常考压轴08 折叠问题-2020年中考数学特训营(解析版)

合集下载

专题09 折叠压轴问题(解析版)-2021年中考数学选填压轴题专项复习

专题09 折叠压轴问题(解析版)-2021年中考数学选填压轴题专项复习

【2020年中考数学填选重点题型突破】专题九:折叠压轴问题【备考指南】折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题.考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中折是过程,叠是结果.折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用.所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等.在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加顺畅,简洁!【典例引领】例1:(2020·淄博)如图,矩形纸片ABCD,AB=6cm,BC=8cm,E为边CD上一点.将△BCE沿BE所在的直线折叠,点C恰好落在AD边上的点F处,过点F作FM⊥BE,垂足为点M,取AF的中点N,连接MN,则MN=5cm.【答案】5【解析】连接AC,FC.由翻折的性质可知,BE垂直平分线段CF,∵FM⊥BE,∴F.M,C共线,FM=MC,∵AN=FN,∴MN=12AC,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=√AB2+BC2=√62+82=10(cm),∴MN=12AC=5(cm),故答案为5.变式训练1:(2020•呼和浩特)如图,把某矩形纸片ABCD沿EF,GH折叠(点E、H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A'、D点的对称点为D',若∠FPG=90°,S△A′EP=8,S△D′PH=2,则矩形ABCD的长为()A.6+10B.6+5C.3+10D.3+5【答案】D【解析】∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为8,△D′PH的面积为2,又∵,∠A′PF=∠D′PG=90°,∴∠A′PD′=90°,则∠A′PE+∠D′PH=90°,∴∠A′PE=∠D′HP,∴△A′EP∽△D′PH,∴A′P2:D′H2=8:2,∴A′P:D′H=2:1,∵A′P=x,∴D′H=x,∵S△D′PH=D′P•D′H=A′P•D′H,即,∴x=(负根舍弃),∴AB=CD=,D′H=DH=,D′P=A′P=CD=,A′E=2D′P=,∴PE=,PH=,∴AD==,即矩形ABCD的长为,故选:D.变式训练2:(2020·威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=4.【答案】4【分析】根据正方形的面积可得正方形的边长为5,根据正方形的面积和折叠的性质和面积的和差关系可得8个三角形的面积,进而得到1个三角形的面积,再根据三角形面积公式即可求解.【解析】:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=(5﹣a)cm,∴AH=(5﹣a)cm,∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),12a (5﹣a )=2,解得a 1=1(舍去),a 2=4. 故答案为:4.例2:(2020·盐城)如图,已知点()5,2,54()(),81A B C ,,,直线l x ⊥轴,垂足为点0(),M m ,其中52m <,若A B C '''与ABC 关于直线l 对称,且A B C '''有两个顶点在函数(0)ky k x=≠的图像上,则k 的值为: .【答案】-6或-4,解析:本题考查了轴对称图形、反比例函数、分类讨论的思想、待定系数法等知识, 先用含有m 的代数式表示各对称点的坐标,当各对称点在第一象限时, 由图像可知不存,所以各对称点在第二象限内, 当反比例函数图像经过B'和C' 时求出一解, 当反比例函数图像经过A'和C' 时求出一解, 所以,本题答案-6或-4.变式训练:(2020·镇江)如图1, AB =5 ,射线 AM//BN ,点 C 在射线 BN 上,将 △ABC 沿 AC 所在直线翻折,点 B 的对应点 D 落在射线 BN 上,点 P 、Q 分别在射线 AM 、BN 上, PQ//AB . 设 AP =x,QD =y .若 y 关于 x 的函数图像(如图2)经过点 E(9,2) ,则 cosB 的值等于( )A.25B.12C.35D.710【答案】D【解析】本题考查的是几何综合题,由图2可知当x=9时,y=2,此时点Q在点D下方,∵AM∥BN,PQ∥AB,所以四边形APQB为平行四边形,又点B与点D关于AC对称,所以BC=CD,所以求求得BC=3.5,由于AB=5,∠ACB=90°,∴cosB=BCAB=710.例3:如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长.【答案】【分析】设折叠后的圆弧所对圆心为O′,连接O′O、O′D、OE,O′O与EF交于点M,根据相交圆的性质就可以得出O′O与EF互相垂直平分,由勾股定理就可以求出OO′和EM的值,从而得出结论.【解答】解:设折叠后的圆弧所对圆心为O′,连接O′O、O′D、OE,O′O与EF交于点M,∴O′O与EF互相垂直平分.∴OM=OO′,EF=2EM.∵AB=4,∴OA=OB=OE=2.∵AD:DB=3:1,∴DB=AB=1,∴OD=1∴O′O===,∴OM=∴EM===∴EF=2EM=,即折痕EF的长为.故答案为:.【点睛】本题考查了翻折的性质的运用,相交圆的性质的运用,勾股定理的运用,垂直平分线的性质的运用,解答时求出根据相交圆的性质求解是关键.变式训练1:如图,在⊙O中,将沿弦AB翻折交半径AO的延长线于点D,延长BD交⊙O于点C,AC 切所在的圆于点A,则tan∠C的值是()A.B.C.2+D.1+【答案】D【分析】作点D关于AB的对称点H,连接AH,BH,CH.首先证明CH是⊙O的直径,△ACH,△BDH 都是等腰直角三角形,再证明∠ACD=∠CHB=67.5即可解决问题;【解答】解:作点D关于AB的对称点H,连接AH,BH,CH.根据对称性可知,所在圆的圆心在直线AH上,∵AC切所在的圆于点A,∴AC⊥AH,∴∠CAH=90°,∴CH是⊙O的直径,∴∠CBH=90°,∴∠ABD=∠ABH=45°,∴∠AHC=∠ABC=45°,∴∠ACH=∠AHC=45°,∴AC=AH,∵OC=OH,∴AD垂直平分线段CH,∴DC=DH,∴∠DCH=∠DHC,∵BD=BH,∴∠BDH=∠BHD=45°,∵∠BDH=∠DCH+∠DHC,∴∠DCH=22.5°,∴∠ACD=∠CHB=67.5°,设BD=BH=a,则CD=DH=a,∴tan∠ACB=tan∠CHB===1+,故选:D.【点睛】本题考查切线的性质、圆周角定理、翻折变换、等腰直角三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CH是直径,△ACH,△BDH都是等腰直角三角形.【强化训练】1.(2020青海)将一张四条边都相等的四边形纸片按下图中①①的方式沿虚线依次对折后,再沿图①中的虚线裁剪,最后将图①中的纸片打开铺平,所得图案应是( )【答案】A 【解析】 【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论. 故选A .【点睛】本题主要考查学生的动手能力及空间想象能力.2.(2020·泰安)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (—1,1),C (3,1).△A'B'C'是△ABC 关于x 轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M ,则点M 的坐标为___________.【答案】(—2,1)【解析】本题考查了图形的变换与点的坐标, 直接按照条件要求画出图形变换后的图形位置, 并确定其坐标为(—2,1), 因此本题答案为(—2,1).3.(2020湖南邵阳)将一张矩形纸片ABCD 按如图所示操作:(第14题)(1)将DA 沿DP 向内折叠,使点A 落在点1A 处,(2)将DP 沿1DA 向内继续折叠,使点P 落在点1P 处,折痕与边AB 交于点M .若1PM AB ⊥,则1DPM ∠的大小是( )A. 135°B. 120°C. 112.5°D. 115°【答案】C 【解析】 【分析】由折叠前后对应角相等且190∠=PMA 可先求出145∠=∠=DMP DMA ,进一步求出45ADM ∠=,再由折叠可求出122.5∠=∠=∠=MDP ADP PDM ,最后在1∆DPM 中由三角形内角和定理即可求解. 【详解】解:①折叠,且190∠=PMA , ①145∠=∠=DMP DMA ,即45ADM ∠=, ①折叠,①1122.52∠=∠=∠=∠=MDP ADP PDM ADM , ①在1∆DPM 中,1=1804522.5112.5∠--=DPM , 故选:C .【点睛】本题借助矩形的性质考查了折叠问题、三角形内角和定理等,记牢折叠问题的特点:折叠前后对应边相等,对应角相等即可解题.4.(2020山东枣庄)如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将①ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若①EAC=①ECA ,则AC 的长是( )A.B. 6C. 4D. 5【答案】B 【解析】①将①ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处, ①AF=AB ,①AFE=①B=90°, ①EF①AC , ①①EAC=①ECA , ①AE=CE , ①AF=CF , ①AC=2AB=6, 故选B .【点睛】本题考查了翻折变换的性质、矩形的性质等,得到EF 垂直平分AC 是解题的关键.5.(2020湖北武汉).如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是________.【答案】211144t t -+ 【解析】 【分析】首先根据题意可以设DE =EM =x ,在三角形AEM 中用勾股定理进一步可以用t 表示出x ,再可以设CF =y ,连接MF ,所以BF =2−y ,在三角形MFN 与三角形MFB 中利用共用斜边,根据勾股定理可求出用t 表示出y ,进而根据四边形的面积公式可以求出答案.【详解】设DE =EM =x ,①222(2)x x t =-+,①x =244t + , 设CF =y ,连接FM ,①BF =2−y ,又①FN = y ,NM =1,①22221(2)(1)y y t +=-+-,①y =2244t t -+, ①四边形CDEF 的面积为:1()2x y CD +=221424()244t t t +-++∙1, 故答案为:211144t t -+. 【点睛】本题主要考查了勾股定理的综合运用,熟练掌握技巧性就可得出答案.6.(2020山东青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为( )A. B. C. D.【解析】【分析】先证明,AE AF =再求解,,AB AC 利用轴对称可得答案.【详解】解:由对折可得:,,AFO CFO AF CF ∠=∠=矩形ABCD ,//,90,AD BC B ∴∠=︒,CFO AEO ∴∠=∠,AFO AEO ∴∠=∠5,AE AF CF ∴===3,BF =4,AB ∴==BC=8AC ∴==由对折得:12OA OC AC === 故选C .【点睛】本题考查的是矩形的性质,等腰三角形的判定,勾股定理的应用,轴对称的性质,掌握以上知识是解题的关键.7.(2020湖北咸宁)如图,在矩形ABCD 中,2AB =,BC =E 是BC 的中点,将ABE △沿直线AE 翻折,点B 落在点F 处,连结CF ,则cos ECF ∠的值为( )A. 23B.C.D.【解析】【分析】根据折叠的性质得到①AEB=①AEF ,再根据点E 是BC 中点可得EF=EC ,可得①EFC=①ECF ,从而推出①ECF=①AEB ,求出cos AEB ∠即可得到结果.【详解】解:由折叠可得:AB=AF=2,BE=EF ,①AEB=①AEF ,①点E 是BC 中点,BC =①①EFC=①ECF ,3=,①①BEF=①AEB+①AEF=①EFC+①ECF ,①①ECF=①AEB ,①cos ECF ∠=cos AEB ∠=BE AE = 故选C.【点睛】本题考查了矩形的性质和折叠的性质,以及余弦的定义,解题的关键是利用折叠的性质得到①ECF=①AEB.8.(2020贵州黔西南)如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平,再一次折叠,使点D 落到EF 上点G 处,并使折痕经过点A ,已知BC =2,则线段EG 的长度为 .【答案】【分析】直接利用翻折变换的性质以及直角三角形的性质得出①2=①4,再利用平行线的性质得出①1=①2=①3,进而得出答案.【解答】解:如图所示:由题意可得:①1=①2,AN =MN ,①MGA =90°,则NG =AM ,故AN =NG ,①①2=①4,①EF①AB,①①4=①3,①①1=①2=①3=①4=×90°=30°,①四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,①AE=AD=BC=1,①AG=2,①EG==,故答案为:.9.(2020山东滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC =5,EN=1,则OD的长为()A.B.C.D.【答案】B【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.10.(2020浙江杭州)如图是一张矩形纸片,点E在AB边上,把①BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=2,BE=﹣1.【答案】2,﹣1【分析】根据矩形的性质得到AD=BC,①ADC=①B=①DAE=90°,根据折叠的性质得到CF=BC,①CFE =①B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.【解答】解:①四边形ABCD是矩形,①AD=BC,①ADC=①B=①DAE=90°,①把①BCE沿直线CE对折,使点B落在对角线AC上的点F处,①CF=BC,①CFE=①B=90°,EF=BE,①CF=AD,①CFD=90°,①①ADE +①CDF =①CDF +①DCF =90°,①①ADF =①DCF ,①①ADE ①①FCD (ASA ),①DF =AE =2;①①AFE =①CFD =90°,①①AFE =①DAE =90°,①①AEF =①DEA ,①①AEF ①①DEA ,①, ①=,①EF =﹣1(负值舍去),①BE =EF =﹣1,故答案为:2,﹣1.11.(2020山东潍坊)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AC EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠=_______.【答案】725【解析】【分析】 根据折叠的性质结合勾股定理求得GE 5=,BC=AD=8,证得Rt①EGF ~Rt①EAG ,求得253EA =,再利用勾股定理得到DE 的长,即可求解.【详解】矩形ABCD 中,GC=4,CE =3,①C=90︒,5=,根据折叠的性质:BG=GF ,GF=GC=4,CE=EF=3,①AGB=①AGF ,①EGC=①EGF ,①GFE =①C=90︒, ①BG=GF=GC=4,①BC=AD=8,①①AGB+①AGF+①EGC+①EGF=180︒,①①AGE=90︒,①Rt①EGF ~Rt①EAG , ①EG EF EA EG =,即535EA =, ①253EA =,73==, ①773sin DAE 25253DE AE ∠===, 故答案为:725. 【点睛】本考查了折叠的性质,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.12.(2020浙江衢州)如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A .B .C .D .【答案】A【分析】先判断出①ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【解答】解:由折叠补全图形如图所示,①四边形ABCD是矩形,①①ADA'=①B=①C=①A=90°,AD=BC=1,CD=AB,由第一次折叠得:①DAE=①A=90°,①ADE=①ADC=45°,①①AED=①ADE=45°,①AE=AD=1,在Rt①ADE中,根据勾股定理得,DE=AD=,故选:A.13.(2020贵州铜仁)如图,在矩形ABCD中,AD=4,将①A向内翻折,点A落在BC上,记为A1,折痕为DE.若将①B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.【答案】【分析】依据①A1DB1①①A1DC(AAS),即可得出A1C=A1B1,再根据折叠的性质,即可得到A1C=BC=2,最后依据勾股定理进行计算,即可得到CD的长,即AB的长.【解答】解:由折叠可得,A1D=AD=4,①A=①EA1D=90°,①BA1E=①B1A1E,BA1=B1A1,①B=①A1B1E =90°,①①EA1B1+①DA1B1=90°=①BA1E+①CA1D,①①DA1B1=①CA1D,又①①C=①A1B1D,A1D=A1D,①①A1DB1①①A1DC(AAS),①A1C=A1B1,①BA1=A1C=BC=2,①Rt①A 1CD 中,CD ==,①AB =, 故答案为:. 14.(2020四川内江)如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE 、BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知34AB BC ==,,则EF 的长为( )A. 3B. 5C.D. 【答案】C【解析】【分析】 由矩形的性质和已知求出BD=5,根据折叠的性质得①ABE①①MBE ,设AE 的长度为x ,在Rt①EMD 中,由勾股定理求出DE 的长度,同理在Rt①DNF 中求出DF 的长度,在Rt①DEF 中利用勾股定理即可求出EF 的长度.【详解】解:①四边形ABCD 是矩形,AB=3,BC=4,,设AE 的长度为x ,由折叠可得:①ABE①①MBE ,①EM=AE=x ,DE=4-x ,BM=AB=3,DM=5-3=2,在Rt①EMD 中,EM 2+DM 2=DE 2,①x 2+22=(4-x )2,解得:x=32,ED=4-32=52, 设CF 的长度为y ,由折叠可得:①CBF①①NBF ,①NF=CF=y ,DF=3-y ,BN=BC=4,DN=5-4=1,在Rt①DNF 中,DN 2+NF 2=DF 2,①y 2+12=(3-y )2,解得:x=43,DF=3-43=53,在Rt①DEF 中,6==, 故答案为:C .【点睛】本题考查矩形的性质、折叠的性质、全等三角形的判定与性质和勾股定理,运用勾股定理求出DE 和DF 的长度是解题的关键.15.(2020·无锡)如图,在四边形ABCD 中(AB >CD ),∠ABC =∠BCD =90°AB =3,BC =3,把Rt △ABC 沿着AC 翻折得到Rt △AEC ,若tan ∠AED =32,则线段DE 的长度为( ) A .63 B .73 C .32 D .275【答案】 B【解析】∵∠B =90°,BC =3,AB =3,∴tan ∠BAC =30°,AC =23,∵∠DCB =90°,∴CD ∥AB ,∴∠DCA =30°,延长CD 交AE 于F ,∴AF =CF =2,EF =1,∠EFD =60°,过点D 作DG ⊥EF ,设DG =3x ,则GE =2x ,ED =7x ,∴FG =1—2x , ∴在Rt △FGD 中,3FG =GD ,即3(1—2x )=3x ,解得x =13,∴ED =73.16.(2020·广东)如题9图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,①EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A .1 BCD .2【答案】D【解析】本题考查了正方形的性质、两直线平行内错角相等、折叠问题、特殊角的三角函数值, 首先由正方形的性质得AB①CD 和①A =90°,再由两直线平行,内错角相等得到①EFD =①BEF =60°,由于四边形EBCF 沿EF 折叠得到四边形EB’C’F,所以①BEF =①B’EF =60°和BE =B’E,所以①AEB’=180°-①B’EF -①BEF =60°, 所以cos AE AB BE AEBB E BE ,即:13cos 602BE BE ,求得BE =2,因此本题选D .17.(2020浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .7+3B .7+4C .8+3D .8+4【答案】D【分析】如图,过点M 作MH ①A ′R 于H ,过点N 作NJ ①A ′W于J.想办法求出AR ,RM ,MN ,NW ,WD即可解决问题.【解答】解:如图,过点M作MH①A′R于H,过点N作NJ①A′W于J.由题意①EMN是等腰直角三角形,EM=EN=2,MN=2,①四边形EMHK是矩形,①EK=A′K=MH=1,KH=EM=2,①①RMH是等腰直角三角形,①RH=MH=1,RM=,同法可证NW=,由题意AR=RA′=A′W=WD=4,①AD=AR+RM+MN+NW+DW=4++2++4=8+4,故选:D.18.(2020·安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处,折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处,请完成以下探究:(1)∠PAQ的大小为°;(2)当四边形APCDQR的值为.【答案】【解析】(1)由题意可知∠B=∠AQP,∠AQD=∠AQR,∠PQC=∠PQR,∴∠B=∠AQP=12(∠DQR+∠CQR)=90°.由题意可知∠D=∠ARQ,∠C=∠PRQ,∴∠C+∠D=∠ARQ+∠PRQ=180°,∴AD∥BC,∴∠BAD=90°.由题意可知∠BAP=∠PAQ=∠DAQ,∴∠PAQ=13∠BAD=30°.(2)由折叠的性质可知QR=12 CD.∵四边形APCD是平行四边形,∴QR =12AP.又∵∠PAB =30°, ∴cos ∠BAP =AB AP, ∴2AB QR,则AB QR19(2020黑龙江龙东)在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE a =,连接AE ,将ABE ∆沿AE 折叠.若点B对应点B '落在矩形ABCD 的边上,则折痕的长为______.或5【解析】【分析】 分两种情况:点B '落在AD 上和CD 上,首先求出a 的值,再根据勾股定理求出抓痕的长即可.【详解】分两种情况:(1)当点B '落在AD 上时,如图1,∵四边形ABCD 是矩形,90BAD B ∴∠=∠=︒, ∵将ABE △沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '∴∠=∠=∠=︒, AB BE ∴=,315a ∴=, ∴3=15BE a = 在Rt △ABE 中,AB=1,BE=1,∴= 的(2)当点B '落在CD 上,如图2,∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==,∵将ABE △沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '∴∠=∠=︒,1AB AB '==,35EB EB a '==,DB '∴=,3255EC BC BE a a a =-=-=, 在ADB '和B CE '中,9090B AD EB C AB D D C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩ ~ADB B CE ''∴,DB AB CE B E '''∴=,即12355a a =,解得,3a =±(负值舍去)∴35BE a = 在Rt △ABE 中,AB=1,∴5=.【点睛】本题考查翻折变换,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.20.(2020贵州遵义)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将①ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是.【答案】【分析】在Rt①A'BM中,解直角三角形求出①BA′M=30°,再证明①ABE=30°即可解决问题.【解答】解:①将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,①AB=2BM,①A′MB=90°,MN①BC.①将①ABE沿BE折叠,使点A的对应点A′落在MN上.①A′B=AB=2BM.在Rt①A′MB中,①①A′MB=90°,①sin①MA′B=,①①MA′B=30°,①MN①BC,①①CBA′=①MA′B=30°,①①ABC=90°,①①ABA′=60°,①①ABE=①EBA′=30°,①BE=.故答案为:.21(2020·重庆B卷)如图,在△ABC中,AC=ABC=45°,∠BAC=15°,将△ABC沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠ADE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A B.3C.D.4【答案】C【解析】本题考查了翻折的性质,勾股定理,解直角三角形等知识,如图,延长BC交AE于点F.根据轴对称的图形可知∠DCA=∠ABC=15°.∵∠DAE=∠DAC=15°,∴∠CAE=2×15°=30°,∠BAE=3×15°=45°.在Rt△ACF中,AC=,∠CAE=30°,∴CF AF.在Rt△ABF中,∠BAF=15°,∴BF=AF.∵∠ECF是△ABC的外角,∴∠ECF=∠ABC+∠BAC=45°+15°=60°.在Rt△ECF中,CF,∠ECF=60°,∴EF.在Rt△EBF中,根据勾股定理,得BE因此本题选C.22.如图,AB是⊙O的弦,点C在上,点D是AB的中点.将沿AC折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是6.【答案】6【分析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB于H.首先证明∠CAE =∠CAH=45°,推出∠BOC=90°,推出BC=2,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,根据CH2+BH2=BC2,构建方程求出x即可解决问题;【解答】解:如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故答案为6.【点睛】本题考查圆周角定理、垂径定理、勾股定理、解直角三角形等知识,综合性比较强,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.属于中考填空题中的压轴题.。

中考数学八大题型集训:专题复习(5)图形的折叠问题含解析

中考数学八大题型集训:专题复习(5)图形的折叠问题含解析

专题复习(五) 图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题(·宜宾)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(32,32),则该一次函数的解析式为________.【思路点拨】 利用翻折变换的性质结合锐角三角函数关系得出CO ,AO 的长,进而得出A 、B 两点的坐标,再利用待定系数法求出直线AB 的解析式.【解答】 连接OC ,过点C 作CD⊥x 轴于点D ,∵将△AOB 沿直线AB 翻折,得△ACB,C(32,32),∴AO =AC ,OD =32,DC =32,BO =BC ,则tan ∠COD =CD OD =33,故∠COD=30°,∠BOC =60°,∴△BOC 是等边三角形,且∠CAD=60°. 则sin60°=CD AC ,则AC =DCsin60°=1,故A(1,0),sin30°=CD CO =32CO =12.则CO =3,故BO =3,B 点坐标为(0,3),设直线AB 的解析式为y =kx +3,把A(1,0)代入解析式可得k =- 3. ∴直线AB 的解析式为y =-3x + 3.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.1.(·绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.34B.45C.56D.672.(·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC =70°,那么∠A′DE 的度数为________.3.(·宜宾)如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.4.(·滨州)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________.类型2 四边形及其他图形中的折叠问题(·南充)如图,在矩形纸片ABCD 中,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.【思路点拨】 (1)由矩形的性质得∠A =∠B =∠C =90°,由折叠的性质和等角的余角相等,可得∠BPQ =∠AMP =∠DQC ,所以△AMP∽△BPQ∽△CQD ;(2)设AP =x ,由折叠关系可得:BP =AP =EP =x ,AB =DC =2x ,AM =1,根据△AMP∽△BPQ 得:AMBP=AP BQ ,即BQ =x 2,根据△AMP∽△CQD 得:AP CD =AM CQ ,即CQ =2,从而得出AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1,根据Rt △FDM 中∠DMF 的正弦值得出x 的值,从而求出AB 的值.【解答】 (1)有三对相似三角形,即△AMP∽△BPQ∽△CQD. 理由如下:∵四边形ABCD 是矩形, ∴∠A =∠B=∠C=90°.根据折叠可知:∠APM=∠EPM,∠EPQ =∠BPQ,∴∠APM +∠BPQ=∠EPM+∠EPQ=90°. ∵∠APM +∠AMP=90°,∴∠BPQ =∠AMP,∴△AMP ∽△BPQ , 同理:△BPQ∽△CQD. ∴△AMP ∽△BPQ ∽△CQD. (2)设AP =x ,∴由折叠关系,BP =AP =EP =x ,AB =DC =2x.由△AMP∽△BPQ 得,AM BP =AP BQ ,即1x =xBQ ,得BQ =x 2.由△AMP∽△CQD 得,AP CD =AM CQ ,即x 2x =1CQ ,得CQ =2.∴AD =BC =BQ +CQ =x 2+2.∴MD =AD -1=x 2+1.∵在Rt△FDM 中,sin ∠DMF =35,∴2x x 2+1=35.解得x 1=3,x 2=13(不合题意,舍去). 即AB =6.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.1.(·南充)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是( )A .12B .24C .12 3D .16 32.(·泸州)如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为( )A.13 B.152C.272D.123.(·德阳)将抛物线y=-x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()A.6种 B.5种 C.4种 D.3种4.(·成都)如图,在□ABCD中,AB=13,AD=4,将ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.5.(·内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为________.6.(·南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是________.7.(·绵阳)如图1,在矩形ABCD中,AB=4,AD=3,将矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,顶点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.参考答案类型1 三角形中的折叠问题1.B 提示:∵△ABC 为等边三角形,∴∠A =∠B=∠C=60°.又∵折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF ,∴∠EDF =∠C=60°,CE =DE ,CF =DF.∴∠ADE+∠FDB=120°.∴∠AED =∠FDB.∴△AED∽△BDF.∴AE BD =AD BF =DEFD .设等边△ABC 边长为6个单位,CE =x ,CF =y ,AE =6-x ,BC =6-y ,∴6-x 4=26-y =x y ,解得x =145,y =72.∴x ∶y =4∶5,故选择B.2.65°3.1.54.(10,3)类型2 四边形及其他图形中的折叠问题1.D 2.A3.B 提示:由题意,易知y =-x 2+2x +3与x 轴的两个交点坐标分别为(3,0)和(-1,0),顶点坐标为(1,4),顶点关于x 轴对称点的坐标为(1,-4).当直线y =x +b 过(-1,0)时,b =1,此时直线与新的函数图象只有一个交点;当b>1时,此时直线与新的函数图象无交点;当直线y =x +b 过(3,0)时,b =-3,此时直线与新的函数图象有三个交点;观察图象,易知:当-3<b<1时,此时直线与新的函数图象有三个交点;当直线y =x +b 过(1,-4)时,b =-5,此时直线与新的函数图象有三个交点;观察图象,易知:当-5≤b<-3时,此时直线与新的函数图象有四个交点;观察图象,易知:当b<-5时,此时直线与新的函数图象有二个交点;综上,直线y =x +b 与此新图象的交点的个数的情况有5种,故选B.4.35. 6 提示:作AH⊥BC 于H.∵分别以AE ,BE 为折痕将两个角(∠D,∠C)向内折叠,点C ,D 恰好落在AB 边的点F 处,∴DE =EF ,CE =EF ,AF =AD =2,BF =CB =3.∴DC=2EF ,AB =5.∵AD∥BC,∠C =90°, ∴四边形ADCH 为矩形,∴AH =DC =2EF ,HB =BC -CH =BC -AD =1.在Rt△ABH 中,AH =AB 2-BH 2=26,∴EF = 6. 6.2≤x≤87.(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD =CE ,DC =EA ,∠ACD =∠CAE. 在△CED 与△ADE 中,⎩⎪⎨⎪⎧CE =AD ,DE =ED ,DC =EA ,∴△DEC ≌△EDA.(2)∵∠ACD=∠CAE,∴AF =CF.设DF =x ,则AF =CF =4-x ,在Rt△ADF 中,AD 2+DF 2=AF 2,即32+x 2=(4-x)2,解得x =78,即DF =78.(3)由矩形PQMN 的性质得PQ∥CA, ∴PE CE =PQCA. 又∵CE=3,AC =AB 2+BC 2=5.设PE =x(0<x <3),则x 3=PQ 5,即PQ =53x.过E 作EG⊥AC 于G ,则PN∥EG,∴CP CE =PN EG. 又∵在Rt△AEC 中,EG ·AC =AE·CE,解得EG =125.∴3-x 3=PN 125,即PN =45(3-x).设矩形PQMN 的面积为S ,则S =PQ·PN=-43x 2+4x =-43(x -32)2+3(0<x <3).∴当x =32,即PE =32时,矩形PQMN 的面积最大,最大面积为3.。

中考数学点对点-几何折叠翻折类问题(解析版)

中考数学点对点-几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。

3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。

(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。

(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。

这对解决问题有很大帮助。

(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。

(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。

一般试题考查点圆最值问题。

(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。

例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。

中考 函数专题08 折叠问题(学生版)

中考 函数专题08 折叠问题(学生版)

专题08 折叠问题平面直角坐标系中的折叠问题,蕴含了丰富的数形结合思想和转化思想.解决这类问题的关键,是利用对称性将问题转化到直角三角形中,然后用勾股定理或相似三角形的知识求解.平面直角坐标系中的折叠问题是正在悄然兴起的一个中考热点,因为在平面直角坐标系中,几何图形的位置和大小都可以用"数"来表示,折叠问题又涉及全等变换和轴对称问题.而对于折叠问题,学生并不陌生,但在直角坐标系中,必然涉及直线的解析式和点的坐标,难度加大了,综合性增强了,数形结合思想更加显现,因而更加受到中考出题者的青睐。

本专题主要从折叠入手,经过学生的强化训练受到更多的启发。

一、单选题1.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,则B ’点的坐标为( ).A .(2,) B .(,) C .(2,) D .(,)2.如图,在平面直角坐标系中,四边形OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB=60°,沿CP 折叠正方形,折叠后,点B 落在平面内点'B 处,则'B 点的坐标为( )A .(2,2)B .(32,3)C .(2,4-D .(32,4-) 3.在平面直角坐标系中,将点P (-2,0)沿直线y x =折叠得到点Q,则点Q 的坐标为( )A .(2(0(B .(0(2(C .(-2(-2(D .(0(-2(4.如图,把长方形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将纸片OABC 沿AC 折叠,使点B 落在点D 的位置,AD 与y 轴交于点E ,若()1,2B ,则OE 的长为( ) A .1 B .34 C .23 D .45二、填空题5.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,已知AD=3,当点F 为线段OC 的三等分点时,点E 的坐标为_____.7.如图,在平面直角坐标系中,长方形OABC 各顶点的坐标分别为(0,0)O ,(5,0)A ,(0,3)C .将长方形OABC 沿CE 折叠,使B 点落在x 轴上B '处,则点E 的坐标为__________.8.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.9.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若8OA =,4CF =,则点E 的坐标是__________.10.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 、y 轴上,连接AC ,将纸片OABC 沿AC 折叠,使点B 落在点D 的位置.若点B 的坐标为(2,4),则点D 的横坐标是___________.11.如图平面直角坐标系中,((B(8(0).将(OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处,若OE=3211,则CE(DE 的值是 (12.把一张两边长分别为2、1的矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴正半轴上,将纸片OABC 沿对角线OB 折叠,使点A 落在A '的位置上,则点A '的坐标为_______. 13.如图,将矩形纸片ABCD 放入以BC 所在直线为x 轴,BC 边上一点O 为坐标原点的直角坐标系中,连结OD ,将纸片ABCD 沿OD 折叠,使得点C 落在AB 边上点C'处,若AB 5=,BC 3=,则点C 的坐标为______.14.如图,有一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA =6,OC =10,如图,在OA 上取一点E ,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点处,则点E 的坐标为_______。

常考压轴08 折叠问题-2020年中考数学特训营(解析版)

常考压轴08 折叠问题-2020年中考数学特训营(解析版)

【十大常考压轴题特训】特训08——折叠问题题量﹕25题;分值﹕共计100分;推荐时间﹕60分钟问题1.(2019 甘肃省兰州市)如图,ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则(OM = )ABC DEFMOA .12BC .1-D 1【分析】根据正方形的性质得到AB =AD =BC =CD =2,∠DCB =∠COD =∠BOC =90°,OD =OC ,求得BD =2AB =2,得到OD =BO =OC =1,根据折叠的性质得到DE =DC =2,DF ⊥ CE ,求得OE = 2 -1,根据全等三角形的性质即可得到结论. 【解析】四边形ABCD 是正方形,∴AB =AD =BC =CD =2,∠DCB =∠COD =∠BOC =90°,OD =OC , ∴BD =2AB =2, ∴OD =BO =OC =1,∵将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处, ∴DE =DC =2,DF ⊥ CE ,∴OE = 2 -1,∠EDF +∠FED =∠ECO +∠OEC =90°, ∴∠ODM =∠ECO ,在△OEC 与△OMD 中,⎩⎪⎨⎪⎧∠EOC =∠DOC =90 °OD =OC ∠OCE =∠ODM ,∴△OEC ≌ △OMD , ∴OM =OE = 2 -1,故选:D .【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,正方形的性质,正确的识别图形是解题的关键.问题2.(2019 广西桂林市)将矩形ABCD 按如图所示的方式折叠,BE ,EG ,FG 为折痕,若顶点A ,C ,D 都落在点O 处,且点B ,O ,G 在同一条直线上,同时点E ,O ,F 在另一条直线上,则ADAB的值为( ) ABCDEFG OA .65BC .32D【分析】由折叠可得,E ,G 分别为AD ,CD 的中点,设CD =2a ,AD =2b ,根据Rt △BCG 中,CG 2+BC 2=BG 2,可得即a 2+(2b )2=(3a )2,进而得出ADAB 的值. 【解析】由折叠可得,AE =OE =DE ,CE =OG =DG , ∴,G 分别为AD ,CD 的中点,设CD =2a ,AD =2b ,则AB =2a =OB ,DG =OG =CG =a ,BG =3a ,BC =AD =2b , ∵∠C =90°,∴Rt △BCG 中,CG 2+BC 2=BG 2, 即a 2+(2b )2=(3a )2, ∴b 2=2a 2, 即b =2a , ∴ba =2, ∴ADAB 的值为 2 , 故选:B .【点评】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.问题3.(2019 贵州省铜仁地区)如图,正方形ABCD 中,6AB =,E 为AB 的中点,将ADE ∆沿DE 翻折得到FDE ∆,延长EF 交BC 于G ,FH BC ⊥,垂足为H ,连接BF 、DG .以下结论:①//BF ED ;②DFG DCG ∆≅∆;③FHB EAD ∆∆∽;④4tan 3GEB ∠=;⑤ 2.6BFG S ∆=;其中正确的个数是( ) ABCDEFG HA .2B .3C .4D .5【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可. 【解析】∵正方形ABCD 中,AB =6,E 为AB 的中点∴AD =DC =BC =AB =6,AE =BE =3,∠A =∠C =∠ABC =90° ∵△ADE 沿DE 翻折得到△FDE∴∠AED =∠FED ,AD =FD =6,AE =EF =3,∠A =∠DFE =90° ∴BE =EF =3,∠DFG =∠C =90° ∴∠EBF =∠EFB∵∠AED +∠FED =∠EBF +∠EFB ∴∠DEF =∠EFB ∴BF //ED 故结论①正确;∵AD =DF =DC =6,∠DFG =∠C =90°,DG =DG ∴△ DFG ≌ △DCG∴结论②正确;FH ⊥ BC ,∠ABC =90° ∴AB //FH ,∠FHB =∠A =90° ∵∠EBF =∠BFH =∠AED ∴△FHB ∽ △EAD∴结论③正确;∵△ DFG ≌ △DCG ∴FG =CG设FG =CG =x ,则BG =6-x ,EG =3+x在Rt △BEG 中,由勾股定理得:32+(6-x )2=(3+x )2 解得:x =2 ∴BG =4∴tan ∠GEB =BG BE =43 故结论④正确;∵△FHB ∽ △EAD ,且AE AD =12 ∴BH =2FH设FH =a ,则HG =4-2a在Rt △FHG 中,由勾股定理得:a 2+(4-2a )2=22 解得:a =2(舍去)或a =65 ∴S △BFG =12×4×65=2.4 故结论⑤错误; 故选:C .【点评】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强.问题4.(2019 湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在⌒AB 上的点D 处,且⌒BD :⌒AD =1:3(⌒BD 表示⌒BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为()A .1:3B .1:πC .1:4D .2:9【分析】连接OD,能得∠AOB的度数,再利用弧长公式和圆的周长公式可求解.【解析】连接OD交OC于M.由折叠的知识可得:OM=12OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且⌒BD:⌒AD=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,80πl180=2πr,∴r:i=2:9.故选:D.【点评】本题运用了弧长公式和轴对称的性质,关键是运用了转化的数学思想.问题5.(2019山东省泰安市)如图,将⊙O沿弦AB折叠,⌒AB恰好经过圆心O,若⊙O的半径为3,则⌒AB的长为()A.12πB.πC.2πD.3π【分析】连接OA、OB,作OC⊥AB于C,根据翻转变换的性质得到OC=12OA,根据等腰三角形的性质、三角形内角和定理求出∠AOB,根据弧长公式计算即可.【解析】连接OA、OB,作OC⊥AB于C,由题意得,OC=12OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴⌒AB的长=120π×3180=2π,故选:C.【点评】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.问题6.(2019重庆市)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB 交于点E,连结AC′,若AD=AC′=2,BD=3,则点D到BC′的距离为()A.332B.3217C.7 D.13【分析】分析连接CC′,交BD于点M,过点D作DH⊥BC′于点H,由翻折知,△BDC≌△BDC′,BD垂直平分CC′,证△ADC′为等边三角形,利用解直角三角形求出DM=1,C′M= 3 DM=3,BM=2,在Rt△BMC′中,利用勾股定理求出BC′的长,在△BDC′中利用面积法求出DH的长.【解析】如图,连接CC′,交BD于点M,过点D作DH⊥BC′于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC′,BD垂直平分CC′,∴DC=DC′=2,BC=BC′,CM=C′M,∴AD=AC′=DC′=2,∴△ADC′为等边三角形,∴∠ADC′=∠AC′D=∠C′AC=60°,∵DC=DC′,∴∠DCC ′=∠DC ′C =12×60°=30°, 在Rt △C ′DM 中,∠DC ′C =30°,DC ′=2, ∴DM =1,C ′M =3DM =3, ∴BM =BD ﹣DM =3﹣1=2, 在Rt △BMC ′中,BC ′=BM 2+C 'M 2=22+(3)2=7, ∵S △BDC ′=12BC ′•DH =12BD •CM , ∴7DH =3×3, ∴DH =3217, 故选:B .【点评】点评本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.问题7.(2019 辽宁省大连市)如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若4AB =,8BC =.则D F '的长为( )A .5B .4C .3D .2【分析】连接AC 交EF 于点O ,由矩形的性质得出AD =BC =8,∠B =90°,由勾股定理得出AC =AB 2+BC 2=45,由折叠的性质得出EF ⊥ AC ,AO =CO =12 AC =25,证出Rt △FOA ∽ Rt △ADC ,则AO AF =ADAC ,求出AF =5,即可得出结果. 【解析】连接AC 交EF 于点O ,如图所示: ∵四边形ABCD 是矩形,∴ AD =BC =8,∠B =∠ D =90°, AC =AB 2+BC 2=45,∵折叠矩形使C 与A 重合时,EF ⊥ AC ,AO =CO =12 AC =25, ∴ ∠ AOF =∠ D =90°,∠ OAF =∠ DAC , ∴则Rt △FOA ∽ Rt △ADC , ∴AO AF = ADAC ,即:25AF =845, 解得:AF =5,∴D ′F =DF =AD -AF =8-5=3, 故选:C .【点评】本题考查了折叠的性质、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握折叠的性质,证明三角形相似是解题的关键.问题8.(2019 四川省攀枝花市)如图,在正方形ABCD 中,E 是BC 边上的一点,4BE =,8EC =,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G ,连接AC ,现在有如下4个结论: ①45EAC ∠=︒;②FG FC =;③//FC AG ;④14GFC S ∆=. 其中正确结论的个数是( )A.1 B.2 C.3 D.4【分析】①正确.证明∠GAF=∠GAD,∠EAB=∠EAF即可.②错误.可以证明DG=GC=FG,显然△GFC不是等边三角形,可得结论.③正确.证明CF⊥DF,AG⊥DF即可.④错误.证明FG﹕EG=3﹕5,求出△ECG的面积即可.【解析】如图,连接DF.∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=2,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AD=AG,AD=AF,∴Rt△AGD≌Rt△AGF,∴DG=FG,∠GAF=∠GAD,,设GD=GF=x,∴∠EAG=∠EAF+∠GAF=12(∠BAF+∠DAF)=45 °,故①正确,在Rt△ECG中,∵EG2=EC2+CG2,∴(2+x)2=82+(12-x)2,∴x=6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CG//AG,故③正确,∵S△ECG=12×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=35×24=725,故④错误,故选:B.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.问题9.(2019甘肃省天水市)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为.【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt △ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF 中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到x,进一步得到EF的长,再根据正弦函数的定义即可求解.【解析】∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,∵BF=AF2-AB2=4,∴CF =BC ﹣BF =5﹣4=1, 设CE =x ,则DE =EF =3﹣x 在Rt △ECF 中,∵CE 2+FC 2=EF 2, ∴x 2+12=(3﹣x )2,解得x =43,∴EF =3﹣x =53, ∴sin ∠EFC =CE EF =45. 故答案为:45.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.问题10.(2019 广东省深圳市)如图,在正方形ABCD 中,1BE =,将BC 沿CE 翻折,使B 点对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使D 点对应点刚好落在对角线AC 上,求EF = .ABCDEFXY【分析】作FM ⊥ AB 于点M .根据折叠的性质与等腰直角三角形的性质得出EX =EB =AX =1,∠EXC =∠B =90°,AM =DF =YF =1,由勾股定理得到AE =AX 2+EX 2=2.那么正方形的边长AB =FM =2+1,EM =2-1,然后利用勾股定理即可求出EF . 【解析】如图,作FM ⊥ AB 于点M . ∵四边形ABCD 是正方形, ∴ ∠BAC =∠CAD =45 °.∵将BC 沿CE 翻折,B 点对应点刚好落在对角线AC 上的点X , ∴ EX =EB =AX =1,∠EXC =∠B =90°, ∴ AE =AX 2+EX 2=2.∵将AD沿AF翻折,使D点对应点刚好落在对角线AC上的点Y,∴ AM=DF=YF=1,∴正方形的边长AB=FM=2+1,EM=2-1,∴ EF=EM2+FM2=(2-1)2+(2+1)2=6.故答案为6.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形的性质以及勾股定理.求出EM与EM是解题的关键.问题11.(2019贵州省遵义市)如图,平行四边形纸片ABCD的边AB,BC的长分别是10cm和7.5cm,将其四个角向内对折后,点B与点C重合于点C',点A与点D重合于点A'.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=cm.【分析】先根据有三个角是直角的四边形是矩形证明四边形EHFG是矩形,再证明△FCH≌△EAG,可得CF =AE=FC',可知EF=AB,即可得结论.【解析】如图中,由翻折可知:∠CHF=∠FHC’,∠BHE=∠EHC',∴ ∠FHE=∠FHC’+∠EHC’=12(∠CHC’+∠BHC’)=90°,同法可证:∠HFG=∠GEH=90°,∴四边形EHFG是矩形.∴FH=EG,FH//EG,∴∠HFC’=∠FEG,∵∠CFH=∠HFC’,∠AEG=∠GEA’,∴∠CFH=∠AEG,∵四边形ABCD是平行四边形,∴∠C=∠A,BC=AD,由翻折得:CH=C'H=BH=12BC,AG=A'G=DG=12AD,∴CH=AG,∴△HCF≌ △GAE,∴CF=AE,∴EF=FC'+EC'=AE+BE=AB=10cm,故答案为:10.【点评】本题考查了平行四边形的性质,翻折变换,矩形的判定和性质,三角形全等的性质和判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.问题12.(2019吉林省长春市)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC相交于点G,则△GCF的周长为.【分析】根据折叠的性质得到∠DAF=∠BAF=45°,根据矩形的性质得到FC=ED=2,根据勾股定理求出GF,根据周长公式计算即可.【解析】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=6,∴EB=AB﹣AE=2,由题意得,四边形EFCB为矩形,∴FC=ED=2,∵AB∥FC,∴∠GFC =∠A =45°, ∴GC =FC =2,由勾股定理得,GF =FC 2+GC 2=22, 则△GCF 的周长=GC +FC +GF =4+22, 故答案为:4+22.【点评】本题考查的是翻折变换的性质、矩形的性质一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.问题13.(2019 江苏省淮安市)如图,在矩形ABCD 中,AB =3,BC =2,H 是AB 的中点,将△CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan ∠HAP = .【分析】连接PB ,交CH 于E ,依据轴对称的性质以及三角形内角和定理,即可得到CH 垂直平分BP ,∠APB =90°,即可得到AP ∥HE ,进而得出∠BAP =∠BHE ,依据Rt △BCH 中,tan ∠BHC =BC BH =43,即可得出tan ∠HAP =43.【解析】如图,连接PB ,交CH 于E , 由折叠可得,CH 垂直平分BP ,BH =PH , 又∵H 为AB 的中点, ∴AH =BH , ∴AH =PH =BH ,∴∠HAP =∠HP A ,∠HBP =∠HPB ,又∵∠HAP +∠HP A +∠HBP +∠HPB =180°, ∴∠APB =90°, ∴∠APB =∠HEB =90°, ∴AP ∥HE , ∴∠BAP =∠BHE ,又∵Rt△BCH中,tan∠BHC=BCBH=43,∴tan∠HAP=4 3,故答案为:4 3.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.问题14.(2019山东省青岛市)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(25﹣4)2+x2,在Rt △FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解析】设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=25.根据折叠的性质可知AG=AB=4,所以GE=25﹣4.在Rt△GEF中,利用勾股定理可得EF2=(25﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(25﹣4)2+x2=(4﹣x)2+22,解得x=25﹣2.则FC=4﹣x=6﹣25.故答案为6﹣25.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.问题15.(2019 山东省泰安市)如图,矩形ABCD 中,AB =36,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .【分析】连接EC ,利用矩形的性质,求出EG ,DE 的长度,证明EC 平分∠DCF ,再证∠FEC =90°,最后证△FEC ∽△EDC ,利用相似的性质即可求出EF 的长度. 【解析】如图,连接EC , ∵四边形ABCD 为矩形,∴∠A =∠D =90°,BC =AD =12,DC =AB =3 6 , ∵E 为AD 中点, ∴AE =DE =12AD =6 由翻折知,△AEF ≌△GEF ,∴AE =GE =6,∠AEF =∠GEF ,∠EGF =∠EAF =90°=∠D , ∴GE =DE , ∴EC 平分∠DCG , ∴∠DCE =∠GCE ,∵∠GEC =90°﹣∠GCE ,∠DEC =90°﹣∠DCE , ∴∠GEC =∠DEC ,∴∠FEC =∠FEG +∠GEC =12×180°=90°, ∴∠FEC =∠D =90°, 又∵∠DCE =∠GCE , ∴△FEC ∽△EDC , ∴FE DE =EC DC ,∵EC=DE2+DC2=62+(36)2=310,∴FE6=31036,∴FE=215,故答案为:215.【点评】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE,构造相似三角形,最终利用相似的性质求出结果.问题16.(2019山东省潍坊市)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.【分析】利用矩形的性质,证明∠ADE=∠A′DE=∠A′DC=30°,∠C=∠A′B′D=90°,推出△DB′A′≌△DCA′,CD=B′D,设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.【解析】∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A′ED,△A′BE≌△A′B′E,∠A′B′E=∠B=∠A′B′D=90°,∴∠AED=∠A′ED,∠A′EB=∠A′EB′,BE=B′E,∴∠AED=∠A′ED=∠A′EB=13×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A′DE=90°﹣∠A′EB=30°,∴∠ADE=∠A′DE=∠A′DC=30°,又∵∠C=∠A′B′D=90°,DA′=DA′,∴△DB′A′≌△DCA′(AAS),∴DC=DB′,在Rt△AED中,∠ADE=30°,AD=2,∴AE=23=233,设AB=DC=x,则BE=B′E=x﹣23 3∵AE2+AD2=DE2,∴(233)2+22=(x+x﹣233)2,解得,x1=-33(负值舍去),x2=3,故答案为:3.【点评】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A′ED=∠A′EB=60°.问题17.(2019上海市)如图,在正方形ABCD中,E是边AD的中点.将ABE∆沿直线BE翻折,点A落在点F处,联结DF,那么EDF∠的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解析】如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.问题18.(2019天津市)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G 点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解析】∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠F AH+∠AFH=90°,又∵∠F AH+∠BAH=90°,∴∠AFH=∠BAH,∴△ABF≌△DAE(AAS),∴AF=DE=5,在Rt△ADF中,BF=AB2+AF2=122+52=13,S△ABF=12AB•AF=12BF•AH,∴12×5=13AH,∴AH=60 13,∴AG=2AH=120 13,∵AE=BF=13,∴GE=AE﹣AG=13﹣12013=4913,故答案为:49 13.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.问题19.(2019浙江省杭州市)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C 落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【分析】设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出D'HP A'=PD'EA',推出ax=x4a,可得x=2a,再利用三角形的面积公式求出a即可解决问题.【解析】∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D'HP A'=PD'EA',∴ax=x4a,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴P A′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=22+42=25,PH=12+22=5,∴AD=4+25+5+1=5+35,∴矩形ABCD的面积=2(5+35).故答案为2(5+35)【点评】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.问题20.(2019 河南省)如图,在矩形ABCD 中,AB =1,BC =a ,点E 在边BC 上,且BE =35α.连接AE ,将△ABE 沿AE 折叠,若点B 的对应点B ′落在矩形ABCD 的边上,则a 的值为 .【分析】分两种情况:①点B ′落在AD 边上,根据矩形与折叠的性质易得AB =BE ,即可求出a 的值;②点B ′落在CD 边上,证明△ADB ′∽△B ′CE ,根据相似三角形对应边成比例即可求出a 的值. 【解析】分两种情况:①当点B ′落在AD 边上时,如图1. ∵四边形ABCD 是矩形, ∴∠BAD =∠B =90°,∵将△ABE 沿AE 折叠,点B 的对应点B ′落在AD 边上, ∴∠BAE =∠B ′AE =12∠BAD =45°, ∴AB =BE , ∴35a =1, ∴a =53;②当点B ′落在CD 边上时,如图2. ∵四边形ABCD 是矩形,∴∠BAD =∠B =∠C =∠D =90°,AD =BC =a . ∵将△ABE 沿AE 折叠,点B 的对应点B ′落在CD 边上, ∴∠B =∠AB ′E =90°,AB =AB ′=1,EB =EB ′=35a , ∴DB ′=B 'A 2-AD 2=1-a 2,EC =BC ﹣BE =a ﹣35a =25a .在△ADB ′与△B ′CE 中,⎩⎨⎧∠B 'AD =∠EB 'C =90°-∠AB 'I ∠D =∠C,∴△ADB′∽△B′CE,∴DB'CE=AB'B'E,即1-a225a=135a,解得a1=53,a2=0(舍去).综上,所求a的值为53或53.故答案为53或53.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.问题21.(2019江苏省常州市)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.【分析】(1)根据AD=C′B,ED=EB,即可得到AE=C′E,再根据三角形内角和定理,即可得到∠EAC′=∠EC′A=∠EBD=∠EDB,进而得出AC′∥BD;(2)依据平行线的性质以及折叠的性质,即可得到∠EDB=∠EBD,进而得出BE=DE.【解析】(1)连接AC′,则AC′与BD的位置关系是AC′∥BD,故答案为:AC′∥BD;(2)EB与ED相等.由折叠可得,∠CBD=∠C′BD,∵AD∥BC,∴∠ADB=∠CBD,∴∠EDB=∠EBD,∴BE=DE.【点评】本题主要考查了折叠问题以及平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.问题22.(2019江苏省徐州市)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FG C.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,即可得到∠B =∠G,BC=CG,进而得出∠EBC≌△FG C.【解析】(1)∵ 四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD-∠ECF=∠ECG-∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴ ∠ B=∠ G,BC=CG,又∵∠ECB=∠FCG,∴ △EBC≌ △FG C.【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.问题23.(2019山东省滨州市)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG ∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.【分析】(1)根据题意和翻着的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.【解析】(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵FDE=90°,∴22+(6﹣x)2=x2,解得,x=10 3,∴CE=10 3,∴四边形CEFG的面积是:CE•DF=103×2=203.【点评】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.问题24.(2019山东省烟台市)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC 上的E点.O为AC上一点,⊙O经过点A,P.(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.B【分析】(1)切线的判定重点是证明垂直;(2)判定黄金分割点其实就是证明CF2=BF•BC成立.【解析】(1)证明:如图,连接OP,则OA=OP,∴∠OAP=∠OP A.B由折叠知∠BAP=∠OAP,∴∠OP A=∠BAP.∴AB∥OP.又∵AB⊥BC,∴OP⊥B C.∴BC是⊙O的切线.(2)点F是线段BC的黄金分割点,理由如下:在矩形ABCD中,∵AB=CD=2,BC=AD=4,∴AC=AB2+BC2=22+42=25.又∵AE=AB=2,∴CE=CF=25-2.∴BF=BC-CF=6-25.∵CF2=(25-2)2=24-85,BF•BC=4(6-25)=24-85,∴CF2=BF•B C.∴点F是线段BC的黄金分割点.【点评】本题重点考查了矩形、圆的切线的判定定理、轴对称的性质、黄金分割点的概念,很巧妙地将图形的折叠问题融入其中,是一道非常好的题目.问题25.(2019山东省临沂市)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE 是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH 是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解析】过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=12×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=12×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.。

2020年中考数学专题复习学案:折叠类题目中的动点问题(含答案)

2020年中考数学专题复习学案:折叠类题目中的动点问题(含答案)

专题:折叠类题目中的动点问题折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。

此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。

类型一、求折叠中动点运动距离或线段长度的最值例1. 动手操作:在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .图例1-1【答案】2.【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.图例1-2 图例1-3由折叠性质可知,AD= A'D=5,在Rt△A'CD中,由勾股定理得,A C==='4②当点P与点B重合时,点A'的位置处于最右端,如图例1-3所示.确定点A'的位置方法:因为在折叠过程中,A'P=AP,所以以点P为圆心,以AP长为半径画弧,与BC的交点即为点A'. 再作出∠A'PA的角平分线,与AD的交点即为点Q.由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形.所以A'C=BC-A'B=5-3=2.综上所述,点A移动的最大距离为4-2=2.故答案为:2.【点睛】此类问题难度较大,主要考察学生的分析能力,作图能力。

2020中考数学 压轴专题:图形折叠(包含答案)

2020中考数学 压轴专题:图形折叠(包含答案)

2020中考数学 压轴专题:图形折叠(含答案)1.如图,在△ABC 中,∠BAC =90°,将△ABC 沿AD 翻折,点B 恰好与点C 重合,点E 在AC 边上,连接BE .(1)如图①,若点F 是BE 的中点,连接DF ,且AF =5,AE =6,求DF 的长; (2)如图②,若AF ⊥BE 于点F ,并延长AF 交BC 于点G ,当点E 是AC 的中点时,连接EG ,求证:AG +EG =BE ; (3)在(2)的条件下,连接DF ,请直接..写出∠DFG 的度数.第1题图解:(1)由折叠的性质得:AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ABE 中,∵点F 是BE 的中点, ∴AF 是Rt △ABE 斜边上的中线,∴AF =12BE , ∵AF =5,∴BE =10,在Rt △ABE 中,AE =6,BE =10,∴AB =8, 又∵AB =AC ,∴AC =8,∴CE =AC -AE =2,∴DF =12CE =1;(2)证明:如解图①,过点C 作CM ⊥AC ,交AG 的延长线于点M ,则∠ACM =90°,第1题解图①又∵∠BAC =90°,∴∠BAC =∠ACM , ∵AF 是△ABE 的高,∴∠AFB =90°,∴∠1+∠BAF =90°, ∵∠BAC =90°,∴∠2+∠BAF =90°,∴∠1=∠2, 在△ABE 和△CAM 中, ⎩⎪⎨⎪⎧∠BAE =∠ACM AB =CA∠1=∠2, ∴△ABE ≌△CAM (ASA), ∴AE =CM ,BE =AM , 又∵点E 是AC 边的中点, ∴CE =AE =CM , ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°, 又∵∠ACM =90°, ∴∠MCG =∠ACB =45°, 在△CEG 和△CMG 中, ⎩⎪⎨⎪⎧CE =CM ∠ECG =∠MCG CG =CG, ∴△CEG ≌△CMG (SAS),∴EG =GM , 又∵BE =AM ,∴AG +EG =AG +GM =AM =BE ; (3)∠DFG =45°.【解法提示】如解图②,过点D 作DN ⊥DF ,交AG 的延长线于点N ,则∠NDF =90°,第1题解图②∵AD ⊥BC ,∴∠ADB =90°=∠NDF ,∴∠ADB +∠ADF =∠NDF +∠ADF ,即∠BDF =∠ADN ,∵∠ADB =∠AFB =90°,∠5=∠6, ∴∠3=∠4,在Rt △ABC 中,BD =DC , ∴AD =12BC =BD ,在△BDF 和△ADN 中,⎩⎪⎨⎪⎧∠BDF =∠ADN BD =AD ∠3=∠4,∴△BDF ≌△ADN (ASA), ∴DF =DN , 又∵∠NDF =90°,∴∠DFN =∠DNF =45°,即∠DFG =45°.2.如图,在平行四边形ABCD 中,AB =9,AD =13,tan A =125,P 是射线AD 上一点,连接PB ,沿PB 将△APB 折叠,得到△A ′PB .第2题图(1)当∠DP A′=10°时,∠APB=________;(2)当P A′⊥BC时,求线段P A的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段P A的长度.解:(1)85°或5°或95°;【解法提示】当点P在线段AD上,且∠APB<90°时,点A′在平行四边形ABCD 的内部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12∠AP A′=85°;如解图①,当点P在线段AD上,且∠APB>90°时,点A′在平行四边形ABCD 的外部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12(360°-∠AP A′)=95°;如解图②,当点P在AD的延长线上,则∠APB=12∠DP A′=5°;第2题解图(2)∵四边形ABCD是平形四边形,∴AD∥BC,若P A′⊥BC,则P A′⊥AD,∴∠APB=∠A′PB=45°,如解图③,作BH ⊥AD 于点H ,第2题解图③∵tan A =125,∴设AH =5x ,BH =12x ,在Rt △ABH 中,由勾股定理得AB =AH 2+BH 2=13x = 9,解得x =913, ∴AH =4513,BH =10813,∵在Rt △BHP 中,∠BPH =45°, ∴BH =PH =10813, ∴AP =AH +PH =15313;(3)①如解图④,当点A ′在AD 上时,第2题解图④∵AB =A ′B , ∴∠1=∠2,∴BP ⊥AD ,且A ′P =AP ,∵tan A =125, ∴AP =513·AB =4513;②如解图⑤,当点A ′在BC 上时,第2题解图⑤由折叠可知,A ′B =AB ,AP =A ′P ,∠3=∠4, 又∵AD ∥BC , ∴∠5=∠4, ∴∠3=∠5, ∴AB =P A ,∴四边形ABA ′P 为菱形, ∴AP =9;③如解图⑥,当点A ′在AB 的延长线上时,∠ABP = 12∠ABA ′=90°, ∴AP =135×AB =1175.第2题解图⑥综上,线段P A 的长度为4513或9或1175.3.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AF BF 的值.第3题图解:(1)如解图①,第3题解图①∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ABC AEF S S △△=(AE AB )2. ∴(AE AB )2=14.在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2.即AB =42+32=5. ∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF . ∴∠CAB =∠CEM . ∴EM ∥AF .∴四边形AEMF 是平形四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②连接AM 、AM 与EF 交于点O ,如解图②,第3题解图②设AE =x ,则AE =ME =x ,EC =4-x . ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB . ∴EC AC =EM AB , ∵AB =5,∴4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169. 在Rt △ECM 中, ∵∠ECM =90°, ∴CM 2=EM 2-EC 2. 即CM =EM 2-EC 2=(209)2-(169)2=43.∵四边形AEMF 是菱形, ∴OE =OF ,OA =OM ,AM ⊥EF . ∴S 菱形AEMF =4S AOE =2OE ·AO . 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CM AC . ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43.∴OE =2109. ∴EF =4109.(3)如解图③,过点F 作FH ⊥CB 于点H ,第3题解图③在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH , ∵NC =1,EC =47,∴FH NH =47,设FH =x ,则NH =74x , ∴CH =74x -1. ∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x . 在Rt △BHF 和Rt △BCA 中,∵tan∠FBH=tan∠ABC,∴HFBH=ACBC,解得x=85.∴HF=85.∵∠B=∠B,∠BHF=∠BCA=90°,∴△BHF∽△BCA.∴HFCA=BFBA,即HF·BA=CA·BF.∴85×5=4BF.∴BF=2.∵AF=3.∴AFBF=32.4.如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过点BC的中点E?(3)求出y与x的函数表达式.第4题图解:(1)由题意得,△ADP≌△AD1P,∴AD1=AD=2,PD=PD1=x,∠PD1A=∠PDA=90°,∵直线AD1过点C,∴PD1⊥AC,在Rt △ABC 中,∵AB =3,BC =2, ∴AC =22+32=13, CD 1=13-2,在Rt △PCD 1中,PC 2=PD 21+CD 21,即(3-x )2=x 2+(13-2)2, 解得x =213-43, ∴当x =213-43时,直线AD 1过点C ; (2)如解图①,连接PE ,第4题解图①∵E 为BC 中点, ∴BE =CE =1, 在Rt △ABE 中, AE =AB 2+BE 2=10,又∵AD 1=AD =2,PD =PD 1=x , ∴D 1E =10-2,PC =3-x , 在Rt △PD 1E 和Rt △PCE 中, 有x 2+(10-2)2=(3-x )2+12, 解得x =210-23, ∴当x =210-23时,直线AD 1过BC 的中点E ; (3)如解图②,当0<x ≤2时,点D 1在矩形内部,y =x ;图② 图③ 第4题解图如解图③,当2<x ≤3时,点D 1在矩形外部,PD 1与AB 交于点F , ∵AB ∥CD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴FP =F A , 作PG ⊥AB ,垂足为点G , 设FP =F A =a ,由题意得,AG =DP =x ,FG =x -a , 在Rt △PFG 中,由勾股定理,得 (x -a )2+22=a 2, 解得a =4+x 22x ,∴y =12×2×4+x 22x =x 2+42x ,综上所述,当0<x ≤2时,y =x ;当2<x ≤3时,y =x 2+42x .5.阅读下列材料:如图①,在Rt △ABC 中,∠C =90°,D 为边AC 上一点,DA =DB ,E 为BD 延长线上一点,∠AEB =120°.(1)猜想AC 、BE 、AE 的数量关系,并证明.小明的思路是:根据等腰△ADB 的轴对称性,将整个图形沿着AB 边的垂直平分线翻折,得到点C 的对称点F ,如图②,过点A 作AF ⊥BE ,交BE 的延长线于F ,请补充完成此问题;(2)参考小明思考问题的方法,解答下列问题:如图③,在等腰△ABC 中,AB =AC ,D 、F 在直线BC 上,DE =BF ,连接AD ,过点E 作EG ∥AC 交FH 的延长线于点G ,∠DFG +∠D =∠BAC .①探究∠BAD 与∠CHG 的数量关系;②请在图中找出一条和线段AD 相等的线段,并证明.第5题图解:猜想:AC =BE +12AE . 理由如下:如题图②, ∵DA =DB , ∴∠DAB =∠DBA , ∵AF ⊥BF , ∴∠F =∠C =90°, 在△ABF 和△BAC 中, ⎩⎪⎨⎪⎧∠F =∠C =90°∠ABF =∠BAC AB =BA, ∴△ABF ≌△BAC (AAS), ∴AC =BF ,∵∠AEB =120°=∠F +∠F AE , ∴∠F AE =30°, ∴EF =12AE ,∴AC =BF =BE +EF =BE +12AE ,∴AC =BE+12AE ; 问题:(1)如题图③中,∵∠ACF =∠D +∠CAD ,∠D +∠DFG =∠BAC ,∴∠CHG =∠CFH +∠FCH =∠CFH +∠D +∠CAD =∠BAC +∠CAD =∠BAD ,∴∠CHG =∠BAD ; (2)结论:AD =FG . 理由如下:如解图③中,反向延长BD 到R ,使得BR =CD ,连接AR ,作AJ ∥CD 交EG 的延长线于点J ,连接FJ ,第5题解图③∵AJ ∥CE ,AC ∥JE ,∴四边形ACEJ 是平行四边形, ∴AJ =CE ,AC =JE , ∵AB =AC ,∴JE =AB ,∠ABC =∠ACB , ∴∠ABR =∠ACD , 在△ABR 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABR =∠ACD BR =CD, ∴△ABR ≌△ACD (SAS), ∴AR =AD ,∵BR =CD ,BF =DE , ∴FR =CE =AJ ,EF =BD ,又∵AJ ∥RF ,∴四边形ARFJ 是平行四边形, ∴JF =AR =AD ,在△ABD 和△JEF 中,⎩⎪⎨⎪⎧AB =JE AD =JF BD =EF ,∴△ABD ≌△JEF (SSS), ∴∠EJF =∠BAD , 又∵∠JGH =∠GHC , ∵∠BAD =∠CHG =∠FGJ , ∴∠EJF =∠FGJ , ∴FG =FJ , ∴AD =FG .6.如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图①,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长; (2)如图②,当折痕的另一端F 在AD 边上且BG =10时, ①求证:EF =EG ; ②求AF 的长;(3)如图③,当折痕的另一端F 在AD 边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2,且BG =10时,求AF 的长.第6题图(1)解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴BF =EF ,∵AB =8,∴EF =8-AF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 即42+AF 2=(8-AF )2,解得AF =3;(2)①证明:∵纸片折叠后顶点B 落在边AD 上的E 点处,∴∠BGF =∠EGF , ∵长方形纸片ABCD 的边AD ∥BC ,∴∠BGF =∠EFG ,∴∠EGF =∠EFG ,∴EF =EG ; ②解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG =BG =10,HE =AB =8,FH =AF , ∴EF =EG =10,在Rt △EFH 中,由勾股定理得FH =EF 2-HE 2=102-82=6,∴AF =FH =6;(3)解:如解图,设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于点M 、N ,第6题解图∵E 到AD 的距离为2, ∴EM =2,EN =8-2=6,在Rt △ENG 中,GN =EG 2-EN 2=102-62=8, ∵∠GEN +∠KEM =180°-∠GEH =180°-90°=90°, ∠GEN +∠NGE =180°-90°=90°, ∴∠KEM =∠NGE ,又∵∠ENG =∠KME =90°,∴△GEN ∽△EKM , ∴EK GE =KM EN =EM GN ,即EK 10=KM 6=28, 解得EK =52,KM =32, ∴KH =EH -EK =8-52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=223,∴AF=FH=223.7.在等腰Rt△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图①,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2时,求AE′的值;(2)如图②,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD 翻折到△CDE′,且AE′交BC于点F,求证:DF=CF.第7题图(1)解:∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴∠ADC=90°,∠ACD=45°,在Rt△ADC中,AC=ADsin 45°=2,∵E是AC的中点,∴CE=12AC=1,∵将△CDE沿CD翻折到△CDE′,∴CE ′=CE =1,∠ACE ′=90°, 由勾股定理得:AE ′=CE ′+AC 2=5;(2)证明:如解图,过B 作AE ′的垂线交AD 于点G ,交AC 于点H ,第7题解图∵∠ABH +∠BAF =90°,∠CAF +∠BAF =90°, ∴∠ABH =∠CAF ,又∵AB =AC ,∠BAH =∠ACE ′=90°, ∴△ABH ≌△CAE ′, ∴AH =CE ′=CE , ∵CE =13AC , ∴AH =HE =CE , ∵D 是BC 中点, ∴DE ∥BH , ∴G 是AD 中点, 在△ABG 和△CAF 中 ⎩⎪⎨⎪⎧∠BAD =∠ACD =45°AB =AC∠ABH =∠CAF, ∴△ABG ≌△CAF (ASA),∴AG =CF , ∵AG =12AD ,∴CF =12AD =12CD ,∴DF =CF . 8.【问题情境】在数学综合与实践课上,老师让同学们以“正方形的折叠为主题开展活动”,如图①,四边形ABCD是正方形,AB=5,点E是CD边上的一动点,连接AE.【操作发现】(1)将△ADE沿AE折叠得△AD′E,如图②,当点D′到BC的距离等于1时,求点E到BC的距离.【继续探究】(2)在(1)的条件下,创新小组在图②中,连接BE,如图③,发现∠AEB=2∠EBC,请你证明这个结论.【深入探究】(3)创新小组将图②沿MN向下折叠,使点A与点E,连接DD′并延长交BC 于点F,如图④,求四边形MNFD的面积.第8题图解:(1)如解图①,过点D′作XY∥BC,与AB、CD分别交于点X、Y,∵四边形ABCD是正方形,第8题解图①∴∠B=∠C=90°,AB∥CD,∴四边形BCYX 是矩形, ∵点D ′到BC 的距离为1, ∴BX =CY =1,∴AX =AB -BX =5-1=4, 由折叠知:AD ′=AD =5,在Rt △AXD ′中,由勾股定理得XD ′=52-42=3, ∴D ′Y =XY -XD ′=5-3=2, 由题易证△AXD ′∽△D ′YE , ∴AXD ′Y=XD ′YE , ∴42=3YE , ∴YE =32,∴CE =YE +YC =32+1=52, ∴点E 到BC 的距离等于52; (2)证明:由(1)知,CE =52, ∴DE =DC -CE =5-52=52, ∴DE =CE ,又∵AD =BC ,∠C =∠ADE , ∴△ADE ≌△BCE , ∴AE =BE ,如解图②,过点E 作EZ ⊥AB 于点Z ,第8题解图②∴EZ 平分∠AEB , ∴∠AEB =2∠BEZ , ∵EZ ⊥AB ,BC ⊥AB , ∴EZ ∥BC . ∴∠BEZ =∠EBC , ∴∠AEB =2∠EBC ;(3)∵点A 、点E 关于MN 对称, ∴MN 垂直平分AE , 同理:AE 垂直平分DD ′, ∴MN ∥DF , 又∵MD ∥NF ,∴四边形MNFD 是平行四边形,如解图③,设AE 与MN ,DD ′分别相交于点G 、H ,第8题解图③在Rt △ADE 中,由勾股定理得 AE =AD 2+DE 2 =52+(52)2=552,∴GE =12AE =12×552=554. 在Rt △ADE 中,DH ·AE =AD ·DE ,∴DH =AD ·DEAE =5×52552=5,在Rt △DEH 中,由勾股定理得 EH =DE 2-DH 2=(52)2-(5)2=52,∴GH =GE -EH =554-52=354,∵△ADE ≌△DCF ,∴AE =DF ,∴DF =552, ∴S 四边形MNFD =DF ·GH =552×354=758. 9.【问题情境】(1)数学课上,老师出了一道题,如图①,Rt △ABC 中,∠C =90°,AC =12AB ,求证:∠B =30°,请你完成证明过程;【继续探究】(2)如图②,四边形ABCD 是一张边长为2的正方形纸片,E 、F 分别为AB 、CD 的中点,沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处,折痕交AE 于点G ,请运用(1)中的结论求∠ADG 的度数和AG 的长;【拓展应用】(3)若矩形纸片ABCD 按如图③所示的方式折叠,B 、D 两点恰好重合于一点O (如图④),当AB =6时,求EF 的长.第9题图(1)证明:Rt △ABC 中,∠C =90°,AC =12AB , ∵sin B =AC AB =12, ∴∠B =30°;(2)解:∵正方形边长为2,E 、F 分别为AB 、CD 的中点, ∴EA =FD =12×CD =1,∵沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处, ∴A ′D =AD =2, ∴FD A ′D =12, ∴∠F A ′D =30°,可得∠FDA ′=90°-30°=60°,由折叠性质可得∠ADG =∠A ′DG ,AG =A ′G , ∴∠ADG =∠ADA ′2=90°-60°2=15°, ∵A ′D =2,FD =1,∴A′F=A′D2-FD2=3,∴EA′=EF-A′F=2-3,∵∠EA′G+∠DA′F=180°-∠GA′D=90°,∴∠EA′G=90°-∠DA′F=90°-30°=60°,∴∠EGA′=90°-∠EA′G=90°-60°=30°,则AG=AG′=2EA′=2(2-3);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=AC 2,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,ADDC=tan30°,则AD=DC·tan30°=6×33=23,∵∠DAF=∠F AO=12∠DAO=90°-∠DCA2=30°,∴DFAD=tan30°=33,∴DF=33AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.10.如图,在矩形ABCD纸片中,AB=10 cm,BC=12 cm.点P在BC边上,将△P AB沿AP折叠得△P AE,连接CE,DE.(1)当点E落在AD边上时,CE=________;(2)当△CDE分别满足下列条件时,求PB的长.①DE=CD;②DE=CE.第10题图解:(1)226 cm ; 【解法提示】如解图①,∵将△P AB 沿AP 折叠,得△P AE ,E 落在AD 边上, ∴四边形ABPE 是正方形, ∴PB =PE =AB =10 cm , ∴PC =2 cm ,∴CE =PE 2+PC 2=226 cm.第10题解图①(2)①如解图②,过E 作MN ⊥AD 于M ,交BC 于N ,则MN ⊥BC ,第10题解图②∵DE =CD ,AE =AB =CD =DE , ∴AE =10 cm ,∴AM =12AD =BN =6 cm ,∴ME =AE 2-AM 2=8 cm , ∴EN =MN -ME =2 cm , 易知△AME ∽△ENP , ∴AM AE =EN PE , ∴610=2PE , ∴PE =103 cm , ∴PB =PE =103 cm ;②如解图③,过E 作MN ⊥AD 于M ,交BC 于N ,过E 作EQ ⊥CD 于Q ,第10题解图③∵DE =CE ,∴DQ =12CD =5 cm ,∴ME =5 cm , ∴EN =MN -ME =5 cm , ∴AM =AE 2-ME 2=5 3 cm , ∴BN =5 3 cm , 同理得AM AE =EN PE , ∴5310=5PE , ∴PE =1033 cm ,103∴PB=PE=3cm.。

2020年初三数学中考冲刺专题复习训练圆的折叠专题(含答案解析)

2020年初三数学中考冲刺专题复习训练圆的折叠专题(含答案解析)

2020 年初三数学中考冲刺专题复习训练圆的折叠专题则图中阴影部分的面积是()A.43πB.43π- 3 C.2 3 +3πD.2 3 -32π2. 如图,AB是⊙ O的弦,AC是⊙ O的直径,将AB 沿着AB弦翻折,恰好经过圆心O.若⊙ O的半径为6,则图中阴影部分的面积等于()A.6πB.9 3C.9πD.6 33. 如图,将⊙ O 的劣弧AB 沿AB 翻折,若BC=5 ,则BD= .4. 如图,AB 是⊙ O的直径,且AB=4 ,BD;翻折,若翻折后的圆弧恰好经过点O,π≈31,4 2 ≈1.41,3 ≈1.73,那么由线段AB、AC 和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6C.3.8 D.4.25. )如图,在扇形AOB 中,∠ AOB=90°,半径OA=6 ,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点 D 处,折痕交OA 于点C,则整个阴影部分的面积为(A.9π-9 B.9π-6 3C.9π-18 D .9π-12 31. 如图①是半径为 2 的半圆,点 C 是AB 的中点,现将半圆如图②方式翻折,使得点 C 与圆心O 重合,6. 如图,是一个圆心角为90°的扇形,AO=2cm ,点P 在半径AO 上运动,点Q 在弧AB 上运动,沿PQ 将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP 的最大距离为.7. 如图,⊙ O 的半径为5,弦AB 的长为8,将沿直线AB 折叠,折叠后如右图,则⊙ O到所作的圆的切线OC 的长为()A .22B .5C.3 D .118. 如图,将半径为长为()12 的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D,则折痕AB9.10. A .4 2C.6A .8cmC.2 7 cm已知如图:⊙ O圆心O,再把弧B.8 3 cmD. 4 7 cm如图,AB 是⊙O 的直径,且AB=4 ,C 是⊙ O上一点,将弧好经过点O,π≈31,4 2 ≈1.41,3 ≈1.73,那么由线段AB、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是()A .3.2 B. 3.6C. 3.8 D.4.214. 如图, △ABC 内接于⊙ O ,BC= 2 2 ,∠BAC=45°,将劣弧 AB 和 AC 分别沿直线 AB 、AC 折叠后交于点M ,点 S 、T 是弦 AB 、AC 上的动点,则△MST 的周长的最小值为(A .2 2B .4C . 4 2D .815. 如图,在⊙ O 中,点 C 在优弧 ? ACB 上,将弧沿 ? BC 折叠后刚好经过AB 的中点 D ,若⊙ O 的半径为 5 ,AB=4 ,则 BC 的长是11. 如图,将弧 BC 沿弦 BC 折叠交直径 AB 于点 D ,若 AD=6 ,DB=7 ,则 BC 的长是( B . 7 3 C . 134 D . 130 ) 12. 如图,在⊙ O 中,点 C 在优弧 AB 上,将弧BC 沿BC 折叠后刚好经过 AB 的中点 D ,连接 AC ,CD .则 下列结论中错误的是( ) ︵ ︵ ︵ A .AC=CD B .AC+BD=BC C .OD ⊥AB D .CD 平分∠ ACB13. 如图,点 O 是半径为 3 的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧 过圆心 O ,则阴影部分的面积为( ) 43 A .2π B .3π C . π D . 35 AB 和弧 BC 都经)16. 如图,AB 是半径为 2 的⊙O 的弦,将AB沿着弦AB 折叠,正好经过圆心O,点 C 是折叠后的AB上一动点,连接并延长BC交⊙ O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ ACB=120 °,②△ ACD 是等边三角形,③EO 的最小值为1,其中正确的是.(请将正确答案的序号填在横线上)17. 如图,将AB沿着弦AB 翻折, C 为翻折后的弧上任意一点,延长于 D ,连接BC.(1)求证:BC=BD ;2)若AC=1 ,CD=4,AB=120°,求弦AB 的长和圆的半径.18. 如图,已知⊙ O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M,将CD 沿CD 翻折后,点A与圆心O 重合,延长OA 至P,使AP=OA ,连接PC (1)求CD 的长;(2)求证:PC是⊙O 的切线;3)点G为ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交BC 于点F(F与B、AC 交圆19. 如图1和图2,AB是⊙ O的直径,AB=10 ,C是⊙ O上的一点,将BC 沿弦BC翻折,交AB于点D.1)若点 D 与圆心O 重合,直接写出∠ B 的度数;2)设CD交⊙O于点E,若CE平分∠ ACB ,①求证:△BDE 是等腰三角形;②求△ BDE 的面积;3)将图 1 中的BD 沿直径AB 翻折,得到图2,若点 F 恰好是翻折后的BD 的中点,直接写出∠ B 的21. 如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点 A ,过点A作AB ⊥ x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B 、M 三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB 沿弦AB 对折后得到弧AE′B,试判断直线AF 与弧AE′B的位置关系,并说明20. 如图,CD 是⊙ O 的直径,(1)求⊙ O 的半径;AB 是⊙ O的弦,AB ⊥CD ,垂足为G,OG:OC=3:5,AB=8.2)点 E 为圆上一点,ECD=1°5 ,将CE 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.度数.则图中阴影部分的面积是()1【分析】 连接 OC 交 MN 于点 P ,连接 OM、ON ,根据折叠的性质得到 OP=2OM ,得到∠ POM=60 °,根 据勾股定理求出 MN ,结合图形计算即可.理由.圆的折叠专题22. 如图①是半径为 2 的半圆,点 C 是 AB 的中点,现将半圆如图②方式翻折,使得点 C 与圆心 O 重合,解答】 解:连接 OC 交 MN 于点 P ,连接 OM 、ON ,由题意知, OC ⊥MN ,且 OP=PC=1 , 在 Rt △MOP 中, ∵ OM=2 ,OP=1, ∴cos ∠ POM=OPOM= 12,AC= OM 2 OP 2 = 3, ∴∠ POM=6°0 , MN=2MP=2 3 , ∴∠ AOB=2 ∠ AOC=12°0 ,则图中阴影部分的面积 =S 半圆 -2S 弓形 MCN = 1×π×2-22 ×(120 π×2- 1×2 3 ×1)=2 3 -2π,2 360 2 3故选: D .点评】 本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、 三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.23. 如图, AB 是⊙ O 的弦, AC 是⊙ O 的直径,将 AB 沿着AB 弦翻折,恰好经过圆心 O .若⊙ O 的半径为 6,则图中阴影部分的面积等于( )C . 9π分析】 由题意△ OBC 是等边三角形,弓形 OnB 的面积 =弓形 BmC 的面积,根据 S 阴=S △OBC 计算即可. 解答】 解:如图,连接 OB ,BC .由题意△ OBC 是等边三角形,弓形 ∴S 阴=S △OBC= 3 ×62=9 3,4故选: B .点评】 本题考查扇形的面积的计算,垂径定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属 于中考常考题型.24. 如图,将⊙ O 的劣弧 AB 沿 AB 翻折, D 为优弧ADB 上一点,连接 AD ,交AB 于点 C ,连接 BC 、BD ; 若 BC=5 ,则 BD= .OnB 的面积 =弓形 BmC 的面积,【分析】根据圆周角定理、翻转变换的性质得到∠ADB= ∠BCD ,根据等腰三角形的判定定理解答.【解答】解:由翻转变换的性质可知,∠ ADB 所对的弧是劣弧AB ,∠CAB 所对的弧是劣弧BC ,∠ CBA 所对的弧是劣弧AC ,∴∠ ADB= ∠CAB+ ∠CBA ,由三角形的外角的性质可知,∠ BCD= ∠ CAB+ ∠CBA,∴∠ ADB= ∠BCD ,∴ BD=BC=5 ,故答案为:5.【点评】本题考查的是翻转变换的性质、圆周角定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25. 如图,AB是⊙O的直径,且AB=4 ,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈31,4 2 ≈1.41,3 ≈1.73,那么由线段AB、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是()A. 3.2 B. 3.6 C.3.8 D.4.2【分析】作MN 关于直线AN 的对称线段M′N,交半圆于B',连接AM 、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN 关于直线AN 的对称线段M′N,交半圆于B',连接AM 、AM′,可得M、A 、M′三点共线,MA=M′A ,MB=M′B′=4,M′N=MN=10.连接AB' ,∵ 四边形AMNB' 是圆内接四边形,∴∠ M'AB'= ∠ M'NM ,∵∠M'=∠M',∴△M'AB' ∽△M'NM ,∴M′A=M′ B′∴M′N=M′M∴M′A?M′M=M′B′?M′,N即M′A?2M′A=4×10=40.则M′A2=20,又∵ M′A2=M′N2-AN 2,∴20=100-AN 2,∴ AN=4 5 .故选: B .【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.26. )如图,在扇形AOB 中,∠ AOB=90°,半径OA=6 ,将扇形AOB 沿过点 B 的直线折叠,点O 恰好落在弧AB 上点 D 处,折痕交OA 于点C,则整个阴影部分的面积为()A .9π-9 B.9π-6 3 C.9π-18 D.9π-12 3分析】首先连接OD,由折叠的性质,可得CD=CO ,BD=BO ,∠ DBC= ∠ OBC ,则可得△ OBD 是等边三角形,继而求得OC 的长,即可求得△ OBC 与△BCD 的面积,又在扇形OAB 中,∠AOB=90 °,半径OA=6 ,即可求得扇形OAB 的面积,继而求得阴影部分面积.解答】解:连接OD.根据折叠的性质,CD=CO ,是等边三角形,∴∠ DBO=6°0 ,1 ∴∠ CBO=2∠DBO=3°0 ,∵∠ AOB=9°0 ,∴ OC=OB?tan∠ CBO=×6 3 =2 3 ,3BD=BO ,∠DBC= ∠OBC,∴OB=OD=BD ,即△OBDS△BDC=S△OBC=12×OB×OC=12×6×2 3=6 3S扇形AOB=360?π×2=69π,∴整个阴影部分的面积为:S 扇形AOB -S△ BDC -S△OBC =9π-6 3 -6 3 =9π-12 3 .故选: D .【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.点评】本题考查了翻折变换-折叠问题,等边三角形的判定和性质,正确的在才辅助线是解题的关键.28. 如图,⊙ O 的半径为5,弦AB 的长为8,将沿直线AB 折叠,折叠后如右图,则⊙ O 到所作的圆的切线OC 的长为()A.22 B. 5 C.3 D .1127. 如图,是一个圆心角为90 °的扇形,AO=2cm ,将它以上的部分向下翻折,使翻折后点P 在半径AO 上运动,点Q 在弧AB 上运动,沿PQO,则OP 的最大距离为.分析】作O 关于PQ 的对称点O′,O′恰好落在⊙O 上,于是得到OP=12Rcos∠ POE推出△OO′Q为等边三角形,根据等边三角形的性质得到OQ=O′Q=OO′=R ,当cos∠POE 最小时,∠ POE 最大,当∠ QOB=°0时,∠POE=3°0 于是得到结论.解答】解:作O 关于PQ 的对称点O′,O′恰好落在⊙O 上,1OP=cos∠2 POE,∵△ OO′Q为等边三角形,∴OQ=′O Q=O′O =R ,∠POE+∠QOB=3°0 ,当cos∠POE 最小时,∠POE 最大,当∠ QOB=°0 时,∠POE=3°0 ,∴OP= 1 =2 3.cos30 °故答案为:233分析】 延长 CO 交 AB 于 E 点,连接 OB ,构造直角三角形,然后再根据勾股定理求出 AB 的长 解答】 解:延长 CO 交 AB 于 E 点,连接 OB ,∵CE ⊥AB , ∴E 为 AB 的中点, ∵OC=6 ,CD=2OD , ∴CD=4 ,OD=2 , OB=6 ,1 1 1∴DE=2(2OC-CD )=2(6×2-4)=2×8=4,【分析】 根据题意先画出图形,可知翻转过后的弧已知圆的半径,故根据勾股定理即可求出答案. AB 所在的圆和⊙ O 全等,且两个圆的圆心相距为 6,又解答】 解:根据题意画出图形如下所示:BD=4 , OB=5 ,点 O ′为翻转过后的弧 AB 所在圆的圆心, 则有 O ′D=OD= 52 42 =3.又 O ′C =5, O ′ O=,6 ∴ OC= O ′O 2 O ′C 2 = 62 52 = 11 .故选: D .点评】 本题考查了翻转变换、垂径定理及圆的切线的性质,难度不大,找出翻转过后的弧 AB 所在圆的圆心是解题关键.29. 如图,将半径为 12 的⊙O 沿 AB 折叠,弧 AB 恰好经过与 AB 垂直的半径 OC 的中点 D ,则折痕 AB 长为( )C .6D .6 22∴ OE=DE-OD=4-2=2 ,在Rt△OEB 中,∵ OE2+BE2=OB 2,∴ BE= OB2OE2= 62424 2 ∴ AB=2BE=8 2 .故选:B.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.30. 已知如图:⊙O的半径为8cm,把弧AmB沿AB 折叠使弧AmB经过圆心O,再把弧AOB沿CD折叠,使弧COD 经过AB 的中点E,则折线CD 的长为()【分析】连接OE 并延长交CD 于点F,交C′ D于′点F′,交弧AmB 于点G,根据翻折的性质得出OF′ =,6 再由勾股定理得出.【解答】解:连接OE 并延长交CD 于点F,交C′于D′点F′,交弧AmB 于点G ,∵ OC′=8cm,∴ OF′=6cm,∴C′F′=CF=8262=2 7 cm, F∴ CD=2CD=4 7 cm.故选:D.点评】本题考查了垂径定理和勾股定理以及翻折的性质,是基础知识要熟练掌握.31. 如图,AB是⊙O的直径,且AB=4 ,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈ 314,2 ≈1.41,3 ≈1.73,那么由线段AB、AC 和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B. 3.6 C. 3.8 D .4.2A.8cm B.8 3 cm C.2 7 cm D. 4 7 cm【分析】连接 CA 、CD ,根据翻折的性质可得弧 CD 所对的圆周角是∠ CBD ,再根据 AC 弧所得的圆周角也1是∠ CBA ,然后求出 AC=CD ,过点 C 作CE ⊥ AB 于E ,根据等腰三角形三线合一的性质可得 AE=ED= 12 AD ,分析】 作OE ⊥AC 交⊙O 于F ,交 AC 于E ,根据折叠的性质得到 1 OE=12OF,求出∠ ACB 的度数即可解决问题.解答】 解:作 OE ⊥AC 交⊙ O 于F ,交 AC 于E .连接 OB ,BC .1由折叠的性质可知, EF=OE= 12OF , ∴OE=12OA ,1在 Rt △AOE 中, OE= 2OA , ∴∠ CAB=30° , ∵ AB 是直径,∴∠ ACB=90° , ∠BOC=2 ∠BAC=60° , ∵ AB=4 ,∴BC= 12AB=2 , AC= 3 BC=2 3 ,∴线段 AB 、AC 和弧 BC 所围成的曲边三角形的面积为π 2 3S=12?AC?BC+S 扇形OBC -S △OBC =12×2 3×2+60360?2- 43 ×22= 3 +23π≈ 3,.8故选:C .点评】 本题考查的是翻折变换的性质、圆周角定理,折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.32. 如图,将弧 BC 沿弦 BC 折叠交直径 AB 于点 D ,若 AD=6 ,DB=7 ,则 BC 的长是( )A . 91B . 7 3C . 134D . 130AE CE CE = BE即 CE 2=AE?BE=3× 10=30,在Rt △ BCE 中, BC= BE 2 CE 2 = 102 30= 130 , 故选: D .【点评】 本题考查了翻折的性质,相似三角形的判定与性质,圆的性质,等腰三角形的判定与性质,作辅 助线并求出AC=CD 是解题的关键.33. 如图,在⊙ O 中,点 C 在优弧 AB 上,将弧BC 沿BC 折叠后刚好经过 AB 的中点 D ,连接 AC ,CD .则列结论中错误的是( )A . AC=CDB . AC+BD=BC C . OD ⊥ ABD .CD 平分∠ ACB分析】 A 、作辅助线,构建折叠的性质可得 AD=CD ;B 、相等两弧相加可作判断;C 、根据垂径定理可作判断;D 、延长 OD 交⊙O 于E ,连接 CE ,根据垂径定理可作判断. 解答】解:A 、过D 作DD'⊥BC ,交⊙O 于D',连接 CD' 、BD' , 由折叠得: CD=CD' ,∠ ABC= ∠ CBD' ,根据直径所对的圆周角是直角可得∠ ACB=90 °,然后求出△ ACE 和△ CBE 相似,根据相似三角形对应边 成比例求出 CE 2,再求出 BE ,然后利用勾股定理列式计算即可求出BC .解答】 解:如图,连接 CA 、CD , 根据折叠的性质,弧 CD 所对的圆周角是 ∠CBD , ∵弧AC 所对的圆 周角是∠ CBA ,∠CBA= ∠CBD ,∴AC=CD (相等的圆周角所对的弦相等) ,11过点 C 作 CE ⊥AB 于 E , 则 AE=ED= 2AD=2×6=3,∴BE=BD+DE=7+3=10 , ∵ AB 是直径, ∴∠ ACB=90° , ∵CE ⊥AB , ∴∠ ACB= ∠AEC=90° ,∴∠ A+ ∠ ACE= ∠ACE+ ∠BCE=90° , ∴∠A= ∠BCE ,∴△ACE ∽△ CBE ,∴ AC+BD=BC,故②正确;C、∵D 为AB 的中点,∴OD⊥AB ,故③正确;D、延长OD 交⊙O于E,连接CE,∵ OD⊥AB ,∴∠ACE=∠BCE,∴CD 不平分∠ACB,故④错误;故选:D.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.34. 如图,点O 是半径为 3 的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧过圆心O,则阴影部分的面积为()4A.2πB.3πC.π3【分析】作OD⊥AB 于点D,连接AO ,BO,CO,求出∠ OAD=30 °,得到∠ AOB=2 ∠AOD=120 °,进而求得∠ AOC=120 °,再利用阴影部分的面积=S扇形AOC 得出阴影部分的面积是⊙ O面积的13,即可得出答案.【解答】解:作OD⊥AB于点D,连接AO,BO,CO,如图所示1 ∵OD=2AO∴∠ OAD=30°,∴∠ AOB=2∠ AOD=120°,同理∠ BOC=120°,∴∠ AOC=120°,11∴阴影部分的面积=S扇形BOC= ×⊙O面积= ×π× 32=3π,故选:B.点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120 °.︵︵35. 如图,△ABC 内接于⊙ O,BC= 2 2,∠ BAC=45°,将劣弧AB和AC分别沿直线AB、AC 折叠后交于点M,点S、T 是弦AB、AC 上的动点,则△MST 的周长的最小值为()A.2 2 B.4 C.4 2 D.8AB 和弧BC 都经D.周上,连接M′M″,交AB 于S,交AC 于T,则△ MST 的周长最小,连接AM ′,AM ″,OB,OC,根据圆周角定理得到M′M″是⊙ O 的直径,即可得到结论.解答】解:作点M 关于AB 的对称点M′,关于AC 的对称点M″,∵将劣弧AB 和AC 分别沿直线AB、AC 折叠后交于点M,∴点M′,M″在圆周上,连接M′M″,交AB 于S,交AC 于T ,则△ MST的周长最小,连接AM′,AM″ ,OB,OC,则∠M′AM″=2∠BAC ,∵∠ BAC=45° ,∴∠M′AM″=∠ BOC=9°0 ,∵BC=2 2 ,∴ OB=2,∴M′M″=2OB=4,∴△ MST 的周长的最小值为4,故选:B.点评】本题考查了三角形的外接圆与外心,轴对称-最短路线问题,翻折变换(折叠问题),圆周角定理,勾股定理,正确的作出辅助线是解题的关键.36. 如图,在⊙ O 中,点 C 在优弧? ACB 上,将弧沿? BC 折叠后刚好经过AB 的中点D,若⊙ O 的半径为5,AB=4 ,则BC 的长是.【分析】连接OD 、AC 、DC 、OB 、OC ,作CE⊥AB 于E,OF⊥CE 于F,如图,利用垂径定理得到OD⊥AB ,则AD=BD= 21AB=2 ,于是根据勾股定理可计算出OD=1 ,再利用折叠的性质可判断弧AC 和弧CD 所在的圆分析】作点M 关于AB 的对称点M ′,关于AC 的对称点M,根据折叠的性质得到点M′,M″在圆为等圆,则根据圆周角定理得到AC= CD,所以AC=DC ,利用等腰三角形的性质得AE=DE=1 ,接着证明四边形ODEF 为正方形得到OF=EF=1 ,然后计算出CF后得到CE=BE=3 ,于是得到BC=3 2 .解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB 于E,OF⊥CE于F,如图,∵ D 为AB 的中点,∴OD⊥AB,1∴AD=BD=2AB=2 ,在Rt△OBD 中,OD= OB2BD2= ( 5)222=1,∵将弧BC 沿BC 折叠后刚好经过AB 的中点D.∴AC和CD所在的圆为等圆,︵︵∴AC= CD,∴ AC=DC ,∴ AE=DE=1 ,易得四边形ODEF 为正方形,∴ OF=EF=1 ,在Rt△OCF中,CF= CO2OF2= ( 5)212=2,∴ CE=CF+EF=2+1=3 ,而BE=BD+DE=2+1=3 ,∴ BC=3 2 .故答案为 3 2 .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.37. 如图,AB 是半径为 2 的⊙ O 的弦,将AB沿着弦AB 折叠,正好经过圆心O,点 C 是折叠后的AB上一动点,连接并延长BC交⊙ O于点D,点E是CD的中点,连接AC ,AD ,EO.则下列结论:①∠ ACB=120 ②△ACD 是等边三角形,③ EO 的最小值为1,其中正确的是.(请将正确答案的序号填在横线上)分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO 的最小值问题是个难点,这是一个动点问题,只要把握住 E 在什么轨迹上运动,便可解决问题.解答】解:如图1,连接OA 和OB,作OF⊥AB .由题知:AB沿着弦AB 折叠,正好经过圆心O1∴ OF=OA= 2OB∴∠ AOF=∠ BOF=60°∴∠ AOB=12°0∴∠ ACB=12°0 (同弧所对圆周角相等)1∠ D= 21∠ AOB=6°0 (同弧所对的圆周角是圆心角的一半)∴∠ ACD=18°0 -∠ ACB=60°∴△ ACD 是等边三角形(有两个角是60°的三角形是等边三角形)故,①② 正确下面研究问题EO 的最小值是否是1如图2,连接AE 和EF∵△ ACD 是等边三角形, E 是CD 中点∴AE⊥BD (三线合一)又∵ OF⊥AB∴F是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF 即,E点在以AB 为直径的圆上运动.所以,如图3,当E、O、F在同一直线时,OE 长度最小此时,AE=EF ,AE ⊥EF∵⊙ O 的半径是2,即OA=2 ,OF=1∴AF= 3(勾股定理)∴ OE=EF-OF=AF-OF= 3 -1所以,③ 不正确综上所述:①② 正确,③不正确.故答案为①②.点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,所90°的圆周角对的弦是直径.也考查了垂径定理.38. 如图,将AB沿着弦AB 翻折, C 为翻折后的弧上任意一点,延长AC 交圆于D,连接BC .(1)求证:BC=BD ;(2)若AC=1 ,CD=4 ,AB=120°,求弦AB 的长和圆的半径.【分析】(1)作点 C 关于AB 的对称点 C ′,连接 AC ′,BC ′.利用翻折不变性,以及圆周角定理即可解决问 题;(2)连接 OA ,OB ,作OM ⊥AB 于M ,AH ⊥BC 交BC 的延长线于 H .解直角三角形求出 AB ,OA 即 可;【解答】( 1)证明:作点 C 关于 AB 的对称点 C ′,连接 AC ′,BC ′. 由翻折不变性可知: BC=BC ′ ,∠ CAB= ∠ BAC ′, ∴ BD=BC ′, ∴ BD=BC ′ , ∴ BC=BD .2)解:连接 OA ,OB ,作 OM ⊥AB 于 M ,AH ⊥BC 交 BC 的延长线于 H .∵ AB=120 °,1∴∠ D= 2×120 °=60 °,∴∠ AOB= ∠ACB=2 ∠ D=120°, ∵ BC=BD ,∴△ BCD 是等边三角形,∴ BC=DC=4 ,在 Rt △ ACH 中, ∵∠ H=90°,∠ACH=6°0 ,AC=1 , ∴CH=21,AH=∵ OM ⊥ AB , ∴ AM=BM=21,在 Rt △ AOM 中,2∵∠ OAM=3°0 , ∠ AMO=9°0 , ∴ OA=AMcos3°0 = 7【点评】 本题考查圆心角、弧、弦之间的关系,垂径定理,勾股定理,翻折变换,等边三角形的判定和性 质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.∴ AB= AH 2BH2= ( 23)292(92)2= 21,39. 如图,已知⊙ O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M,将CD 沿CD 翻折后,点 A与圆心O 重合,延长OA 至P,使AP=OA ,连接PC(1)求CD 的长;(2)求证:PC是⊙O 的切线;3)点G为ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交BC 于点F(F与B、分析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA ,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠ PCO=9°0 ,再根据圆的切线的定义证明即可;(3)连接GA 、AF、GB,根据等弧所对的圆周角相等可得∠BAG= ∠AFG ,然后根据两组角对应相等两三角相似求出△ AGE 和△FGA 相似,根据相似三角形对应边成比例可得A G G E = A F G G,从而得到GE?GF=AG 2,再根据等腰直角三角形的性质求解即可.解答】(1)解:如图,连接OC,∵CD 沿CD翻折后,点A与圆心O重合,11 ∴OM= 2OA= 2×2=1,CD⊥OA,∵ OC=2 ,∴CD=2CM=2 OC2OM2=2 2212=2 3;2)证明:∵PA=OA=2 ,AM=OM=1 ,CM= 12CD= 3 ,∠CMP= ∠OMC=90° ,∴PC= MC2PM2= ( 3)232=2 3,∵OC=2 ,PO=2+2=4 ,∴PC2+OC2=(2 3 )2+22=16=PO2,∴∠ PCO=9°0 ,∴PC是⊙O 的切线;3)解:GE?GF 是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵ 点G 为ADB 的中点∴∠ GOE=9°0 ,∵∠ HFG=9°0 ,且∠OGE= ∠FGH∴△ OGE∽△ FGH∴OG GE∴GF = GH∴ GE?GF=OG?GH×=42=8 .点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.40. 如图1和图2,AB 是⊙ O的直径,AB=10 ,C是⊙ O上的一点,将BC 沿弦BC 翻折,交AB 于点D.(1)若点 D 与圆心O 重合,直接写出∠ B 的度数;(2)设CD 交⊙O于点E,若CE平分∠ ACB,①求证:△BDE 是等腰三角形;②求△ BDE 的面积;(3)将图 1 中的BD 沿直径AB 翻折,得到图2,若点 F 恰好是翻折后的BD 的中点,直接写出∠ B 的分析】(1)如图所示:将⊙ O 沿BC 翻折得到⊙ O′,则⊙ O 与⊙ O′为等圆,然后证明AC =CD =BD ,则可得到AC 的弧度,从而可求得∠ B的度数;(2)①将⊙ O沿BC翻折得到⊙ O′,则⊙ O与⊙ O′为等圆,在⊙ O′上取点E′,连接CE′,BE′.由等弧所对的圆周角相等可得到∠ CEB= ∠ E′,依据圆内接四边形的性质可得到E′∠= BDE ,故此可证明∠ CEB= ∠BDE;②连接OE.先证明∠ BOE 为直角,依据勾股定理可求得BE 的长,从而得到BD 的长,最后依据度数.1△DBE 的面积=2BD?OE 求解即可;3)将⊙ O 沿BC 翻折得到⊙ O′,将⊙ O′沿BD 翻折得到⊙ O″,则⊙ O、⊙ O′、⊙ O″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明AC =CD =DF=FB,从而可得到弧AC 的度数,由弧AC 的度数可求得∠ B 的度数.解答】解:(1)如图所示:将⊙O沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆.∵AC与CD所对的角均为∠CBA,⊙O 与⊙ O′为等圆,∴AC =CD .又∵ CD=BC ,︵︵∴ CD =BD.又∵CDB =CO′B,︵1︵∴AC =3ACB ,1∴∠ADC= 3×180 °=60°.∴∠B=30°.2)①将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由翻折的性质可知:CFB=CDB,∴∠ CEB= ∠E′.∵ 四边形CDBE′是圆内接四边形,∴∠ E′=∠BDE .∴∠ CEB= ∠ BDE .∴ BE=BD .∴△ BDE 为等腰三角形.②如图2所示:连接OE.∵AB 是⊙O 的直径,∴∠ ACB=90° .∵CE 是∠ACB 的角平分线,∴∠ BCE=45° .∴∠ BOE=9°0 .在Rt△OBE 中,BE= OE2OB2=5 2 .∴ BD=5 2 .∴△DBE 的面积=12BD?OE=12×5 225 2 ×5= .23)将⊙ O 沿BC 翻折得到 ⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″, 则⊙O 、⊙O ′、⊙ O ″为等圆.∵⊙O 与⊙O ′为等圆,劣弧 AC 与劣弧 CD 所对的角均为 ∠ABC ,∴ AC =CD .同理: DF =CD .又∵F 是劣弧 BD 的中点,∴ DF =BF .∴ AC =CD =DF=FB .∴ 弧 AC 的度数 =180°÷4=45°.1∴∠ B= 2×45 °=22.5 °.点评】 本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.41. 如图,CD 是⊙ O 的直径, AB 是⊙ O 的弦, AB ⊥CD ,垂足为 G ,OG :OC=3:5,AB=8. (1)求⊙ O 的半径;ECD=1°5 ,将 CE 沿弦 CE 翻折,交 CD 于点 F ,求图中阴影部分的面积.分析】( 1)根据 AB ⊥ CD ,垂足为 G , OG : OC=3: 5, AB=8 ,可以求得⊙ O 的半径; (2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形 的面积即可解答本题.解答】 解:(1)连接 AO ,如右图 1 所示,2)点 E 为圆上一点,∵CD 为⊙ O的直径,AB⊥CD,AB=8,∴ AG= 21AB=4 ,∵OG:OC=3:5,AB ⊥ CD,垂足为G,∴设⊙O 的半径为5k,则OG=3k ,∴(3k)2+42=(5k)2,解得,k=1 或k=-1 (舍去),∴5k=5,即⊙O 的半径是5;【点评】 本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件, 利用数形结合的思想解答问题.42. 如图 1,在平面直角坐标系中,已知点 M 的坐标是( 3,0),半径为 2的⊙M 交x 轴于 E 、 F 两点,过点P (-1,0)作⊙M 的切线,切点为点 A ,过点A 作AB ⊥ x 轴于点 C ,交⊙M 于点B .抛物线y=ax 2+bx+c 经过 P 、B 、 M 三点.(1)求该抛物线的函数表达式;(2)若点 Q 是抛物线上一动点,且位于 P 、B 两点之间,设四边形 APQB 的面积为 S ,点 Q 的横坐标 为 x ,求 S 与 x 之间的函数关系式,并求 S 的最大值和此时点 Q 的坐标;( 3)如图 2,将弧 AEB 沿弦 AB 对折后得到弧 AE ′B ,试判断直线 AF 与弧 AE ′B 的位置关系,并说明解答】2)如图 2 所示,将阴影部分沿 CE 翻折,点 F 的对应点为 M , ∵∠ ECD=1°5 ,由对称性可知, ∠DCM=3°0 ,S 阴影=S 弓形 CBM , 连接 OM ,则 ∠ MOD=6°0 , ∴∠ MOC=12°0 , 过点 M 作 MN ⊥CD 于点 N , ∴ MN=MO?sin6°0 =5× 3= 5 3 2 = 2 120×π×2 51 5 3 25π ∴ S 阴影 =S 扇形 OMC -S △ OMC = - ×5× = 阴影 扇形 △ 360 2 2 3 53 4 即图中阴影部分的面积是: 25π 3 53 4【点评】本题考查了二次函数解析式的确定、图形面积的求法、圆心角定理、切线的性质与判定、特殊三角形的判定和性质等知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【十大常考压轴题特训】特训08——折叠问题题量﹕25题;分值﹕共计100分;推荐时间﹕60分钟问题1.(2019 甘肃省兰州市)如图,ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则(OM = )ABC DEFMOA .12BC .1-D 1【分析】根据正方形的性质得到AB =AD =BC =CD =2,∠DCB =∠COD =∠BOC =90°,OD =OC ,求得BD =2AB =2,得到OD =BO =OC =1,根据折叠的性质得到DE =DC =2,DF ⊥ CE ,求得OE = 2 -1,根据全等三角形的性质即可得到结论. 【解析】四边形ABCD 是正方形,∴AB =AD =BC =CD =2,∠DCB =∠COD =∠BOC =90°,OD =OC , ∴BD =2AB =2, ∴OD =BO =OC =1,∵将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处, ∴DE =DC =2,DF ⊥ CE ,∴OE = 2 -1,∠EDF +∠FED =∠ECO +∠OEC =90°, ∴∠ODM =∠ECO ,在△OEC 与△OMD 中,⎩⎪⎨⎪⎧∠EOC =∠DOC =90 °OD =OC ∠OCE =∠ODM ,∴△OEC ≌ △OMD , ∴OM =OE = 2 -1,故选:D .【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,正方形的性质,正确的识别图形是解题的关键.问题2.(2019 广西桂林市)将矩形ABCD 按如图所示的方式折叠,BE ,EG ,FG 为折痕,若顶点A ,C ,D 都落在点O 处,且点B ,O ,G 在同一条直线上,同时点E ,O ,F 在另一条直线上,则ADAB的值为( ) ABCDEFG OA .65BC .32D【分析】由折叠可得,E ,G 分别为AD ,CD 的中点,设CD =2a ,AD =2b ,根据Rt △BCG 中,CG 2+BC 2=BG 2,可得即a 2+(2b )2=(3a )2,进而得出ADAB 的值. 【解析】由折叠可得,AE =OE =DE ,CE =OG =DG , ∴,G 分别为AD ,CD 的中点,设CD =2a ,AD =2b ,则AB =2a =OB ,DG =OG =CG =a ,BG =3a ,BC =AD =2b , ∵∠C =90°,∴Rt △BCG 中,CG 2+BC 2=BG 2, 即a 2+(2b )2=(3a )2, ∴b 2=2a 2, 即b =2a , ∴ba =2, ∴ADAB 的值为 2 , 故选:B .【点评】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.问题3.(2019 贵州省铜仁地区)如图,正方形ABCD 中,6AB =,E 为AB 的中点,将ADE ∆沿DE 翻折得到FDE ∆,延长EF 交BC 于G ,FH BC ⊥,垂足为H ,连接BF 、DG .以下结论:①//BF ED ;②DFG DCG ∆≅∆;③FHB EAD ∆∆∽;④4tan 3GEB ∠=;⑤ 2.6BFG S ∆=;其中正确的个数是( ) ABCDEFG HA .2B .3C .4D .5【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可. 【解析】∵正方形ABCD 中,AB =6,E 为AB 的中点∴AD =DC =BC =AB =6,AE =BE =3,∠A =∠C =∠ABC =90° ∵△ADE 沿DE 翻折得到△FDE∴∠AED =∠FED ,AD =FD =6,AE =EF =3,∠A =∠DFE =90° ∴BE =EF =3,∠DFG =∠C =90° ∴∠EBF =∠EFB∵∠AED +∠FED =∠EBF +∠EFB ∴∠DEF =∠EFB ∴BF //ED 故结论①正确;∵AD =DF =DC =6,∠DFG =∠C =90°,DG =DG ∴△ DFG ≌ △DCG∴结论②正确;FH ⊥ BC ,∠ABC =90° ∴AB //FH ,∠FHB =∠A =90° ∵∠EBF =∠BFH =∠AED ∴△FHB ∽ △EAD∴结论③正确;∵△ DFG ≌ △DCG ∴FG =CG设FG =CG =x ,则BG =6-x ,EG =3+x在Rt △BEG 中,由勾股定理得:32+(6-x )2=(3+x )2 解得:x =2 ∴BG =4∴tan ∠GEB =BG BE =43 故结论④正确;∵△FHB ∽ △EAD ,且AE AD =12 ∴BH =2FH设FH =a ,则HG =4-2a在Rt △FHG 中,由勾股定理得:a 2+(4-2a )2=22 解得:a =2(舍去)或a =65 ∴S △BFG =12×4×65=2.4 故结论⑤错误; 故选:C .【点评】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强.问题4.(2019 湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在⌒AB 上的点D 处,且⌒BD :⌒AD =1:3(⌒BD 表示⌒BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为()A .1:3B .1:πC .1:4D .2:9【分析】连接OD,能得∠AOB的度数,再利用弧长公式和圆的周长公式可求解.【解析】连接OD交OC于M.由折叠的知识可得:OM=12OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且⌒BD:⌒AD=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,80πl180=2πr,∴r:i=2:9.故选:D.【点评】本题运用了弧长公式和轴对称的性质,关键是运用了转化的数学思想.问题5.(2019山东省泰安市)如图,将⊙O沿弦AB折叠,⌒AB恰好经过圆心O,若⊙O的半径为3,则⌒AB的长为()A.12πB.πC.2πD.3π【分析】连接OA、OB,作OC⊥AB于C,根据翻转变换的性质得到OC=12OA,根据等腰三角形的性质、三角形内角和定理求出∠AOB,根据弧长公式计算即可.【解析】连接OA、OB,作OC⊥AB于C,由题意得,OC=12OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴⌒AB的长=120π×3180=2π,故选:C.【点评】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.问题6.(2019重庆市)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB 交于点E,连结AC′,若AD=AC′=2,BD=3,则点D到BC′的距离为()A.332B.3217C.7 D.13【分析】分析连接CC′,交BD于点M,过点D作DH⊥BC′于点H,由翻折知,△BDC≌△BDC′,BD垂直平分CC′,证△ADC′为等边三角形,利用解直角三角形求出DM=1,C′M= 3 DM=3,BM=2,在Rt△BMC′中,利用勾股定理求出BC′的长,在△BDC′中利用面积法求出DH的长.【解析】如图,连接CC′,交BD于点M,过点D作DH⊥BC′于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC′,BD垂直平分CC′,∴DC=DC′=2,BC=BC′,CM=C′M,∴AD=AC′=DC′=2,∴△ADC′为等边三角形,∴∠ADC′=∠AC′D=∠C′AC=60°,∵DC=DC′,∴∠DCC ′=∠DC ′C =12×60°=30°, 在Rt △C ′DM 中,∠DC ′C =30°,DC ′=2, ∴DM =1,C ′M =3DM =3, ∴BM =BD ﹣DM =3﹣1=2, 在Rt △BMC ′中,BC ′=BM 2+C 'M 2=22+(3)2=7, ∵S △BDC ′=12BC ′•DH =12BD •CM , ∴7DH =3×3, ∴DH =3217, 故选:B .【点评】点评本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.问题7.(2019 辽宁省大连市)如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若4AB =,8BC =.则D F '的长为( )A .5B .4C .3D .2【分析】连接AC 交EF 于点O ,由矩形的性质得出AD =BC =8,∠B =90°,由勾股定理得出AC =AB 2+BC 2=45,由折叠的性质得出EF ⊥ AC ,AO =CO =12 AC =25,证出Rt △FOA ∽ Rt △ADC ,则AO AF =ADAC ,求出AF =5,即可得出结果. 【解析】连接AC 交EF 于点O ,如图所示: ∵四边形ABCD 是矩形,∴ AD =BC =8,∠B =∠ D =90°, AC =AB 2+BC 2=45,∵折叠矩形使C 与A 重合时,EF ⊥ AC ,AO =CO =12 AC =25, ∴ ∠ AOF =∠ D =90°,∠ OAF =∠ DAC , ∴则Rt △FOA ∽ Rt △ADC , ∴AO AF = ADAC ,即:25AF =845, 解得:AF =5,∴D ′F =DF =AD -AF =8-5=3, 故选:C .【点评】本题考查了折叠的性质、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握折叠的性质,证明三角形相似是解题的关键.问题8.(2019 四川省攀枝花市)如图,在正方形ABCD 中,E 是BC 边上的一点,4BE =,8EC =,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G ,连接AC ,现在有如下4个结论: ①45EAC ∠=︒;②FG FC =;③//FC AG ;④14GFC S ∆=. 其中正确结论的个数是( )A.1 B.2 C.3 D.4【分析】①正确.证明∠GAF=∠GAD,∠EAB=∠EAF即可.②错误.可以证明DG=GC=FG,显然△GFC不是等边三角形,可得结论.③正确.证明CF⊥DF,AG⊥DF即可.④错误.证明FG﹕EG=3﹕5,求出△ECG的面积即可.【解析】如图,连接DF.∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=2,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AD=AG,AD=AF,∴Rt△AGD≌Rt△AGF,∴DG=FG,∠GAF=∠GAD,,设GD=GF=x,∴∠EAG=∠EAF+∠GAF=12(∠BAF+∠DAF)=45 °,故①正确,在Rt△ECG中,∵EG2=EC2+CG2,∴(2+x)2=82+(12-x)2,∴x=6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CG//AG,故③正确,∵S△ECG=12×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=35×24=725,故④错误,故选:B.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.问题9.(2019甘肃省天水市)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为.【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt △ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF 中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到x,进一步得到EF的长,再根据正弦函数的定义即可求解.【解析】∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,∵BF=AF2-AB2=4,∴CF =BC ﹣BF =5﹣4=1, 设CE =x ,则DE =EF =3﹣x 在Rt △ECF 中,∵CE 2+FC 2=EF 2, ∴x 2+12=(3﹣x )2,解得x =43,∴EF =3﹣x =53, ∴sin ∠EFC =CE EF =45. 故答案为:45.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.问题10.(2019 广东省深圳市)如图,在正方形ABCD 中,1BE =,将BC 沿CE 翻折,使B 点对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使D 点对应点刚好落在对角线AC 上,求EF = .ABCDEFXY【分析】作FM ⊥ AB 于点M .根据折叠的性质与等腰直角三角形的性质得出EX =EB =AX =1,∠EXC =∠B =90°,AM =DF =YF =1,由勾股定理得到AE =AX 2+EX 2=2.那么正方形的边长AB =FM =2+1,EM =2-1,然后利用勾股定理即可求出EF . 【解析】如图,作FM ⊥ AB 于点M . ∵四边形ABCD 是正方形, ∴ ∠BAC =∠CAD =45 °.∵将BC 沿CE 翻折,B 点对应点刚好落在对角线AC 上的点X , ∴ EX =EB =AX =1,∠EXC =∠B =90°, ∴ AE =AX 2+EX 2=2.∵将AD沿AF翻折,使D点对应点刚好落在对角线AC上的点Y,∴ AM=DF=YF=1,∴正方形的边长AB=FM=2+1,EM=2-1,∴ EF=EM2+FM2=(2-1)2+(2+1)2=6.故答案为6.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形的性质以及勾股定理.求出EM与EM是解题的关键.问题11.(2019贵州省遵义市)如图,平行四边形纸片ABCD的边AB,BC的长分别是10cm和7.5cm,将其四个角向内对折后,点B与点C重合于点C',点A与点D重合于点A'.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=cm.【分析】先根据有三个角是直角的四边形是矩形证明四边形EHFG是矩形,再证明△FCH≌△EAG,可得CF =AE=FC',可知EF=AB,即可得结论.【解析】如图中,由翻折可知:∠CHF=∠FHC’,∠BHE=∠EHC',∴ ∠FHE=∠FHC’+∠EHC’=12(∠CHC’+∠BHC’)=90°,同法可证:∠HFG=∠GEH=90°,∴四边形EHFG是矩形.∴FH=EG,FH//EG,∴∠HFC’=∠FEG,∵∠CFH=∠HFC’,∠AEG=∠GEA’,∴∠CFH=∠AEG,∵四边形ABCD是平行四边形,∴∠C=∠A,BC=AD,由翻折得:CH=C'H=BH=12BC,AG=A'G=DG=12AD,∴CH=AG,∴△HCF≌ △GAE,∴CF=AE,∴EF=FC'+EC'=AE+BE=AB=10cm,故答案为:10.【点评】本题考查了平行四边形的性质,翻折变换,矩形的判定和性质,三角形全等的性质和判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.问题12.(2019吉林省长春市)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC相交于点G,则△GCF的周长为.【分析】根据折叠的性质得到∠DAF=∠BAF=45°,根据矩形的性质得到FC=ED=2,根据勾股定理求出GF,根据周长公式计算即可.【解析】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=6,∴EB=AB﹣AE=2,由题意得,四边形EFCB为矩形,∴FC=ED=2,∵AB∥FC,∴∠GFC =∠A =45°, ∴GC =FC =2,由勾股定理得,GF =FC 2+GC 2=22, 则△GCF 的周长=GC +FC +GF =4+22, 故答案为:4+22.【点评】本题考查的是翻折变换的性质、矩形的性质一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.问题13.(2019 江苏省淮安市)如图,在矩形ABCD 中,AB =3,BC =2,H 是AB 的中点,将△CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan ∠HAP = .【分析】连接PB ,交CH 于E ,依据轴对称的性质以及三角形内角和定理,即可得到CH 垂直平分BP ,∠APB =90°,即可得到AP ∥HE ,进而得出∠BAP =∠BHE ,依据Rt △BCH 中,tan ∠BHC =BC BH =43,即可得出tan ∠HAP =43.【解析】如图,连接PB ,交CH 于E , 由折叠可得,CH 垂直平分BP ,BH =PH , 又∵H 为AB 的中点, ∴AH =BH , ∴AH =PH =BH ,∴∠HAP =∠HP A ,∠HBP =∠HPB ,又∵∠HAP +∠HP A +∠HBP +∠HPB =180°, ∴∠APB =90°, ∴∠APB =∠HEB =90°, ∴AP ∥HE , ∴∠BAP =∠BHE ,又∵Rt△BCH中,tan∠BHC=BCBH=43,∴tan∠HAP=4 3,故答案为:4 3.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.问题14.(2019山东省青岛市)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(25﹣4)2+x2,在Rt △FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解析】设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=25.根据折叠的性质可知AG=AB=4,所以GE=25﹣4.在Rt△GEF中,利用勾股定理可得EF2=(25﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(25﹣4)2+x2=(4﹣x)2+22,解得x=25﹣2.则FC=4﹣x=6﹣25.故答案为6﹣25.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.问题15.(2019 山东省泰安市)如图,矩形ABCD 中,AB =36,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .【分析】连接EC ,利用矩形的性质,求出EG ,DE 的长度,证明EC 平分∠DCF ,再证∠FEC =90°,最后证△FEC ∽△EDC ,利用相似的性质即可求出EF 的长度. 【解析】如图,连接EC , ∵四边形ABCD 为矩形,∴∠A =∠D =90°,BC =AD =12,DC =AB =3 6 , ∵E 为AD 中点, ∴AE =DE =12AD =6 由翻折知,△AEF ≌△GEF ,∴AE =GE =6,∠AEF =∠GEF ,∠EGF =∠EAF =90°=∠D , ∴GE =DE , ∴EC 平分∠DCG , ∴∠DCE =∠GCE ,∵∠GEC =90°﹣∠GCE ,∠DEC =90°﹣∠DCE , ∴∠GEC =∠DEC ,∴∠FEC =∠FEG +∠GEC =12×180°=90°, ∴∠FEC =∠D =90°, 又∵∠DCE =∠GCE , ∴△FEC ∽△EDC , ∴FE DE =EC DC ,∵EC=DE2+DC2=62+(36)2=310,∴FE6=31036,∴FE=215,故答案为:215.【点评】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE,构造相似三角形,最终利用相似的性质求出结果.问题16.(2019山东省潍坊市)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.【分析】利用矩形的性质,证明∠ADE=∠A′DE=∠A′DC=30°,∠C=∠A′B′D=90°,推出△DB′A′≌△DCA′,CD=B′D,设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.【解析】∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A′ED,△A′BE≌△A′B′E,∠A′B′E=∠B=∠A′B′D=90°,∴∠AED=∠A′ED,∠A′EB=∠A′EB′,BE=B′E,∴∠AED=∠A′ED=∠A′EB=13×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A′DE=90°﹣∠A′EB=30°,∴∠ADE=∠A′DE=∠A′DC=30°,又∵∠C=∠A′B′D=90°,DA′=DA′,∴△DB′A′≌△DCA′(AAS),∴DC=DB′,在Rt△AED中,∠ADE=30°,AD=2,∴AE=23=233,设AB=DC=x,则BE=B′E=x﹣23 3∵AE2+AD2=DE2,∴(233)2+22=(x+x﹣233)2,解得,x1=-33(负值舍去),x2=3,故答案为:3.【点评】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A′ED=∠A′EB=60°.问题17.(2019上海市)如图,在正方形ABCD中,E是边AD的中点.将ABE∆沿直线BE翻折,点A落在点F处,联结DF,那么EDF∠的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解析】如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.问题18.(2019天津市)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G 点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解析】∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠F AH+∠AFH=90°,又∵∠F AH+∠BAH=90°,∴∠AFH=∠BAH,∴△ABF≌△DAE(AAS),∴AF=DE=5,在Rt△ADF中,BF=AB2+AF2=122+52=13,S△ABF=12AB•AF=12BF•AH,∴12×5=13AH,∴AH=60 13,∴AG=2AH=120 13,∵AE=BF=13,∴GE=AE﹣AG=13﹣12013=4913,故答案为:49 13.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.问题19.(2019浙江省杭州市)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C 落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【分析】设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出D'HP A'=PD'EA',推出ax=x4a,可得x=2a,再利用三角形的面积公式求出a即可解决问题.【解析】∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D'HP A'=PD'EA',∴ax=x4a,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴P A′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=22+42=25,PH=12+22=5,∴AD=4+25+5+1=5+35,∴矩形ABCD的面积=2(5+35).故答案为2(5+35)【点评】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.问题20.(2019 河南省)如图,在矩形ABCD 中,AB =1,BC =a ,点E 在边BC 上,且BE =35α.连接AE ,将△ABE 沿AE 折叠,若点B 的对应点B ′落在矩形ABCD 的边上,则a 的值为 .【分析】分两种情况:①点B ′落在AD 边上,根据矩形与折叠的性质易得AB =BE ,即可求出a 的值;②点B ′落在CD 边上,证明△ADB ′∽△B ′CE ,根据相似三角形对应边成比例即可求出a 的值. 【解析】分两种情况:①当点B ′落在AD 边上时,如图1. ∵四边形ABCD 是矩形, ∴∠BAD =∠B =90°,∵将△ABE 沿AE 折叠,点B 的对应点B ′落在AD 边上, ∴∠BAE =∠B ′AE =12∠BAD =45°, ∴AB =BE , ∴35a =1, ∴a =53;②当点B ′落在CD 边上时,如图2. ∵四边形ABCD 是矩形,∴∠BAD =∠B =∠C =∠D =90°,AD =BC =a . ∵将△ABE 沿AE 折叠,点B 的对应点B ′落在CD 边上, ∴∠B =∠AB ′E =90°,AB =AB ′=1,EB =EB ′=35a , ∴DB ′=B 'A 2-AD 2=1-a 2,EC =BC ﹣BE =a ﹣35a =25a .在△ADB ′与△B ′CE 中,⎩⎨⎧∠B 'AD =∠EB 'C =90°-∠AB 'I ∠D =∠C ,∴△ADB′∽△B′CE,∴DB'CE=AB'B'E,即1-a225a=135a,解得a1=53,a2=0(舍去).综上,所求a的值为53或53.故答案为53或53.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.问题21.(2019江苏省常州市)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.【分析】(1)根据AD=C′B,ED=EB,即可得到AE=C′E,再根据三角形内角和定理,即可得到∠EAC′=∠EC′A=∠EBD=∠EDB,进而得出AC′∥BD;(2)依据平行线的性质以及折叠的性质,即可得到∠EDB=∠EBD,进而得出BE=DE.【解析】(1)连接AC′,则AC′与BD的位置关系是AC′∥BD,故答案为:AC′∥BD;(2)EB与ED相等.由折叠可得,∠CBD=∠C′BD,∵AD∥BC,∴∠ADB=∠CBD,∴∠EDB=∠EBD,∴BE=DE.【点评】本题主要考查了折叠问题以及平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.问题22.(2019江苏省徐州市)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FG C.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,即可得到∠B =∠G,BC=CG,进而得出∠EBC≌△FG C.【解析】(1)∵ 四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD-∠ECF=∠ECG-∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴ ∠ B=∠ G,BC=CG,又∵∠ECB=∠FCG,∴ △EBC≌ △FG C.【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.问题23.(2019山东省滨州市)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG ∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.【分析】(1)根据题意和翻着的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.【解析】(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵FDE=90°,∴22+(6﹣x)2=x2,解得,x=10 3,∴CE=10 3,∴四边形CEFG的面积是:CE•DF=103×2=203.【点评】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.问题24.(2019山东省烟台市)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC 上的E点.O为AC上一点,⊙O经过点A,P.(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.B【分析】(1)切线的判定重点是证明垂直;(2)判定黄金分割点其实就是证明CF2=BF•BC成立.【解析】(1)证明:如图,连接OP,则OA=OP,∴∠OAP=∠OP A.B由折叠知∠BAP=∠OAP,∴∠OP A=∠BAP.∴AB∥OP.又∵AB⊥BC,∴OP⊥B C.∴BC是⊙O的切线.(2)点F是线段BC的黄金分割点,理由如下:在矩形ABCD中,∵AB=CD=2,BC=AD=4,∴AC=AB2+BC2=22+42=25.又∵AE=AB=2,∴CE=CF=25-2.∴BF=BC-CF=6-25.∵CF2=(25-2)2=24-85,BF•BC=4(6-25)=24-85,∴CF2=BF•B C.∴点F是线段BC的黄金分割点.【点评】本题重点考查了矩形、圆的切线的判定定理、轴对称的性质、黄金分割点的概念,很巧妙地将图形的折叠问题融入其中,是一道非常好的题目.问题25.(2019山东省临沂市)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE 是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH 是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解析】过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=12×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=12×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.。

相关文档
最新文档