主成分分析分析法
主成分分析方法

主成分分析方法主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它通过线性变换将原始数据映射到一个新的坐标系中,以便更好地揭示数据的内在结构。
在实际应用中,主成分分析方法被广泛应用于数据压缩、特征提取、模式识别等领域。
本文将介绍主成分分析的基本原理、数学推导以及实际应用。
1. 基本原理。
主成分分析的基本思想是将高维数据映射到低维空间中,同时尽可能保留原始数据的信息。
假设我们有一个包含n个样本和m个特征的数据集X,其中每一行代表一个样本,每一列代表一个特征。
我们的目标是找到一个线性变换,将原始数据映射到k维空间中(k < m),使得映射后的数据能够最大程度地保留原始数据的信息。
2. 数学推导。
设我们的线性变换矩阵为W,映射后的数据集为Z,即Z = XW。
我们的目标是找到一个合适的W,使得映射后的数据集Z的协方差矩阵达到最大。
通过对协方差矩阵进行特征值分解,我们可以得到最大的k个特征值对应的特征向量,这些特征向量构成了我们的主成分。
3. 实际应用。
主成分分析方法在实际应用中具有广泛的应用价值。
首先,它可以用于数据压缩,将高维数据映射到低维空间中,从而节省存储空间和计算资源。
其次,主成分分析可以用于特征提取,提取最能代表原始数据的特征,从而降低数据维度并提高模型的泛化能力。
此外,主成分分析还可以用于模式识别,通过对数据进行降维和去噪,提高数据的分类和聚类效果。
总结。
主成分分析是一种重要的数据分析方法,它通过线性变换将高维数据映射到低维空间中,以便更好地揭示数据的内在结构。
在实际应用中,主成分分析方法具有广泛的应用价值,可以用于数据压缩、特征提取、模式识别等领域。
希望本文对主成分分析方法有所帮助,谢谢阅读!。
主成分分析法及其应用

主成分分析法及其应用一、本文概述主成分分析法(Principal Component Analysis,简称PCA)是一种广泛应用于数据降维和特征提取的统计方法。
它通过正交变换将原始数据集中的多个变量转换为少数几个互不相关的主成分,这些主成分能够最大程度地保留原始数据集中的信息。
本文旨在全面介绍主成分分析法的基本原理、实现步骤以及在各个领域中的应用案例。
我们将详细阐述主成分分析法的数学基础和算法流程,包括协方差矩阵、特征值、特征向量等关键概念的计算方法。
然后,我们将通过实例演示如何使用主成分分析法进行数据降维和特征提取,以及如何通过可视化工具展示降维后的数据效果。
我们将探讨主成分分析法在机器学习、图像处理、生物信息学、社会科学等多个领域中的实际应用,展示其在数据分析和处理中的重要价值和潜力。
二、主成分分析法的基本原理主成分分析法(Principal Component Analysis,简称PCA)是一种在多个变量中找出主要影响因素,并通过降维技术把多个变量转化为少数几个互不相关的综合变量的统计方法。
这种方法在保持数据信息损失最小的原则下,通过正交变换将原始数据转化为一个新的坐标系统,使得在这个新的坐标系统中,任何数据的最大方差都投影在第一主成分上,第二大的方差都投影在第二主成分上,以此类推。
变量降维:在多数情况下,原始数据集中可能存在多个变量,这些变量之间可能存在相关性。
主成分分析通过构造新的变量(即主成分),这些新变量是原始变量的线性组合,并且新变量之间互不相关,从而将原始的高维数据空间降维到低维空间,实现数据的简化。
方差最大化:主成分分析的另一个重要原理是方差最大化。
这意味着,第一个主成分将捕获数据中的最大方差,第二个主成分捕获第二大方差,以此类推。
通过这种方式,主成分分析能够识别出数据中的主要变化方向和模式。
数据解释性:主成分分析生成的主成分是对原始数据的线性变换,因此,每个主成分都可以被解释为原始变量的某种组合。
主成分分析法的步骤和原理[技巧]
![主成分分析法的步骤和原理[技巧]](https://img.taocdn.com/s3/m/b03d7b9baef8941ea76e0598.png)
主成分分析法的步骤和原理[技巧](一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,[2]且所含的信息互不重叠。
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X,X…X来表示,这p个变量12p t构成的p维随机向量为X=(X,X…X)。
设随机向量X的均值为μ,协方差矩12p阵为Σ。
假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E[X])}=(如图对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1pXpZ2=μ21X1+μ22X2+…μ2pXp…… …… ……Zp=μp1X1+μp2X2+…μppXp主成分是不相关的线性组合Z,Z……Z,并且Z是X1,X2…Xp的线性组12p1 合中方差最大者,Z是与Z不相关的线性组合中方差最大者,…,Zp是与Z,211Z ……Z都不相关的线性组合中方差最大者。
2p-1(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x),其中x表示第i家上市公司的第j项财务指标数据。
ijm×pij 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
主成分分析法

主成分分析法什么事主成分分析法:主成分分析(principal components analysis , PCA 又称:主分量分析,主成分回归分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
主成分分析的基本思想:在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
主成分分析分析法

第四节 主成分分析方法地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。
第一节主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看,这是一种降维处理技术。
假定有n 个地理样本,每个样本共有 p 个变量描述,这样就构成了一个 n xp 阶的地理数据矩阵:如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需 要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。
那么,这些综合指标(即新变量 )应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量 指标之间相互独立且代表性最好。
如果记原来的变量指标为X i , 为 X i ,X 2,…,zm (mep)。
贝U坷"】內+G 衍++l]p%X 2,…,X P ,它们的综合指标 新变量指标在(2)式中,系数l j由下列原则来决定:(1)乙与z j (i工j ;i , j=1 , 2,…,m)相互无关;(2) ............................................................................................................... z i是x i,X2,…,X P的一切线性组合中方差最大者;Z2是与z i不相关的X i, X2,…,X P的所有线性组合中方差最大者;;Z m是与Z i,乙, ..................................... Z m-1都不相关的X i, X2,…,X P的所有线性组合中方差最大者。
(完整版)主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
主成分分析法

主成分分析法1. 主成份分析:主成份分析是最经典的基于线性分类的分类系统。
这个分类系统的最⼤特点就是利⽤线性拟合的思路把分布在多个维度的⾼维数据投射到⼏个轴上。
如果每个样本只有两个数据变量,这种拟合就是其中和分别是样本的两个变量,⽽和则被称为loading,计算出的P值就被称为主成份。
实际上,当⼀个样本只有两个变量的时候,主成份分析本质上就是做⼀个线性回归。
公式本质上就是⼀条直线。
插⼊⼀幅图(主成份坐标旋转图,来⾃:PLS⼯具箱参考⼿册)如果⼀个样本有n个变量,那主成份就变为:其中PC1 称为第⼀主成份,⽽且,我们还可以获得⼀系列与PC这个直线正交的其它轴,如:被称为第⼆主成份以此类推,若令,此时向量A称为主成份的载荷(loading),计算出的主成份的值PC称为得分(score)。
1. 主成份分析举例作为⼀个典型的降维⽅法,主成份分析在数据降维⽅⾯⾮常有⽤,⽽且也是所有线性降维⽅法的基础。
很多时候,如果我们拿着⼀个⾮常复杂的数据不知所措的话,可以先考虑⽤主成份分析的⽅法对其进⾏分解,找出数据当中的种种趋势。
在这⾥,我们利⽤数据挖掘研究当中⾮常常见的⼀个数据集对主成份分析的使⽤举例如下:1996年,美国时代周刊(Times)发表了⼀篇关于酒类消费,⼼脏病发病率和平均预期寿命之间关系的科普⽂章,当中提到了10个国家的烈酒,葡萄酒和啤酒的⼈均消费量(升/年)与⼈均预期寿命(年)⼀级⼼脏病发病率(百万⼈/年)的数据,这些数据单位不⼀,⽽且数据与数据之间仅有间接关系。
因此直接相关分析不能获得重要且有趣的结果。
另外⼀⽅⾯,总共只有10个国家作为样本,各种常见的抽样和假设检验在这⽅⾯也没有⽤武之地,我们看看⽤何种⽅法能够从这个简单的数据表中获得重要知识作为数据挖掘的第⼀步,⾸先应该观察数据的总体分布情况。
⽆论是EXCEL软件,还是R语⾔,我们都能够很⽅便的从下表中获得表征数据分布的条形图。
从图中可以看出,总共10个国家,有5类数据,由于各类数据性质各不相同,因此数值上⼤⼩也很不相同。
主成分分析法原理

主成分分析法原理
主成分分析法是一种数据分析方法,可以将多维数据集合中的高维变量转化为少量的主成分,从而实现数据的降维和特征抽取。
主成分分析法的基本思想是:将原始数据的多维变量压缩到低维空间,其中压缩的维度由维度数量决定,而每一维变量的压缩程度由各维度的系数来决定。
每一个维度的系数可以理解为一个方向的投影,可以将原始数据投影到该方向上,以此来获得降维后的新数据矩阵。
主成分分析法由一系列步骤组成,包括数据预处理、主成分析、结果分析等。
首先,对原始数据进行预处理,将数据集中的变量标准化,并计算其协方差矩阵。
接着,在协方差矩阵的基础上,通过矩阵分解算法求出其特征值和特征向量,而特征向量代表了原始数据的主要特征和方向,其特征值表示了各个特征的重要性,用于对特征做出选择。
最后,利用特征值和特征向量,可以构建出新的主成分矩阵,以此实现数据的降维和特征抽取。
主成分分析法在实际应用中具有许多优点,可以实现多维数据的有效降维,减少原始数据的复杂性;可以提取数据中有用的信息;还可以用于数据可视化、数据分类等,因此被广泛应用于各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 主成分分析方法
地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题 是经常会遇到的。
变量太多, 无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中, 多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上, 这种想法是可以实现的, 本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。
第一节 主成分分析方法的原理
主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看, 这是一种降维处理技术。
假定有 n 个地理样本, 每个样本共有 p 个变量描述,这样就构成了一个 n ×p 阶的地理数据矩阵:
如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在 p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需 要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使 这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。
那么,这些综合指标(即新变量 ) 应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数, 使新的变量 指标之间相互独立且代表性最好。
如果记原来的变量指标为 x 1, 为 x 1,x 2,⋯, zm (m ≤p ) 。
则
x 2
,⋯, x p
,它们的综合指标——新变量指标
在(2)式中,系数l ij 由下列原则来决定:
(1)z1 2与z j(i ≠j ;i ,j=1 ,2,⋯,m)相互无关;
(2)z 1是x1,x2,⋯,x p的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,⋯,x p的所有线性组合中方差最大者;⋯⋯;z m是与z1,z2,⋯⋯z m-1 都不相关的x1,x2,⋯,x p的所有线性组合中方差最大者。
这样决定的新变量指标z1,z2,⋯,zm分别称为原变量指标x1,x2,⋯,x p 的第一,第二,⋯,第m主成分。
其中,z1在总方差中占的比例最大,z2,z3,⋯,z m的方差依次递减。
在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。
从以上分析可以看出,找主成分就是确定原来变量x j(j=1 ,2,⋯,p)在诸主成分z i (i=1 ,2,⋯,m)上的载荷l ij (i=1 ,2,⋯,m;j=1 ,2,⋯,p),从数学上容易知道,它们分别是x1,x2,⋯,x p的相关矩阵的m个较大的特征值所对应的特征向量。
第二节主成分分析的解法
主成分分析的计算步骤
通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:在公式(3)中,r ij (i ,j=1 ,2,⋯,p)为原来变量x i与x j的相关系数,其计
算公式为
因为R是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。
1 计算相关系数矩阵
2 计算特征值与特征向量
首先解特征方程|λI-R |=0求出特征值λi(i=1 ,2,⋯,p),并使其按大小顺序排列,即λ1≥λ2≥⋯,≥λp≥0;然后分别求出对应于特征值λi 的特征向量e i (i=1 ,2,⋯,p)。
3)计算主成分贡献率及累计贡献率
般取累计贡献率达85-95%的特征值λ1,λ2,⋯,λm所对应的第一,第⋯,第m(m≤p)个主成分。
4)计算主成分载荷
由此可以进一步计算主成分得分:
第三节主成分分析应用实例
主成分分析实例
对于某区域地貌- 水文系统,其57个流域盆地的九项地理要素:x1为流域盆地总高度(m)x2为流域盆地山口的海拔高度(m),x3为流域盆地周长(m),x4为河道总长度(km),x5为河
表 2-14 某 57 个流域盆地地理要素数据
道总数,x6为平均分叉率,x7为河谷最大坡度(度),x8为河源数及x9为流域盆地面积(km2)的原始数据如表2-14 所示。
张超先生(1984)曾用这些地理要素的原始数据对该区域地貌- 水文系统作了主成分分析。
下面,我们将其作为主成分分析方法在地理学研究中的一个应用实例介绍给读者,以供参考。
表 2-15 相关系数矩阵
(1)首先将表2-14 中的原始数据作标准化处理,由公式(4)计算得相关系数矩阵(见表2-15)。
(2)由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表2-16)。
由表2-16 可知,第一,第二,第三主成分的累计贡献率已高达86.5 %,故只需求出第一,第二,第三主成分z1,z2,z3即可。
表 2-16 特征值及主成分贡献率
(3)对于特征值λ1=5.043,λ2=1.746,λ3=0.997 分别求出其特征向量e1,e2,e3,并计算各变量x1,x2,⋯⋯,x9在各主成分上的载荷得到主成分载荷矩阵(见表2-17)。
表 2-17 主成分载荷矩阵
从表2-17 可以看出,第一主成分z1与x1,x3,x4,x5,x8,x9 有较大的正相关,这是由于这六个地理要素与流域盆地的规模有关,因此第一主成分可以被认为是流域盆地规模的代表:第二主成分z2 与x2有较大的正相关,与x7 有较大的负相关,而这两个地理要素是与流域切割程度有关的,因此第二主成分可以被认为是流域侵蚀状况的代表;第三主成分z3 与x6有较大的正相关,而地理要素x6 是流域比较独立的特性——河系形态的表征,因此,第三主成成可以被认为是代表河系形态的主成分。
以上分析结果表明,根据主成分载荷,该区域地貌- 水文系统的九项地理要素可以被归为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。
如果选取其中相关系数绝对值最大者作为代表,则流域面积,流域盆地出口的海拔高度和分叉率可作为这三类地理要素的代表,利用这三个要素代替原来九个要素进行区域地貌- 水文系统分析,可以使问题大大地简化。