主成分分析法的步骤和原理
主成分分析方法及其应用效果评估

主成分分析方法及其应用效果评估主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,被广泛应用于数据分析、模式识别和机器学习等领域。
本文将介绍主成分分析的基本原理、具体方法以及其在实际应用中的效果评估。
一、主成分分析的基本原理主成分分析是一种统计分析方法,旨在将具有相关性的多个变量转化为一组线性无关的新变量,称为主成分。
通过降维,主成分分析可以有效减少数据的维度,并保留原始数据中的大部分信息。
主成分分析的基本原理是通过找到数据中的最大方差方向来构建主成分。
具体步骤如下:1. 标准化数据:对原始数据进行标准化处理,使得每个变量具有相同的尺度。
2. 计算协方差矩阵:计算标准化后数据的协方差矩阵。
3. 计算特征值与特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
4. 选择主成分:根据特征值的大小排序,选择前k个特征值对应的特征向量作为主成分。
5. 构建主成分:将选择的主成分按权重线性组合,得到原始数据的主成分。
二、主成分分析的具体方法主成分分析可以通过多种计算方法实现,其中最常用的是基于特征值分解的方法。
下面介绍主成分分析的具体计算步骤:1. 标准化数据:对原始数据进行标准化处理,使得每个变量具有均值为0、方差为1的特性。
2. 计算协方差矩阵:将标准化后的数据计算协方差矩阵。
3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
4. 选择主成分:根据特征值的大小选择前k个特征向量作为主成分。
5. 构建主成分:将选择的主成分按权重线性组合,得到原始数据的主成分。
三、主成分分析在实际应用中的效果评估在应用主成分分析时,我们需要对其效果进行评估,以确保选择的主成分能够充分保留原始数据的信息。
常用的效果评估方法有以下几种:1. 解释方差比(Explained Variance Ratio):解释方差比可以衡量每个主成分对原始数据方差的贡献程度。
主成分分析

一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。
2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。
从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。
二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。
主成分分析法介绍.doc

主成分分析方法我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。
第一节主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
假定有 n 样本,每个样本共有 p 个变量描述,这样就构成了一个 n×p阶的数据矩阵:x 11 x12 ...x1 px 21 x22 ...x2 pX... ... ... ⋯⋯⋯⋯(1) ...xn1 x n 2 ... x np如何从这么多变量的数据中抓住事物的内在规律性呢要解决这一问题, 自然要在 p 维空间中加以考察, 这是比较麻烦的。
为了克服这一困难, 就需要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之间又是彼此独立的。
那么,这些综合指标(即新变量 )应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量指标之间相互独立且代表性最好。
如果记原来的变量指标为x 1, x 2, xp ,它们的综合指标 —— 新变量指标为 z 1 , z 2 , z m ( m ≤p)。
则z 1 l 11x 1 l 12 x 2 l 1 p x pz 2l 21x1l 22x2l 2 pxp (2)z m l m1x 1 l m2 x 2l mp x p在( 2)式中,系数 l ij 由下列原则来决定:( 1)z i与 z j ( i ≠j;i ,j=1,2, , m)相互无关;( 2)z 1 是 x 1,x 2,⋯,x p 的一切线性组合中方差最大者;z 2 是与 z 1 不相关的 x 1, x 2,⋯,x p 的所有线性组合中方差最大者; ;z m 是与 z 1,z 2,⋯⋯z m-1 都不相关的 x 1,x 2, ⋯, x p 的所有线性组合中方差最大者。
《主成分分析》课件

投资组合优化
通过主成分分析,找到不同投 资标的之间的关系,优化投资 组合的效益。
主成分分析在市场调研中的应用
1
偏好分析
通过主成分分析,找到消费者的特征
产品定位
2
和偏好,精准制定相应的市场策略。
通过主成分分析,找到消费者对产品
的不同评价因素,合理确定产品的定
位。
3
竞品分析
通过主成分分析,评估竞争对手的优 势和劣势,为企业提供相应的决策依 据。
慕课在线学习行业民调
通过主成分分析,找到影响学 习者的因素,比如课程质量、 师资水平、学习难度等方面。
降水量分析和气候变化
通过主成分分析和时间序列分 析,找到影响气象预测和气候 变化的主要原因和特征。
食品市场调查分析
通过主成分分析,找到影响消 费者购买健康食品的因素,制 定相应的市场营销策略。
标准化数据
通过Z-score标准化数据,去除不同变 量的量纲影响。
提取主成分
根据协方差矩阵的特征值和特征向量, 提取主成分。
如何选择主成分数量
特征值
根据特征值大于1的原则,选择主成分的数量。
累计贡献率
当累计贡献率到达一定阈值后,选择主成分数量。
图形分析
通过屏幕图和贡献率图来选择主成分数量。
主成分分析的优点和缺点
应用
主成分分析适用于变量之间没有明确因果关系 的情况下,提取它们的主成分;而因子分析需 要基于理论或先验知识,对变量进行选择和定 量,发现变量间的潜在因子。
主成分分析在金融分析中的应用
股票指数分析
通过主成分分析,找到影响整 个股票市场的因素,快速判断 股票市场的健康状况。
信用卡违约风险评估
通过主成分分析,找到导致信 用卡违约的因素,提高信用卡 贷款的质量。
主成分分析法的原理应用及计算步骤 (2)

一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题得信息有一定得重叠,例如,高校科研状况评价中得立项课题数与项目经费、经费支出等之间会存在较高得相关性;学生综合评价研究中得专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高得相关性。
而变量之间信息得高度重叠与高度相关会给统计方法得应用带来许多障碍。
为了解决这些问题,最简单与最直接得解决方案就是削减变量得个数,但这必然又会导致信息丢失与信息不完整等问题得产生。
为此,人们希望探索一种更为有效得解决方法,它既能大大减少参与数据建模得变量个数,同时也不会造成信息得大量丢失。
主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用得分析方法。
主成分分析以最少得信息丢失为前提,将众多得原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:↓主成分个数远远少于原有变量得个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中得计算工作量。
↓主成分能够反映原有变量得绝大部分信息因子并不就是原有变量得简单取舍,而就是原有变量重组后得结果,因此不会造成原有变量信息得大量丢失,并能够代表原有变量得绝大部分信息。
↓主成分之间应该互不相关通过主成分分析得出得新得综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来得诸多问题。
↓主成分具有命名解释性总之,主成分分析法就是研究如何以最少得信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定得命名解释性得多元统计分析方法。
二、基本原理主成分分析就是数学上对数据降维得一种方法。
其基本思想就是设法将原来众多得具有一定相关性得指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数得互不相关得综合指标Fm 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度得反映原变量Xp 所代表得信息,又能保证新指标之间保持相互无关(信息不重叠)。
主成分分析分析法

第四节 主成分分析方法地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。
第一节主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看,这是一种降维处理技术。
假定有n 个地理样本,每个样本共有 p 个变量描述,这样就构成了一个 n xp 阶的地理数据矩阵:如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需 要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。
那么,这些综合指标(即新变量 )应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量 指标之间相互独立且代表性最好。
如果记原来的变量指标为X i , 为 X i ,X 2,…,zm (mep)。
贝U坷"】內+G 衍++l]p%X 2,…,X P ,它们的综合指标 新变量指标在(2)式中,系数l j由下列原则来决定:(1)乙与z j (i工j ;i , j=1 , 2,…,m)相互无关;(2) ............................................................................................................... z i是x i,X2,…,X P的一切线性组合中方差最大者;Z2是与z i不相关的X i, X2,…,X P的所有线性组合中方差最大者;;Z m是与Z i,乙, ..................................... Z m-1都不相关的X i, X2,…,X P的所有线性组合中方差最大者。
主成分分析

(3)对于特征值=4.661 0,=2.089 0, =1.0430分别求出其特征向量e1,e2,e3,再 用公式(3.5.5)计算各变量x1,x2,…,x9 在主成分z1,z2,z3上的载荷(表4)。
表4
主成分载荷 占方差的百分数 /% 82.918 80.191 92.948 75.346 85.811 71.843 95.118 98.971 92.939
z1
z2 -0.532 0.887
z3 -0.0061 -0.0028
x1 x2 x3 x4 x5 x6 x7 x8 x9
0.739 0.123 -0.964 0.004 2 0.813 0.819 0.933 0.197 0.964
0.009 6 0.009 5 0.868 0.444 0.179 -0.133 -0.1 0.003 7 -0.0011 0.125 -0.251 0.97
68.001 1 255.42 211.55 60.702 1 251.03 220.91 63.304 1 246.47 242.16 54.206 814.21 193.46
55.901 1 124.05 228.44 54.503 805.67 175.23
49.102 1 313.11 236.29
-0.0025 0.0091,x5,x6,x7,x9——正相关, x3——负相关,z1是生态经济结构状况。 (2)第2主成分z2:x2,x4,x5——正相关, x1— —负相关,其中,除了x1为人口总数外,x2,x4, x5都反映了人均占有资源量的情况,z2代表了人均 资源量。
0.009 -0.078 -0.93 -0.109 -0.05 -0.031 0.672 0.658 1 -0.03 0.89 0.098 0.222 -0.03 1 0.29
主成分分析方法-PPT课件

定义:记x1,x2,…,xP为原变量指标,z1, z2,…,zm(m≤p)为新变量指标
z1 l1 1x1 l1 2x2 l1 p x p z2 l2 1x1 l2 2x2 l2 p x p z l x l x l x m1 1 m2 2 mp p m
2.根据特征根的变化来确定
1 p i 1 p i1
i
④ 计算主成分载荷
l p ( z , x ) e ( i , j 1 , 2 , , p )(3.5.5) ij i j i ij
⑤ 各主成分的得分:
z11 z 21 Z z n1 z12 z 22 zn2 z 1m z 2m z nm
六、主成分模型中各统计量的意义
1、主成分的方差贡献率:
i
p
i1
i
这个值越大,表明第i主成分综合信息的
能力越强。 i 2、主成分的累计贡献率 i 表明取前几个主成分基本包含了全部测 量指标所具有信息的百分率。
七、主成分个数的选取
1.累积贡献率达到85%以上
ei
e i 1 , 2 , ,p ),要求 i(
p
j 1
e ij2 1 ,
③ 计算主成分贡献率及累计贡献率
▲贡献率:
i
k 1
p
(i 1 ,2, , p)
k
▲累计贡献率:
k 1 k 1 p i k
(i 1,2, , p )
k
, , 一般取累计贡献率达85—95%的特征值 1 2, m 所对应的第一、第二、…、第m(m≤p) 个主成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)主成分分析法的基本思想
主成分分析(PrincipalComponentAnalysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
假设X 是以n 个标量随机变量组成的列向量,并且μk 是其第k 个元素的期望值,即,μk=E(xk),协方差矩阵然后被定义为: Σ=E{(X -E[X])(X-E[X])}=(如图
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p ………………
Z p =μp1X 1+μp2X 2+…μpp X p
主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2
是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m
×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
R 为实对称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为:
第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。
解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。
因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。
特征值是各主成分的方差,它的
大小反映了各个主成分的影响力。
主成分Z i 的贡献率W i =
∑=p
j
j j
1
λλ,累计贡献率为∑∑==p
j
j m
j j 1
1
λλ。
根据选取主成分个数的原则,特征值要求大于1且累计贡献率达80%-95%的特征值λ1,λ2,…,λm 所对应的1,2,…,m (m ≤p ),其中整数m 即为主成分的个数。
第五步:建立初始因子载荷矩阵,解释主成分。
因子载荷量是主成分Z i 与原始指标X i 的相关系数R (Z i ,X i ),揭示了主成分与各财务比率之间的相关程度,利用它可较好地解释主成分的经济
意义。
第六步:计算企业财务综合评分函数F
m
,计算出上市公司的综合值,并进行降序排列:
F
m =W
1
Z
1
+W
2
Z
2
+…+W
i
Z
i
[2]朱星宇,陈勇强.SPSS多元统计分析方法及应用[M].北京:清华大学出版社,2011.241。