理)2.焊接的原理焊锡借助于助焊剂的作用,经过加热熔化成液态,进入被焊金属的缝隙,在焊接物的表面,形成金属合金使两种金属体牢固地连接在一起,不过焊接并不是通过熔化的焊料将元气件的引脚与焊盘进行简单的粘合,而是焊料中的锡与铜发生了化学反应,形成的金属合金就是焊锡中锡铅的原子进入被焊金属的晶格中生成的一种新的物质,因锡铅两种金属原子的壳层相互扩散,依靠原子间的内聚力使两种金属永久地牢固结合在一起。
如下图是放大1000倍的焊点剖面,这使我们清楚的看到在焊盘与焊料之间确实形成了新的物质,经过研究证明这种新物质是由Cu3Sn和Cu5Sn6。
3.焊接的分类不加热超声波焊接加压焊(加热或不加热)加热到局部熔化接触焊对焊金属焊接手工烙铁焊(锡线)浸焊(锡条)锡焊(母材不熔化、焊料熔化)焊锡波峰焊(锡条)再流焊(锡膏)4.有关焊锡之名词(1)点焊:将导线或元件脚穿过线路板或其它焊锡孔位,单个焊接在铜片位上,一次只焊接一个焊点.(2)贴焊:将零件脚、导线或排梳、排线等表面焊接在线路板其它锡点面上,一次只焊接一个焊点。
(3)拖焊:将排梳或排线穿过线路板锁孔,沿排孔方向进行焊接,一次可焊接多个焊点。
(4)执锡:过锡炉后的机芯板,有少锡、短路等不户锡点,需将其修改成完好锡点,即机芯执锡。
5.焊接必须具备的条件(1)、焊件必须具有良好的可焊性(在焊接时,由于高温使金属表面产生氧化膜,影响材料的可焊性,为了提高可焊性,一般采用表面镀锡、镀铜等措施来防止表面的氧化)(2)、焊件表面必须保持清洁(即使可焊性良好的焊件,由于储存或被污染,都可能在焊件表面产生有害的氧化膜和油污)(3)、要使用合适的助焊剂(不同的焊接工艺,应选择不同的助焊剂)(4)、焊件要加热到适当的温度(不但焊锡要加热到熔化,而且应该同时将焊件加热到能够熔化焊锡的温度)二.焊接的主要方法1. 焊接顺序(1).将烙铁头在含水分的海绵上清理干净,准备焊接:左手拿锡丝,右手握烙铁,进入备焊状态。
焊接常见缺陷及处理书籍

焊接常见缺陷及处理书籍
以下是一些关于焊接常见缺陷及处理的书籍推荐:
1. "Welding Defects and Inspection" by R. S. Parmar
《焊接缺陷与检测》作者:R. S. Parmar
2. "Metallurgy of Welding" by H. K. D. H. Bhadeshia and R. W. K. Honeycombe
《焊接冶金学》作者:H. K. D. H. Bhadeshia和R. W. K. Honeycombe
3. "Welding Handbook, Volume 1: Fundamentals of Welding" by American Welding Society
《焊接手册,卷1:焊接基础》作者:美国焊接学会
4. "Welding Inspection Technology" by J. M. Biukovic
《焊接检测技术》作者:J. M. Biukovic
5. "Welding Metallurgy and Weldability" by John C. Lippold and Roger A. Buchanan
《焊接冶金学与可焊性》作者:John C. Lippold和Roger A. Buchanan
这些书籍将为您提供焊接缺陷和处理的详细知识,并介绍了如何进行焊接检测和质量控制。
请根据您的需求选择适合的书籍来进一步学习。
焊接教材参考文献

焊接教材参考文献公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08][1]中国机械工程学会焊接学会编.焊接手册.第三版.北京:机械工业出版社,2008[2]陈祝年.焊接工程师手册.北京:机械工业出版社,2002[3]左义生.电焊工.北京.中国劳动社会保障出版社,2010[4]张德禄.电焊工(五级)(第二版).北京:中国劳动社会保障出版社,2012[5]宋金虎.焊接方法与设备.大连:大连理工大学出版社,2010[6]刘光云,赵敬党.焊接技能实训教程.北京:石油化工出版社,2009[7]陈祝年.焊接工程师手册.北京:机械工业出版社,2002[8]中国机械工程学会焊接学会.焊接手册.北京:机械工业出版社,2005[9]建设部人事教育司.电焊工.北京:中国建设工业出版社,2005[10]忻鼎乾.电焊工.北京:中国劳动社会保障出版社,2005[11]孙景荣,刘宏.气焊工.北京:化学工业出版社,2005[12]焦万才等.焊工实际操作手册.沈阳:辽宁科学技术出版社,2006[13]王成文.焊接材料手册及工程应用案例.太原:山西科学技术出版社,2004[14]朱玉义.焊工实用技术手册.南京:江苏科学技术出版社,2004[15]张连生.金属材料焊接.北京:机械工业出版社,2006[16]张建勋.现代焊接生产与管理.北京:机械工业出版社,2006[17]尹士科.焊接材料使用基础知识.北京:化学工业出版社,2004[18]顾纪清,阳代军.管道焊接技术. 北京:化学工业出版社,2005[19]蒋迪甘.焊接概论(修订本).北京:机械工业出版社,1987[20]梁桂芳.切割技术手册.北京:机械工业出版社,1997[21]徐继达.金属焊接与切割作业.北京:气象出版社,2002[22]张应力.新编焊工实用手册.北京:金盾出版社,2004[23]雷世明.焊接方法与设备.北京:机械工业出版社,2007[24]王云鹏.焊接结构生产.北京:机械工业出版社,2002[25]中国焊接协会,中国机械工程学会焊接学会,机械工业部哈尔滨焊接研究所.焊工手册.北京:机械工业出版社,2001[26] 中国焊接协会,中国机械工程学会焊接学会焊接培训与资格认证委员会.国际焊工培训.哈尔滨:黑龙江人民出版社,2002[27]中国石油天然气集团公司职业技能鉴定指导中心.电焊工(上、下).东营:中国石油大学出版社,2008[28]张文钺.焊接冶金学(基本原理).北京:机械工业出版社,1990[29]王英杰,金升.金属材料及热处理北京:机械工业出版社,2006[30]谭岭,冯建雨.机械制造技术基础. 北京:化学工业出版社,2006[31]李继三.电焊工职业技能鉴定教材(初级、中级、高级).北京:中国劳动出版社,1996[32]技工学校机械类通用教材审编委员会.焊工工艺学.北京:机械工业出版社,2007[33] 张文钺.焊接冶金学.北京:机械工业出版社,1990[34]英若菜.熔焊原理及金属材料焊接.北京:机械工业出版社,2006[35]张梅春.金属熔化焊基础. 北京:化学工业出版社,2002[36]张文钺.金属熔焊原理及工艺.北京:机械工业出版社,1980[37]张文钺.焊接传热学.北京:机械工业出版社,1989[38]英若菜.金属熔化焊基础.北京:机械工业出版社,2004[39]李淑华,王申.焊接技师技术问答.北京:国防工业出版社,2005[40]杨松.锅炉压力容器焊接技术培训教材.北京:机械工业出版社,2005[41]周雅莺.电焊工.北京:中国劳动社会保障出版社,2004[42]张应立.新编焊工实用手册.北京:金盾出版社,2006[43]王洪军.焊工技师必读.北京:人民邮电出版社,2005[44]雷世明.焊接方法与设备.北京:机械工业出版社,2005[45]吴树雄.电焊条使用指南.北京:化学工业出版社,2003[46]机械工业职业技能鉴定指导中心编.电焊工技术(高级).北京:机械工业出版社,2002[47]机械工业职业技能鉴定指导中心编.电焊工技术(中级).北京:机械工业出版社,2004[48]周振丰,张文钺.焊接冶金学与金属焊接性.北京:机械工业出版社,1988[49]董若璟.冶金原理.北京:机械工业出版社,1980[50]李亚江.金属焊接性基础.北京:机械工业出版社,2011[51]王长忠.高级焊工工艺.北京:中国劳动社会保障出版社,2006[52]王长忠.高级焊工技能训练.北京:中国劳动社会保障出版社,2006。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接技术人员培训手册第一部分焊接工艺评定的使用管理&焊接工艺规程的编制一、焊接工艺评定的有关概念二、焊接工艺评定及使用管理程序三、焊接工艺评定变素及其评定规则四、如何阅读焊接工艺评定报告五、如何编制焊接工艺规程一、焊接工艺评定的有关概念1、焊接工艺评定的定义和目的2、消除焊接工艺评定认识上误区:3、“焊接性能”与“焊接性”4、“焊接性能试验”与“焊接工艺评定”5、“焊缝”与“焊接接头”6、“焊接工艺评定”与“焊工技能考试”7、焊接工艺评定的基本条件8、常用焊接工艺评定标准:JB4708-2000《钢制压力容器焊接工艺评定》GB50236-98《现场设备、工业管道焊接工程施工及验收规范》第4章劳部发1996[276]号《蒸汽锅炉安全监察规程》附录IJGJ81-2000《建筑钢结构焊接技术规程》第5章GB128-90《立式圆筒形钢制焊接油罐施工及验收规范》附录一ASME第IX卷《焊接与钎焊》二、焊接工艺评定及使用管理程序1、焊接工艺评定程序(1)焊接工艺评定立项(2)焊接工艺评定委托(3)编制焊接工艺指导书(WPI)并批准(4)评定试板的焊接(5)评定试板的检验焊接工艺评定失败,重新修改焊接工艺指导书,重复进行上述程序。
(6)编写焊接工艺评定报告(PQR)并批准2、焊接工艺评定文件的使用与管理(1)焊接工艺评定文件的受控登记。
(2)焊接工艺评定的有效版本及换版转换。
(3)每季度编制焊接工艺评定文件的有效版本目录。
(4)保证现场工程和产品的焊接工艺评定的覆盖率为100%。
(5)焊接工艺评定文件作为公司的一项焊接技术储备,属于公司重要技术机密文件,应妥善保管。
三、焊接工艺评定变素及其评定规则1、焊接工艺评定的主要变素:试件形式母材类别焊接方法焊接工艺因素焊后热处理种类及参数母材厚度焊缝熔敷金属厚度四、如何阅读焊接工艺评定报告1、如何认识焊接工艺评定报告的作用(1)焊接工艺评定报告的合法性:(2)焊接工艺评定报告的有效性:(3)焊接工艺评定报告及焊接工艺规程的局限性:(4)焊接工艺评定报告是一种必须由企业焊接责任工程师和总工程师签字的重要质保文件,也是技术监督部门和用户代表审核施工企业质保能力的主要依据之一。
2、焊接工艺评定报告与焊接工艺规程的关系3、阅读焊接工艺评定报告的方法五、如何编制焊接工艺规程1、焊接工艺规程的作用2、焊接工艺规程的基本要求3、焊接工艺规程的编写应遵循的原则3、焊接工艺规程的填写说明第二部分由焊接材料所想到的……一、工程焊接相关标准、资料简介二、焊条型号与牌号的识别三、焊条的保管与使用四、焊条的选用五、氩弧焊丝的选用六、镍基合金的焊材选用一、工程焊接常用相关标准简介(一)工程焊接常用标准GB50236-98《现场设备、工业管道焊接工程施工及验收规范》JB4708-2000《钢制压力容器焊接工艺评定》JB/T4809-2000《钢制压力容器焊接规程》JGJ81-2002《建筑钢结构焊接技术规程》SH3085-1997《石油化工管式加热炉碳钢和铬钼钢炉管焊接技术条件》SH/T3523-1999《石油化工铬镍奥氏体钢、铁镍合金和镍合金管道焊接规程》SH3524-92《石油化工钢制塔类容器现场组焊施工工艺标准》SH3525-92《石油化工低温钢焊接规程》SH3526-92《石油化工异种钢焊接规程》SH/T3527-1999《石油化工不锈钢复合钢焊接规程》SHJ520-91《石油化工工程铬钼耐热钢管道焊接技术规程》SY/T4103-1995《钢质管道焊接及验收》SY/T4071-93《管道下向焊接工艺规程》HGJ222-92《铝及铝合金焊接技术规程》HGJ223-92《铜及铜合金焊接及钎焊技术规程》(二)工程焊接常用焊接材料标准JB3223-1996《焊接材料质量管理规程》JB/T4747-2002《压力容器用钢焊条订货技术条件》GB/T5117-1995《碳钢焊条》GB/T5118-1995《低合金钢焊条》GB/T983-1995《不锈钢焊条》GB/T14957-94《熔化焊用钢丝》GB/T14958-94《气体保护焊用钢丝》GB/T8110-1995《气体保护电弧焊用碳钢、低合金钢焊丝》GB/T10045-88《碳钢药芯焊丝》GB/T4242-84《焊接用不锈钢丝》GB/T13814—92《镍及镍合金焊条》GB/T9460—1988《铜及铜合金焊丝》GB/T15620-1995《镍及镍合金焊丝》GB/T3623-1998《钛及钛合金丝》GB4842-1995《纯氩》GB6052《工业液体的二氧化碳》(三)推荐实用的焊接参考书焊接手册:推荐《焊接手册》(中国机械工程学会焊接学会编)焊接材料使用手册:推荐《电焊条选用指南》(吴树雄编著)焊材制造厂提供的《焊接材料样本》二、焊条型号与牌号的识别(一)焊条药皮的作用与类型1、焊条药皮的基本功能:(1)保护电弧与熔池。
药皮比焊芯熔化慢,形成一个套筒,保护金属熔滴顺利地向熔池过渡;同时药皮放出气体和形成熔渣,保护电弧及熔池免受空气的有害作用。
熔渣覆盖于熔敷金属表面,也降低了焊缝金属的冷却速度,有利于改善接头性能。
(2)冶金处理。
通过冶金反应直到脱氧、脱硫、脱磷等去除杂质作用,同时还对焊缝金属起合金化作用。
(3)赋予焊条良好的焊接工艺性能。
使电弧容易引燃,燃烧稳定,减少飞溅,增大熔深,保证焊缝成形等。
(4)满足某些专用焊条的特殊功能。
如铁粉焊条药皮内含较多的铁粉,增加了焊条的熔敷系数,提高了焊接生产率。
2、焊条药皮的类型:序药皮类型对应牌号对应型号焊接电源号1特殊型×××0E××002钛型×××1E××13直流或交流3钛钙型×××2E××03直流或交流4钛铁矿型×××3E××01直流或交流5氧化铁型×××4E××20直流或交流6纤维素型×××5E××10、11直流或交流7低氢钾型×××6E××16直流或交流8低氢钠型×××7E××15直流9石墨型×××8E××13直流或交流10盐基型×××9E××13直流3、酸性焊条与碱性焊条:●药皮在焊接时熔化形成熔渣。
焊后熔渣为酸性的焊条称为酸性焊条,反之为碱性焊条。
●酸性焊条的缺点:酸性焊条的熔渣组成物以酸性氧化物为主,对焊缝金属有较强的氧化性,致使焊缝金属中合金元素的烧损量较大。
同时焊缝金属中氢和氧的含量较高,焊缝金属的力学性能,特别是塑性和韧性较低。
●酸性焊条的优点:对铁锈、油污及水分引起的气孔敏感性小。
酸性焊条用交流或直流电源均可焊接。
●碱性焊条的优点:碱性焊条的熔渣组成物以碱性氧化物为主,对焊缝金属的氧化性很小,冶金处理效果好。
碱性焊条焊接时,药皮分解出CO2作保护气体,保护气体中氢含量很低,因此用碱性焊条焊成的焊缝金属含氢量低,综合力学性能好,特别是塑性、韧性较高。
●碱性焊条的缺点:对气孔的敏感性较大。
(二)焊条统一编号的意义焊条通常用型号和牌号来反映其主要性能特点及类别。
◇焊条型号是以焊条国家标准为依据、反映焊条主要特性的一种表示方法。
◇焊条牌号是根据焊条的主要用途及性能特点,对焊条产品的具体命名。
由焊条厂家制定。
◇我国焊条行业采用统一牌号:属于同一药皮类型、符合相同焊条型号、性能相似的产品统一命名为一个牌号。
如J422、J507。
★注意:不管是焊条厂自定的牌号,还是全国焊接材料行业统一牌号,都必须在产品样本或标签、质量证明书上注明该产品是“符合国标”、“相当国标”或不加标注(即与国标不符),以便用户结合产品性能要求,对照标准去选用。
★每种焊条产品只有一个牌号,但多种牌号焊条可同时对应一个型号。
如:牌号J507RH 和J507R,型号均为E5015-G。
焊条分类对照按牌号按型号碳钢结构钢焊条低温钢焊条低合金钢焊条钼及铬钼耐热钢焊条铬不锈钢焊条不锈钢焊条铬镍奥氏体不锈钢(三)焊条牌号的表示方法◆通常用一个汉语拼音字母(或汉字)与三位数字表示。
如A302(奥302)、W607(温607)◆有的焊条牌号在三位数字后面加注后缀字母和/或数字。
如J507RH、A022Mo、J422Fe16第一位字母:表示焊条种类;前两位数字:表示熔敷金属强度或合金类型;第三位数字:表示药皮类型及电流种类;数字后面的字母和数字:附加合金元素或焊条特性(具有特殊性能和用途)。
■如:G——高韧性焊条;R——压力容器用焊条;Fe——高效铁粉焊条:X——向下立焊用焊条;H——超低氢焊条;RH——高韧性超低氢焊条;(四)焊条型号的表示方法1、碳钢焊条:●根据GB/T5117-1995《碳钢焊条》标准规定,碳钢焊条型号按熔敷金属的力学性能、药皮类型、焊接位置和焊接电流种类划分。
●碳钢焊条型号的编制方法:首位字母“E”表示焊条;前两位数字表示熔敷金属抗拉强度的最小值,单位为kgf/mm2;第三位数字表示焊条的焊接位置:“0”和“1”表示焊条适用于全位置焊接;“2”表示焊条适用于平焊及平角焊;“4”表示焊条适用于向下立焊。
第三位和第四位数字组合时表示焊接电流种类及药皮类型。
在第四位数字后面附加字母或数字:“R”表示耐吸潮焊条,“M”表示对吸潮和力学性能有特殊规定的焊条,“-1”表示冲击性能有特殊规定的焊条。
■举例:E4303:43kgf/mm2;全位置;钛钙型;交直流两用。
E5015:50kgf/mm2;全位置;低氢钠型;直流反接。
E5018-1:50kgf/mm2;全位置;铁粉低氢型;交流或直流反接;-46℃低温冲击保证值。
2、低合金钢焊条:●根据GB/T5118-1995《低合金钢焊条》标准规定,低合金钢焊条型号按熔敷金属的力学性能、化学成分、药皮类型、焊接位置和焊接电流种类划分。
●低合金钢焊条型号的编制方法:首位字母“E”表示焊条;前两位数字表示熔敷金属抗拉强度的最小值(kgf/mm2);第三位数字表示焊条的焊接位置:“0”和“1”表示焊条适用于全位置焊接;“2”表示焊条适用于平焊及平角焊。
第三位和第四位数字组合时表示焊接电流种类及药皮类型;后缀字母为熔敷金属的化学成分分类代号,并以短划“-”与前面分开。
若还具有附加化学成分时,附加化学成分直接用元素符号表示,并以短划“-”与前面后缀字母分开。