(最新最全)全等三角形练习题综合拔高题

合集下载

(完整)全等三角形证明之能力拔高(经典题目)

(完整)全等三角形证明之能力拔高(经典题目)

全等三角形能力拔高题姓名:一、角度转化问题1.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.2.已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.3.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.4.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l 的垂线AE、BF,E、F为垂足.当直线l不与底边AB相交时,求证:EF=AE+BF.5.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.二、二次全等问题1.已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.2.已知:如图,AC与BD交于O点,AB∥DC,AB=DC.若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.3.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4.已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.MF E CBA5、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=DC , 求证:EB=FC【练习】1、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形。

2、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MCG FEDC BA3、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD4、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30, BD :CD=3:2,则DE= 。

5、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。

(完整word版)全等三角形拔高题目附附答案解析

(完整word版)全等三角形拔高题目附附答案解析

全等三角形提高练习1. 如图所示,△ABC ≌△ADE ,BC 的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△C 的度数是多少?4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C,A ′B′交AC 于点D ,若∠A ′DC=90°,则∠A=5. 已知,如图所示,AB=AC ,AD ⊥BC 于D ,且AB+AC+BC=50cm ,而,则AD是多少?AB'CA6. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE,垂足分别为D 、E ,若BD=3,CE=2,则DE=7. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、G ,AD 与EF 垂直吗?证明你的结论.8. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E,DF ⊥AC 于F,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。

9. 已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:10. 如图,AD=BD ,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点BCB11. 如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD ,求证:BE ⊥AC12. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N,求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形 (4)MN ∥BC13. 已知:如图1,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN于点F(1) 求证:AN=BM(2) 求证:△CEF 为等边三角形14. 如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CDAHD ;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD ,其中正确的有(A .3个B 。

全等三角形拔高题目附带答案

全等三角形拔高题目附带答案

全等三角形提高练习1. 如下图,△≌△,的延长线过点E ,∠∠105°,∠10°,∠50°,求∠的度数。

2. 如图,△中,∠30°,将△绕点O 顺时针旋转52°,得到△A ′′,边A ′B ′与边交于点C 〔A ′不在上〕,那么∠A3. 如下图,在△中,∠90°,D 、E么∠C 的度数是多少?AB'C4. 如下图,把△绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′假设∠A ′90°,那么∠5. ,如下图,,⊥于D ,且50,而40,那么是多少?6. 如图,△中,∠90°,,分别过点B 、C 作过点A 的垂线、,垂足分别为D 、E ,假设3,2,那么7. 如图,是△的角平分线,⊥,⊥,垂足分别是E 、F 垂直吗?证明你的结论。

A B8.如下图,在△中,为∠的角平分线,⊥于E,⊥于F,△的面积是28220,8,求的长。

9.,如图:,∠∠E,∠∠,∠∠,求证:⊥10.如图,,⊥于D,⊥于E,与相交于点HC B11. 如下图,,为△的高,E 为上一点,交于F ,且有,,求证:⊥12.△、△均是等边三角形,、分别与、交于点M 、N〔3〕△为等边三角形 〔4〕∥ 13.:如图1,点C 为线段上一点,△、△都是等边三角形,交于点E ,交于点F (1) 求证:BAB(2)求证:△为等边三角形14.∠60°;⑤△是等边三角形;⑥∥,其中正确的有〔A.3个 B. 4个 C. 5个 D. 6个15.:、是△的高,点F在上,,点G在的延长线上,16.如图:在△中,、分别是、两边上的高,在上截取,在的延长线上截取,连结、求证:〔1〕〔2〕与的位置关系如何AB B17.如图,E 是正方形的边的中点,点F 在上,且∠∠ 求证:18.如下图,△中,,D 是延长线上一点,∠60°,E 是上一点,且,求证:19.如下图,在△中,∠90°,平分∠,⊥,垂足为F ,,求证:D20.如图:,直线、相交于C ,∠∠180°,∥,交于F21.如图,是∠的平分线,P 是上一点,⊥于D ,⊥于E ,F 是上一点,连接和,求证:22.:如图,⊥于点F ,⊥于点E ,且,求证:〔1〕△≌△ 〔2〕 点D 在∠A 的平分线上B23.如图,∥,O 是∠与∠的平分线的交点,⊥于E距离是多少?24.如图,过线段的两个端点作射线、画∠、∠的平分线交于E 〔1〕∠是什么角?〔2〕过点E 作一直线交于D ,交于C ,观察线段、,你有何发现? 〔3〕无论的两端点在、如何移动,只要经过点E ,①;②谁成立?并说明理由。

全等三角形拔高题(适合尖子生)

全等三角形拔高题(适合尖子生)

不得用于商业用途GFEDCB A For personal use only in study and research; not for commercialuse全等三角形拔高经典题(适合尖子生)1已知:如图,四边形ABCD 中,AC 平分∠BAD ,CE 垂直AB 于E ,且∠B+∠D=180度,求证:AE=AD+BE2..已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.3.如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .4.在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .5.如图,已知∠BAC=90o,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,说明FM=FD 的理由6.如图D C B A 、、、四点在同一直线上,请你从下面四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明.①D ACE ∠=∠,②CD AB =,③ BF AE =,④ FBG EAG ∠=∠7.直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题: ①如图1,若90,90B C A α∠=∠=,则EFBE AF-(填“>”,“<”或“=”号);②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.8.已知:如图,△ABC 中,∠ABC=45°,CD ⊥AB于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相A BCD E FG12ABC DEAB C E F DDAB CE F ADFC EB图1图2 图3不得用于商业用途EDCB AF 交于点G 。

(完整)全等三角形提高练习精选27题及答案

(完整)全等三角形提高练习精选27题及答案

全等三角形提高练习精选27题及答案1•如图所示,△ ABC ^A ADE , BC 的延长线过点 E,/ ACB= / AED=105 / CAD=10 ° ,Z B=50。

,求/DEF 的度数。

2•如图,△ AOB 中,/ B=30。

,将A AOB 绕点O 顺时针旋转52。

,得到厶A'OB ', 边A 'B '与边OB 交于点C (A '不在OB 上),则/ A 'CO 的度数为多少?3•如图所示,在△ ABC 中,/ A=90 ° ,D 、E 分别是 AC 、 若厶ADB ◎△ EDB ^A EDC ,则/ C 的度数是多少?4•如图所示,把△ ABC 绕点C 顺时针旋转35°,得到△ A'B'C , A '' 交 AC 于点 D ,若/ A 'DC=90 °,^U/A= ____________6•如图,Rt A ABC 中,/ BAC=90 ° ,AB=AC ,分别过点 B C 作过点A 的垂线BC 、CE,垂足分另【J 为 D 、E , 若 BD=3 , CE=2,贝U DE= ____________7•如图,AD 是厶ABC 的角平分线,DE 丄AB , DF 丄AC ,垂足分别是 E 、F ,连接EF, 交AD 于G , AD 与EF 垂直吗?证明你的结论。

AE G5•已知,如图所示, 则AD 是多AB=AC , AD 丄 BC 于 D ,且 AB+AC+BC=50cm,ABA'B'AO14. 如图所示,已知△ ABC 和厶BDE 都是等边三角形,下列结论:① AE=CD ;②BF=BG ; ③BH 平分/ AHD ; ④/ AHC=60 ° ;⑤厶BFG 是等边三角形; ⑥FG// AD , E其中正确的有()A . 3 个 B. 4 个 C. 5 个 D. 6 个C H8•如图所示,在△ ABC 中,AD 为/ BAC 的角平分线,2积是 28cm ,AB=20cm , AC=8cm ,求 DE 的长。

(完整版)全等三角形练习题及答案

(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

人教版八年级数学上册《三角形全等的判定》拔高练习

人教版八年级数学上册《三角形全等的判定》拔高练习

《三角形全等的判定》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F 2.(5分)如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 3.(5分)如图,已知∠CAB=∠DBA,添加下列某条件,未必能判定△ABC≌BAD的是()A.AC=BD B.AD=BC C.∠l=∠2D.∠C=∠D 4.(5分)如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°5.(5分)如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=CB,要使△ABD≌△CBD,则可以添加的一个条件是.7.(5分)如图,AB=AC,点D在AB上,点E在AC上,DC,EB交于点F,请添加一个条件.使△ADC≌△AEB(填一个即可)8.(5分)如图,已知AE=AD,要直接利用AAS证明△ABE≌△ACD,应添加的条件是.9.(5分)根据下列条件:①AB=3,AC=4,AC=8;②∠A=60°,∠B=45°,AB=4;③AB=5,BC=3,∠A=30°;④AB=3,BC=4,AC=5,其中能画出唯一三角形是(填序号).10.(5分)两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②△ABD ≌△CBD;③AO=CO=AC;④四边形ABCD的面积=AC×BD,其中,正确的结论有.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D在线段BC上,∠B=∠ADB,∠BAD=∠CAE,∠C=∠E.求证:AC=AE.12.(10分)如图,AF=BE,AC∥BD,CE∥DF,求证:CE=DF.13.(10分)如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=14,EC=4,求BC的长.14.(10分)如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD 求证:(1)∠BAC=∠ECD;(2)BC=ED.15.(10分)(1)如图1,四边形ABCD中,∠A=∠B=90°,∠ADC,∠BCD的角平分线交于AB边上的点E,求证:①CD=AD+BC;②E是AB的中点;(2)如图2,(1)中的条件“∠A=∠B=90°”改为“条件AD∥BC”,其他条件不变,(1)中的结论是否都依然成立?请什么理由.《三角形全等的判定》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F【分析】根据全等三角形的判定定理,结合各选项的条件进行判断即可.【解答】解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(5分)如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,∴当AC=DF时,满足SSA,无法判定△ABC≌△DEF,故B不能;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B可以;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故C可以;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.3.(5分)如图,已知∠CAB=∠DBA,添加下列某条件,未必能判定△ABC≌BAD的是()A.AC=BD B.AD=BC C.∠l=∠2D.∠C=∠D【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【解答】解:A、∵AC=BD,∠CAB=∠DBA,AB=AB,∴根据SAS能推出△ABC≌△BAD,故本选项错误;B、根据AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;C、∵∠CAB=∠DBA,AB=AB,∠1=∠2,∴根据ASA能推出△ABC≌△BAD,故本选项错误;D、∵∠C=∠D,∠CAB=∠DBA,AB=AB,∴根据AAS能推出△ABC≌△BAD,故本选项错误;故选:B.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.(5分)如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【解答】解:∵P A=PB,∴∠A=∠B,在△ADF和△BFE中,,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=34°,∴∠P=180°﹣∠A﹣∠B=112°,故选:A.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.5.(5分)如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD【分析】根据全等三角形的判定的方法进行解答即可.【解答】解:A、∵AD∥BC,∴∠DAC=∠BCA,由得出△ABC≌△CDA,不符合题意;B、∵AD∥BC,∴∠DAC=∠BCA,∵AB∥DC,∴∠BAC=∠DCA,由得出△ABC≌△CDA,不符合题意;C、由AB=CD,AC=CA,∠DAC=∠BCA无法得出△ABC≌△CDA,符合题意;D、∵AD∥BC,∴∠DAC=∠BCA,由得出△ABC≌△CDA,不符合题意;故选:C.【点评】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ABC≌△CDA的另一个条件.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=CB,要使△ABD≌△CBD,则可以添加的一个条件是∠ABD =∠CBD或AD=CD.【分析】判定全等三角形时需要添加什么条件,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边.【解答】解:①添加∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②添加AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.(答案不唯一)【点评】本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.7.(5分)如图,AB=AC,点D在AB上,点E在AC上,DC,EB交于点F,请添加一个条件AD=AE.使△ADC≌△AEB(填一个即可)【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件一组对应角相等或AD=AE即可.【解答】解:添加条件:AD=AE,在△ABE和△ACD中,,∴△ADC≌△AEB(SAS),故答案为:AD=AE.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.8.(5分)如图,已知AE=AD,要直接利用AAS证明△ABE≌△ACD,应添加的条件是∠B=∠C.【分析】根据AAS证明△ABE≌△ACD即可.【解答】解:添加的条件是∠B=∠C,在△ABE与△ACD中,∴△ABE≌△ACD(AAS),故答案为:∠B=∠C.【点评】本题考查全等三角形的判定,解题的关键是正确找出条件证明全等三角形,本题属于基础题型.9.(5分)根据下列条件:①AB=3,AC=4,AC=8;②∠A=60°,∠B=45°,AB=4;③AB=5,BC=3,∠A=30°;④AB=3,BC=4,AC=5,其中能画出唯一三角形是②④(填序号).【分析】根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:①∵3+4<8,∴根据AB=3,BC=4,AB=8不能画出三角形,故本选项错误;②根据∠A=60°,∠B=30°,AB=4,符合全等三角形的判定定理ASA,即能画出唯一三角形,故本选项正确;③根据AB=5,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;④根据AB=3,BC=4,AC=5,符合全等三角形的判定定理SSS,即能画出唯一三角形,故本选项正确;故答案为:②④.【点评】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.(5分)两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②△ABD ≌△CBD;③AO=CO=AC;④四边形ABCD的面积=AC×BD,其中,正确的结论有①②③④.【分析】由题意可得BD是AC的垂直平分线,可得AO=CO=AC,AC⊥BC,根据“SSS”可证△ABD≌△CBD,由三角形的面积公式可得S四边形ABCD=2××AO×BD=×AC ×BD.【解答】解:∵AB=CB,AD=CD,∴BD是AC的垂直平分线,∴AO=CO=AC,AC⊥BC,故①③正确,∵AB=BC,AD=CD,BD=BD∴△ABD≌△CBD(SAS)故②正确∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××AO×BD=×AC×BD故④正确故答案为:①②③④【点评】本题考查了全等三角形的判定与性质,线段垂直平分线的性质,熟练运用全等三角形的性质解决问题是本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D在线段BC上,∠B=∠ADB,∠BAD=∠CAE,∠C=∠E.求证:AC=AE.【分析】欲证明AC=AE,只要证明△ABC≌△ADE(AAS)即可.【解答】证明:∵∠B=∠ADB,∴AB=AD,∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS),∴AC=AE.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.12.(10分)如图,AF=BE,AC∥BD,CE∥DF,求证:CE=DF.【分析】只要证明△AEC≌△BFD(ASA)即可解决问题.【解答】证明:∵AC∥BD,CE∥DF,∴∠A=∠B,∠CEA=∠DFB,∵AF=BE,∴AF+EF=BE+EF,∴AE=BF.在△AEC和△BFD中,∴△AEC≌△BFD(ASA),∴CE=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(10分)如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=14,EC=4,求BC的长.【分析】(1)根据AAS证明△ABC≌△DFE即可解决问题.(2)求出BE的长即可解决问题.【解答】(1)证明:∵AC∥DE,∴∠ACB=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(AAS).(2)解:∵BF=14,EC=4,∴BE+CF=14﹣4=10,∵BE=CF,∴BE=CF=5,∴BC=BE+EC=5+4=9.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.(10分)如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD 求证:(1)∠BAC=∠ECD;(2)BC=ED.【分析】(1)利用平行线的性质即可证明.(2)证明△BAC≌△ECD(AAS)即可解决问题.【解答】证明:(1)∵AB∥CD,∴∠BAC=∠ECD,(2)在△BAC和△ECD中,,∴△BAC≌△ECD(AAS),∴BC=DE.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(10分)(1)如图1,四边形ABCD中,∠A=∠B=90°,∠ADC,∠BCD的角平分线交于AB边上的点E,求证:①CD=AD+BC;②E是AB的中点;(2)如图2,(1)中的条件“∠A=∠B=90°”改为“条件AD∥BC”,其他条件不变,(1)中的结论是否都依然成立?请什么理由.【分析】(1)如图1﹣1中,过点E作EF⊥CD于点F.利用角平分线的性质定理可得AE=EB.利用全等三角形的性质证明AAD=DF,CB=CF即可.(2)结论仍然成立.如图2中,在CD上截取DF=DA,连接EF,利用全等三角形的性质证明即可.【解答】(1)证明:如图1﹣1中,过点E作EF⊥CD于点F.∵ED,EC分别平分∠ADC,∠BCD,且∠A=∠B=90°,∴EF=AE=BE,即E是AB中点,在Rt△AED和Rt△FED中,,∴Rt△AED≌Rt△FED(HL),∴AD=FD,同法可得:BC=CF,∴CD=DF+CF=AD+BC.(2)解:结论仍然成立.理由如下:如图2中,在CD上截取DF=DA,连接EF,在△EAD和△EFD中,,∴△EAD≌△EFD(SAS),∴EA=EF,∠DAE=∠DFE,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠EBC=∠EFC,在△EBC和△EFC中,,∴△EBC≌△EFC(ASA),∴EB=EF,BC=FC,∴CD=DF+FC=AD+BC.【点评】本题考查角平分线的性质定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

全等三角形拔高题目附带标准答案

全等三角形拔高题目附带标准答案

全等三角形提高练习1. 如图所示,△AB C ≌△AD E,BC 的延长线过点E ,∠ACB =∠AE D=105°,∠CA D=10°,∠B=50°,求∠D EF的度数。

2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A′OB′,边A ′B ′与边O B交于点C(A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△AB C中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是多少?4. 如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A′B ′C ,A ′B′交AC 于点D,若∠A ′DC=90°,则∠A=5. 已知,如图所示,A B=AC ,A D⊥BC 于D ,且AB +AC+B C=50cm ,而AB+BD +AD=40cm ,则AD 是多少?6. 如图,R t△A BC中,∠BAC=90°,AB=AC ,分别过点B 、C作过点A 的垂线BC 、CE ,垂足分别为D 、E,若BD=3,CE=2,则DE=AB'CA7. 如图,AD 是△A BC 的角平分线,D E⊥AB ,D F⊥AC,垂足分别是E、F,连接EF,交AD于G,AD 与EF 垂直吗?证明你的结论。

8. 如图所示,在△AB C中,AD 为∠BAC 的角平分线,D E ⊥AB 于E,DF ⊥AC 于F ,△ABC 的面积是28cm2,AB=20cm ,AC=8cm ,求DE 的长。

9. 已知,如图:AB =AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF =∠DAF,求证:AF ⊥CD10. 如图,A D=BD ,A D ⊥BC 于D,BE ⊥AC 于E ,AD 与BE相交于点H ,则BH 与A C相等吗?为什么?11. 如图所示,已知,AD 为△AB C的高,E 为A C上一点,BE 交AD 于F ,且有BF=AC ,FD=CD,求证:BE⊥AC12. △DAC 、△E BC均是等边三角形,A F、BD 分别与CD 、CE 交于点M、N,求证:(1)A E=BD (2)CM=CN (3)△CMN 为等边三角形 (4)M N∥BCBCBBA B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形拔高题
如图,在厶ABC 中,D 是边BC 上一点,AD 平分/ BAC 在AB 上截取AE=AC 连结DE 已知DE=2cm
BD=3cm 求线段BC 的长
2. BD = CE, AD 与BE 相交于点P,求ZAPE 的大小。

3. A
已知等边三角形ABC 中, 若/ BAE 的平分线AF 交BE 于F , AC=8求DC 的长
已知:如图所示,BD 为/ ABC 的平分线,AB=BC 点P 在BD 上 ,
PMLAD 于 M ?PN1 CD 于 N , 5. 判断PM 与PN 的关系.
4. 如图所示,P 为/ AOB 的平分
线上一点,PCI OA 于 C, ?/ OAP+Z OBP=180° , 若 OC=4cm 求 AO+B (的值.
如图所示,A , E , F , C 在一 条直线上,AE=CF 过E , F 分别作DE?LAC,
BF 丄AC,若 EF,为什么?若将△
DEC 的边EC 沿 AB=CD 可以得到BD 平分
AC 方向移动,变为如图所示时,其余条件不变,上述结论是否 成立?请说明理由.
6.如图,△ ABC 中 , D 是BC 的中点,过D 点的直线GF 交AC
于F ,交AC 的平行线BG 于G 点, DE 丄DF,交AB 于点E,连结EG EF. 求证:BG=CF;
请你判断BE+CF 与 EF 的大小关系,并说明理由。

7.已知:如图 E 在厶ABC 的边
AC 上,且/ AEB= / ABC ⑴求证:/ ABE " C; FD// BC 交 AC 于 D ,设
AB=5 0
(1)
(2) 于点N ,试判断线段BN 与CN 的数量关系, 并证明你的结论.
9.已知:如
C
8.如图,在厶ABC 和厶DCB
中,AB= DC AC= DB AC 与 DB 交于点M
求证:△ ABC^A DCB ;
过点C 作CN// BD,过点B 作BN// AC CN 与BN 交 且DOAE, E 为AB 的中点,
1.
10.
14. (1)
(2)
求证:△ AED^A EBC
观看图前,的三角形.
A
11.
E

D
E

c A
如图①,
AF=CE,
M
BD
在不添辅助线的情况下,除厶EBC外,请再写出两个与厶AED的面积相等
(直接写出结果,不要求证明):
F分别为线段AC上的两个动点,且DEL AC于E, BF L AC于F,若AB=CD
BD交AC于点M.
(1) 求证:MB=MD ME=MF
2)当E、F两点移动到如图②的位置时,其余条件
不变,上述结论能否成立?若成立请给予证明;
若不成立请说明理由.
E
F M
图,已知在厶ABC中,/
BAC为直角,AB=AC D为
上一点,CEL BD于E.
(1) 若BD平分/
1
ABC 求证
CE=2
(2) 若D为AC上一动点,/ AED如何变化,若变化,求它的变化范围;若不变,求出它
的度数,并说明理由
12.在厶ABC中, ,AB=AC
取点E,使CE=BD,
在AB边上取点D,在AC延长线上了
连接DE交BC于点F,求证DF=EF .
“也”表示

BE
中线,过C作CF L AE,垂足为F,过
(1) 求证:(1)AE=CD;(2)若
A

o
如图,取一张长方形纸片,用
点,将其折叠,使点D与点B重
合形,如果有,请先用
13.如图△ABC^A A 'E' C , /
ACB900, /
A=25°,点B 在A'B' 上,
求/ ACA'的度数。

B、C、D表示其四个顶
图中有没有全等的三角
来,再说明理由。

15.如图:四边形ABCD中,
AD// BC , AB=AD+BC , E
是CD的中点,求证:AEX
16.如图所示,△ ABC中,/
ACB=90 ,AC=BC,AE是BC边上
的B作BD L BC交CF的延长线
于D.
AC=12cm求BD的长.
2.
17.在正方形ABCD中, E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF
(2)在图中,若G点在AD上,且/ GCE=45 ,贝U GE=BE+G成立吗?为什
么?
20.在Rt△ ABC中, AB=AC Z BAC=90,O为BC的中点.
(1)写出点O到厶ABC的三个顶点A B C的距离的大小关系,并说明理由.
⑵若点M N分别是AB AC上的点,且BM=AN试判断△ OM形状,并证明你的
18.如

(1)试
图(1), 已知△ ABC中, / BAC=90 AB=AC, AE 是过 A 的一
直线,且B、C在A E的异侧,BD丄AE于D, CE丄AE于E 说
明:BD=DE+CE.
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不问
BD与DE CE的关系如何?为
什么?
⑶若直线AE绕A点旋转到图⑶位置时
(BD>CE),其余条件不变,问BD 与DE
19. ABC底边BC上的一点,它到两腰
DF,CM L AB,垂足为M,请你探索一
的数量关系,并给予证明.
A
E
变,
C
E
E F
B
CE的关系如何?请
直接写出结果,不需说
DE F
如图所示,已知D是等腰△
AB AC的距离分别为下线段
DE DF、CM三者之间
A
B D。

相关文档
最新文档